#!/usr/bin/python3 # # # ModExpNG core math model. # # # Copyright (c) 2019, NORDUnet A/S # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # - Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # - Neither the name of the NORDUnet nor the names of its contributors may # be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A # PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED # TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ------- # Imports #-------- import sys import importlib # -------------- # Model Settings # -------------- # length of public key KEY_LENGTH = 1024 # how many parallel multipliers to use NUM_MULTS = 8 # --------------- # Internal Values # --------------- # half of key length _KEY_LENGTH_HALF = KEY_LENGTH // 2 # width of internal math pipeline _WORD_WIDTH = 16 # folder with test vector scripts _VECTOR_PATH = "/vector" # name of test vector class _VECTOR_CLASS = "Vector" # ------------------ # Debugging Settings # ------------------ DUMP_VECTORS = False DUMP_INDICES = False DUMP_MACS_CLEARING = False DUMP_MACS_ACCUMULATION = True DUMP_MULT_PARTS = False DUMP_RCMB = False # # Multi-Precision Integer # class ModExpNG_Operand(): def __init__(self, number, length, words = None): if words is None: # length must be divisible by word width if (length % _WORD_WIDTH) > 0: raise Exception("Bad number length!") self._init_from_number(number, length) else: # length must match words count if len(words) != length: raise Exception("Bad words count!") self._init_from_words(words, length) def format_verilog_concat(self, name): for i in range(len(self.words)): if i > 0: if (i % 4) == 0: print("") else: print(" ", end='') print("%s[%2d] = 17'h%05x;" % (name, i, self.words[i]), end='') print("") def _init_from_words(self, words, count): for i in range(count): # word must not exceed 17 bits if words[i] >= (2 ** (_WORD_WIDTH + 1)): raise Exception("Word is too large!") self.words = words def _init_from_number(self, number, length): num_hexchars_per_word = _WORD_WIDTH // 4 num_hexchars_total = length // num_hexchars_per_word value_hex = format(number, 'x') # value must not be larger than specified, but it can be smaller, so # we may need to prepend it with zeroes if len(value_hex) > num_hexchars_total: raise Exception("Number is too large!") else: while len(value_hex) < num_hexchars_total: value_hex = "0" + value_hex # create empty list self.words = list() # fill in words while len(value_hex) > 0: value_hex_part = value_hex[-num_hexchars_per_word:] value_hex = value_hex[:-num_hexchars_per_word] self.words.append(int(value_hex_part, 16)) def number(self): ret = 0 shift = 0 for word in self.words: ret += word << shift shift += _WORD_WIDTH return ret # # Test Vector # class ModExpNG_TestVector(): def __init__(self): # format target filename filename = "vector_" + str(KEY_LENGTH) + "_randomized" # add ./vector to import search path sys.path.insert(1, sys.path[0] + _VECTOR_PATH) # import from filename vector_module = importlib.import_module(filename) # get vector class vector_class = getattr(vector_module, _VECTOR_CLASS) # instantiate vector class vector_inst = vector_class() # obtain parts of vector self.m = ModExpNG_Operand(vector_inst.m, KEY_LENGTH) self.n = ModExpNG_Operand(vector_inst.n, KEY_LENGTH) self.d = ModExpNG_Operand(vector_inst.d, KEY_LENGTH) self.p = ModExpNG_Operand(vector_inst.p, _KEY_LENGTH_HALF) self.q = ModExpNG_Operand(vector_inst.q, _KEY_LENGTH_HALF) self.dp = ModExpNG_Operand(vector_inst.dp, _KEY_LENGTH_HALF) self.dq = ModExpNG_Operand(vector_inst.dq, _KEY_LENGTH_HALF) self.qinv = ModExpNG_Operand(vector_inst.qinv, _KEY_LENGTH_HALF) self.n_factor = ModExpNG_Operand(vector_inst.n_factor, KEY_LENGTH) self.p_factor = ModExpNG_Operand(vector_inst.p_factor, _KEY_LENGTH_HALF) self.q_factor = ModExpNG_Operand(vector_inst.q_factor, _KEY_LENGTH_HALF) self.n_coeff = ModExpNG_Operand(vector_inst.n_coeff, KEY_LENGTH + _WORD_WIDTH) self.p_coeff = ModExpNG_Operand(vector_inst.p_coeff, _KEY_LENGTH_HALF + _WORD_WIDTH) self.q_coeff = ModExpNG_Operand(vector_inst.q_coeff, _KEY_LENGTH_HALF + _WORD_WIDTH) self.x = ModExpNG_Operand(vector_inst.x, KEY_LENGTH) self.y = ModExpNG_Operand(vector_inst.y, KEY_LENGTH) class ModExpNG_PartRecombinator(): def _bit_select(self, x, msb, lsb): y = 0 for pos in range(lsb, msb+1): y |= (x & (1 << pos)) >> lsb return y def _flush_pipeline(self, dump): self.z0, self.y0, self.x0 = 0, 0, 0 if dump and DUMP_RCMB: print("RCMB -> flush()") def _push_pipeline(self, part, dump): # split next part into 16-bit words z = self._bit_select(part, 46, 32) y = self._bit_select(part, 31, 16) x = self._bit_select(part, 15, 0) # shift to the right z1 = z y1 = y + self.z0 x1 = x + self.y0 + (self.x0 >> 16) # IMPORTANT: This carry can be up to two bits wide!! # save lower 16 bits of the rightmost cell t = self.x0 & 0xffff # update internal latches self.z0, self.y0, self.x0 = z1, y1, x1 # dump if dump and DUMP_RCMB: print("RCMB -> push(): part = 0x%012x, word = 0x%04x" % (part, t)) # done return t def recombine_square(self, parts, ab_num_words, dump): # empty results so far words_lsb = list() # n words words_msb = list() # n words # recombine the lower half (n parts) # the first tick produces null result, the last part # produces three words and needs two extra ticks self._flush_pipeline(dump) for i in range(ab_num_words + 1 + 2): next_part = parts[i] if i < ab_num_words else 0 next_word = self._push_pipeline(next_part, dump) if i > 0: words_lsb.append(next_word) # recombine the upper half (n-1 parts) # the first tick produces null result self._flush_pipeline(dump) for i in range(ab_num_words + 1): next_part = parts[i + ab_num_words] if i < (ab_num_words - 1) else 0 next_word = self._push_pipeline(next_part, dump) if i > 0: words_msb.append(next_word) # merge words words = list() # merge lower half for x in range(ab_num_words): next_word = words_lsb[x] words.append(next_word) # merge upper half adding the two overlapping words for x in range(ab_num_words): next_word = words_msb[x] if x < 2: next_word += words_lsb[x + ab_num_words] words.append(next_word) return words def recombine_triangle(self, parts, ab_num_words, dump): # empty result so far words_lsb = list() # recombine the lower half (n+1 parts) # the first tick produces null result, so we need n + 1 + 1 = n + 2 # ticks total and should only save the result word during the last n ticks self._flush_pipeline(dump) for i in range(ab_num_words + 2): next_part = parts[i] if i < (ab_num_words + 1) else 0 next_word = self._push_pipeline(next_part, dump) if i > 0: words_lsb.append(next_word) return words_lsb def recombine_rectangle(self, parts, ab_num_words, dump): # empty result so far words = list() # flush recombinator pipeline self._flush_pipeline(dump) # the first tick produces null result, the last part produces # two words, so we need 2 * n + 2 ticks total and should only save # the result word during the last 2 * n + 1 ticks for i in range(2 * ab_num_words + 2): next_part = parts[i] if i < (2 * ab_num_words) else 0 next_word = self._push_pipeline(next_part, dump) if i > 0: words.append(next_word) return words class ModExpNG_WordMultiplier(): _a_seen_17 = False _b_seen_17 = False def __init__(self): self._macs = list() self._indices = list() self._mac_aux = list() self._index_aux = list() for x in range(NUM_MULTS): self._macs.append(0) self._indices.append(0) self._mac_aux.append(0) self._index_aux.append(0) def _clear_all_macs(self): for x in range(NUM_MULTS): self._macs[x] = 0 def _clear_one_mac(self, x): self._macs[x] = 0 def _clear_mac_aux(self): self._mac_aux[0] = 0 def _update_one_mac(self, x, a, b): if a > 0xFFFF: self._a_seen_17 = True if b > 0xFFFF: self._b_seen_17 = True if a > 0x1FFFF: raise("a > 0x1FFFF!") if b > 0x1FFFF: raise("b > 0x1FFFF!") p = a * b self._macs[x] += p def _update_mac_aux(self, value): self._mac_aux[0] += value def _preset_indices(self, col): for x in range(len(self._indices)): self._indices[x] = col * len(self._indices) + x def _preset_index_aux(self, num_cols): self._index_aux[0] = num_cols * len(self._indices) def _rotate_indices(self, num_words): for x in range(len(self._indices)): if self._indices[x] > 0: self._indices[x] -= 1 else: self._indices[x] = num_words - 1 def _rotate_index_aux(self): self._index_aux[0] -= 1 def _mult_store_part(self, parts, time, column, part_index, mac_index, dump): parts[part_index] = self._macs[mac_index] if dump and DUMP_MULT_PARTS: print("t=%2d, col=%2d > parts[%2d]: mac[%d] = 0x%012x" % (time, column, part_index, mac_index, parts[part_index])) def _mult_store_part_aux(self, parts, time, column, part_index, mac_index, dump): parts[part_index] = self._mac_aux[mac_index] if dump and DUMP_MULT_PARTS: print("t=%2d, col=%2d > parts[%2d]: mac_aux[%d] = 0x%012x" % (time, column, part_index, mac_index, parts[part_index])) def multiply_square(self, a_wide, b_narrow, ab_num_words, dump=False): if dump: print("multiply_square()") num_cols = ab_num_words // NUM_MULTS parts = list() for i in range(2 * ab_num_words - 1): parts.append(0) for col in range(num_cols): for t in range(ab_num_words): if t == 0: self._preset_indices(col) else: self._rotate_indices(ab_num_words) if t == 0: self._clear_all_macs() if dump and DUMP_MACS_CLEARING: print("t= 0, col=%2d > clear > all" % (col)) else: t1 = t - 1 if (t1 // 8) == col: self._clear_one_mac(t1 % NUM_MULTS) if dump and DUMP_MACS_CLEARING: print("t=%2d, col=%2d > clear > x=%d:" % (t, col, t1 % NUM_MULTS)) if dump and DUMP_INDICES: print("t=%2d, col=%2d > indices:" % (t, col), end='') for i in range(NUM_MULTS): print(" %2d" % self._indices[i], end='') print("") # current b-word bt = b_narrow.words[t] # multiply by a-words for x in range(NUM_MULTS): ax = a_wide.words[self._indices[x]] self._update_one_mac(x, ax, bt) if t == (col * NUM_MULTS + x): part_index = t self._mult_store_part(parts, t, col, part_index, x, dump) if dump and DUMP_MACS_ACCUMULATION: print("t=%2d, col=%2d > "% (t, col), end='') for i in range(NUM_MULTS): if i > 0: print(" | ", end='') print("mac[%d]: 0x%012x" % (i, self._macs[i]), end='') print("") # save the uppers part of product at end of column, # for the last column don't save the very last part if t == (ab_num_words - 1): for x in range(NUM_MULTS): if not (col == (num_cols - 1) and x == (NUM_MULTS - 1)): part_index = ab_num_words + col * NUM_MULTS + x self._mult_store_part(parts, t, col, part_index, x, dump) return parts def multiply_triangle(self, a_wide, b_narrow, ab_num_words, dump=False): if dump: print("multiply_triangle()") num_cols = ab_num_words // NUM_MULTS parts = list() for i in range(ab_num_words + 1): parts.append(0) for col in range(num_cols): last_col = col == (num_cols - 1) for t in range(ab_num_words + 1): if t == 0: self._preset_indices(col) if last_col: self._preset_index_aux(num_cols) else: self._rotate_indices(ab_num_words) if last_col: self._rotate_index_aux() if t == 0: self._clear_all_macs() if dump and DUMP_MACS_CLEARING: print("t= 0, col=%2d > clear > all" % (col)) if last_col: self._clear_mac_aux() if dump and DUMP_MACS_CLEARING: print("t= 0, col=%2d > clear > aux" % (col)) # current b-word bt = b_narrow.words[t] # multiply by a-words for x in range(NUM_MULTS): ax = a_wide.words[self._indices[x]] self._update_one_mac(x, ax, bt) if t == (col * NUM_MULTS + x): part_index = t self._mult_store_part(parts, t, col, part_index, x, dump) # aux multiplier if last_col: ax = a_wide.words[self._index_aux[0]] self._update_mac_aux(ax * bt) if t == ab_num_words: part_index = t self._mult_store_part_aux(parts, t, col, part_index, 0, dump) if dump and DUMP_MACS_ACCUMULATION: print("t=%2d, col=%2d > "% (t, col), end='') for i in range(NUM_MULTS): if i > 0: print(" | ", end='') print("mac[%d]: 0x%012x" % (i, self._macs[i]), end='') if last_col: print(" | mac_aux[ 0]: 0x%012x" % (self._mac_aux[0]), end='') print("") # shortcut if not last_col: if t == (NUM_MULTS * (col + 1) - 1): break return parts def multiply_rectangle(self, a_wide, b_narrow, ab_num_words): num_cols = ab_num_words // NUM_MULTS parts = list() for i in range(2 * ab_num_words): parts.append(0) for col in range(num_cols): self._clear_all_macs() self._preset_indices(col) for t in range(ab_num_words+1): # current b-word bt = b_narrow.words[t] # multiply by a-words for x in range(NUM_MULTS): ax = a_wide.words[self._indices[x]] self._update_one_mac(x, ax, bt) # don't save one value for the very last time instant per column if t < ab_num_words and t == (col * NUM_MULTS + x): parts[t] = self._macs[x] self._clear_one_mac(x) # save the uppers part of product at end of column if t == ab_num_words: for x in range(NUM_MULTS): parts[ab_num_words + col * NUM_MULTS + x] = self._macs[x] self._rotate_indices(ab_num_words) return parts class ModExpNG_LowlevelOperator(): def __init__(self): self._word_mask = 0 for x in range(_WORD_WIDTH): self._word_mask |= (1 << x) def _check_word(self, a): if a < 0 or a >= (2 ** _WORD_WIDTH): raise Exception("Word out of range!") def _check_carry_borrow(self, cb): if cb < 0 or cb > 1: raise Exception("Carry or borrow out of range!") def add_words(self, a, b, c_in): self._check_word(a) self._check_word(b) self._check_carry_borrow(c_in) sum = a + b + c_in sum_s = sum & self._word_mask sum_c = (sum >> _WORD_WIDTH) & 1 return (sum_c, sum_s) def sub_words(self, a, b, b_in): self._check_word(a) self._check_word(b) self._check_carry_borrow(b_in) dif = a - b - b_in if dif < 0: dif_b = 1 dif_d = dif + 2 ** _WORD_WIDTH else: dif_b = 0 dif_d = dif return (dif_b, dif_d) class ModExpNG_Worker(): def __init__(self): self.recombinator = ModExpNG_PartRecombinator() self.multiplier = ModExpNG_WordMultiplier() self.lowlevel = ModExpNG_LowlevelOperator() def exponentiate(self, iz, bz, e, n, n_factor, n_coeff, num_words): # working variables t1, t2 = iz, bz # length-1, length-2, length-3, ..., 1, 0 (left-to-right) for bit in range(_WORD_WIDTH * num_words - 1, -1, -1): if e.number() & (1 << bit): p1 = self.multiply(t1, t2, n, n_coeff, num_words) p2 = self.multiply(t2, t2, n, n_coeff, num_words) else: p1 = self.multiply(t1, t1, n, n_coeff, num_words) p2 = self.multiply(t2, t1, n, n_coeff, num_words) t1, t2 = p1, p2 if (bit % 8) == 0: pct = float((_WORD_WIDTH * num_words - bit) / (_WORD_WIDTH * num_words)) * 100.0 print("\rpct: %5.1f%%" % pct, end='') print("") return t1 def subtract(self, a, b, n, ab_num_words): c_in = 0 b_in = 0 ab = list() ab_n = list() for x in range(ab_num_words): a_word = a.words[x] b_word = b.words[x] (b_out, d_out) = self.lowlevel.sub_words(a_word, b_word, b_in) (c_out, s_out) = self.lowlevel.add_words(d_out, n.words[x], c_in) ab.append(d_out) ab_n.append(s_out) (c_in, b_in) = (c_out, b_out) d = ab if not b_out else ab_n return ModExpNG_Operand(None, ab_num_words, d) def add(self, a, b, ab_num_words): c_in = 0 ab = list() for x in range(2 * ab_num_words): a_word = a.words[x] if x < ab_num_words else 0 b_word = b.words[x] (c_out, s_out) = self.lowlevel.add_words(a_word, b_word, c_in) ab.append(s_out) c_in = c_out return ModExpNG_Operand(None, 2*ab_num_words, ab) def multiply(self, a, b, n, n_coeff, ab_num_words, reduce_only=False, multiply_only=False, dump=False): if dump and DUMP_VECTORS: print("num_words = %d" % ab_num_words) a.format_verilog_concat("A") b.format_verilog_concat("B") n.format_verilog_concat("N") n_coeff.format_verilog_concat("N_COEFF") # 1. if reduce_only: ab = a else: ab_parts = self.multiplier.multiply_square(a, b, ab_num_words, dump) ab_words = self.recombinator.recombine_square(ab_parts, ab_num_words, dump) ab = ModExpNG_Operand(None, 2 * ab_num_words, ab_words) if multiply_only: return ModExpNG_Operand(None, 2*ab_num_words, ab_words) # 2. q_parts = self.multiplier.multiply_triangle(ab, n_coeff, ab_num_words, dump) q_words = self.recombinator.recombine_triangle(q_parts, ab_num_words, dump) q = ModExpNG_Operand(None, ab_num_words + 1, q_words) # 3. m_parts = self.multiplier.multiply_rectangle(n, q, ab_num_words) m_words = self.recombinator.recombine_rectangle(m_parts, ab_num_words, dump) m = ModExpNG_Operand(None, 2 * ab_num_words + 1, m_words) # 4. r_xwords = list() for i in range(2*ab_num_words): r_xwords.append(ab.words[i] + m.words[i]) r_xwords.append(m.words[2 * ab_num_words]) cy = 0 for i in range(ab_num_words+1): s = r_xwords[i] + cy cy = s >> 16 R = list() for i in range(ab_num_words): R.append(0) R[0] += cy # !!! for i in range(ab_num_words): R[i] += r_xwords[ab_num_words + i + 1] return ModExpNG_Operand(None, ab_num_words, R) def reduce(self, a): carry = 0 for x in range(len(a.words)): a.words[x] += carry carry = (a.words[x] >> _WORD_WIDTH) & 1 a.words[x] &= self.lowlevel._word_mask if __name__ == "__main__": # load test vector # create worker # set numbers of words # obtain known good reference value with built-in math # create helper quantity # mutate blinding quantities with built-in math vector = ModExpNG_TestVector() worker = ModExpNG_Worker() n_num_words = KEY_LENGTH // _WORD_WIDTH pq_num_words = n_num_words // 2 s_known = pow(vector.m.number(), vector.d.number(), vector.n.number()) i = ModExpNG_Operand(1, KEY_LENGTH) x_mutated_known = pow(vector.x.number(), 2, vector.n.number()) y_mutated_known = pow(vector.y.number(), 2, vector.n.number()) # bring one into Montgomery domain (glue 2**r to one) # bring blinding coefficients into Montgomery domain (glue 2**(2*r) to x and y) # blind message # convert message to non-redundant representation # first reduce message, this glues 2**-r to the message as a side effect # unglue 2**-r from message by gluing 2**r to it to compensate # bring message into Montgomery domain (glue 2**r to message) # do "easier" exponentiations # return "easier" parts from Montgomery domain (unglue 2**r from result) # do the "Garner's formula" part # r = sp - sq mod p # sr_qinv = sr * qinv mod p # q_sr_qinv = q * sr_qinv # s_crt = sq + q_sr_qinv # unblind s # mutate blinding factors ip_factor = worker.multiply(i, vector.p_factor, vector.p, vector.p_coeff, pq_num_words) iq_factor = worker.multiply(i, vector.q_factor, vector.q, vector.q_coeff, pq_num_words) x_factor = worker.multiply(vector.x, vector.n_factor, vector.n, vector.n_coeff, n_num_words) y_factor = worker.multiply(vector.y, vector.n_factor, vector.n, vector.n_coeff, n_num_words) m_blind = worker.multiply(vector.m, y_factor, vector.n, vector.n_coeff, n_num_words) worker.reduce(m_blind) mp_blind_inverse_factor = worker.multiply(m_blind, None, vector.p, vector.p_coeff, pq_num_words, reduce_only=True) mq_blind_inverse_factor = worker.multiply(m_blind, None, vector.q, vector.q_coeff, pq_num_words, reduce_only=True) mp_blind = worker.multiply(mp_blind_inverse_factor, vector.p_factor, vector.p, vector.p_coeff, pq_num_words) mq_blind = worker.multiply(mq_blind_inverse_factor, vector.q_factor, vector.q, vector.q_coeff, pq_num_words) mp_blind_factor = worker.multiply(mp_blind, vector.p_factor, vector.p, vector.p_coeff, pq_num_words, dump=True) mq_blind_factor = worker.multiply(mq_blind, vector.q_factor, vector.q, vector.q_coeff, pq_num_words) sp_blind_factor = worker.exponentiate(ip_factor, mp_blind_factor, vector.dp, vector.p, vector.p_factor, vector.p_coeff, pq_num_words) sq_blind_factor = worker.exponentiate(iq_factor, mq_blind_factor, vector.dq, vector.q, vector.q_factor, vector.q_coeff, pq_num_words) if worker.multiplier._a_seen_17: print("17-bit wide A's seen.") else: print("17-bit wide A's not detected.") if worker.multiplier._b_seen_17: print("17-bit wide B's seen.") else: print("17-bit wide B's not detected.") sp_blind = worker.multiply(i, sp_blind_factor, vector.p, vector.p_coeff, pq_num_words) sq_blind = worker.multiply(i, sq_blind_factor, vector.q, vector.q_coeff, pq_num_words) sr_blind = worker.subtract(sp_blind, sq_blind, vector.p, pq_num_words) sr_qinv_blind_inverse_factor = worker.multiply(sr_blind, vector.qinv, vector.p, vector.p_coeff, pq_num_words) sr_qinv_blind = worker.multiply(sr_qinv_blind_inverse_factor, vector.p_factor, vector.p, vector.p_coeff, pq_num_words) q_sr_qinv_blind = worker.multiply(vector.q, sr_qinv_blind, None, None, pq_num_words, multiply_only=True) s_crt_blinded = worker.add(sq_blind, q_sr_qinv_blind, pq_num_words) s_crt_unblinded = worker.multiply(s_crt_blinded, x_factor, vector.n, vector.n_coeff, n_num_words) x_mutated_factor = worker.multiply(x_factor, x_factor, vector.n, vector.n_coeff, n_num_words) y_mutated_factor = worker.multiply(y_factor, y_factor, vector.n, vector.n_coeff, n_num_words) x_mutated = worker.multiply(i, x_mutated_factor, vector.n, vector.n_coeff, n_num_words) y_mutated = worker.multiply(i, y_mutated_factor, vector.n, vector.n_coeff, n_num_words) worker.reduce(s_crt_unblinded) worker.reduce(x_mutated) worker.reduce(y_mutated) # check if s_crt_unblinded.number() != s_known: print("ERROR: s_crt_unblinded != s_known!") else: print("s is OK") if x_mutated.number() != x_mutated_known: print("ERROR: x_mutated != x_mutated_known!") else: print("x_mutated is OK") if y_mutated.number() != y_mutated_known: print("ERROR: y_mutated != y_mutated_known!") else: print("y_mutated is OK") # # End-of-File #