#include #include #include #include #include #include #include #include #include #include #include #include #include #include "novena-eim.h" int debug = 0; int quiet = 0; int repeat = 0; #define SEGMENT_OFFSET_GLOBALS EIM_BASE_ADDR + 0x000000 #define SEGMENT_OFFSET_HASHES EIM_BASE_ADDR + 0x010000 #define SEGMENT_OFFSET_RNGS EIM_BASE_ADDR + 0x020000 #define SEGMENT_OFFSET_CIPHERS EIM_BASE_ADDR + 0x030000 /* addresses and codes common to all cores */ #define ADDR_NAME0 (0x00 << 2) #define ADDR_NAME1 (0x01 << 2) #define ADDR_VERSION (0x02 << 2) /* addresses and codes common to all hash cores */ #define ADDR_CTRL (0x08 << 2) #define CTRL_INIT_CMD 1 #define CTRL_NEXT_CMD 2 #define ADDR_STATUS (0x09 << 2) #define STATUS_READY_BIT 1 #define STATUS_VALID_BIT 2 #define ADDR_BLOCK (0x10 << 2) #define ADDR_DIGEST (0x20 << 2) #define HASH_CORE_SIZE (0x100 << 2) /* addresses and codes for the specific hash cores */ #define STREEBOG_ADDR_BASE SEGMENT_OFFSET_HASHES + (3*HASH_CORE_SIZE) #define STREEBOG_ADDR_NAME0 STREEBOG_ADDR_BASE + ADDR_NAME0 #define STREEBOG_ADDR_NAME1 STREEBOG_ADDR_BASE + ADDR_NAME1 #define STREEBOG_ADDR_VERSION STREEBOG_ADDR_BASE + ADDR_VERSION #define STREEBOG_ADDR_CTRL STREEBOG_ADDR_BASE + ADDR_CTRL #define STREEBOG_ADDR_STATUS STREEBOG_ADDR_BASE + ADDR_STATUS #define STREEBOG_ADDR_BLOCK_BITS STREEBOG_ADDR_BASE + (0x0a << 2) #define STREEBOG_ADDR_MODE STREEBOG_ADDR_BASE + (0x0b << 2) #define STREEBOG_ADDR_BLOCK STREEBOG_ADDR_BASE + ADDR_BLOCK #define STREEBOG_ADDR_DIGEST STREEBOG_ADDR_BASE + ADDR_DIGEST #define CTRL_FINAL_CMD 4 #define STREEBOG_MODE_512 0 #define STREEBOG_MODE_256 1 #define STREEBOG_BLOCK_LEN 512 / 8 #define STREEBOG_DIGEST_LEN_512 512 / 8 #define STREEBOG_DIGEST_LEN_256 256 / 8 const uint8_t GOST_SINGLE[] = { 0x01, 0x32, 0x31, 0x30, 0x39, 0x38, 0x37, 0x36, 0x35, 0x34, 0x33, 0x32, 0x31, 0x30, 0x39, 0x38, 0x37, 0x36, 0x35, 0x34, 0x33, 0x32, 0x31, 0x30, 0x39, 0x38, 0x37, 0x36, 0x35, 0x34, 0x33, 0x32, 0x31, 0x30, 0x39, 0x38, 0x37, 0x36, 0x35, 0x34, 0x33, 0x32, 0x31, 0x30, 0x39, 0x38, 0x37, 0x36, 0x35, 0x34, 0x33, 0x32, 0x31, 0x30, 0x39, 0x38, 0x37, 0x36, 0x35, 0x34, 0x33, 0x32, 0x31, 0x30 }; const uint8_t GOST_DOUBLE_FIRST[] = { 0xfb, 0xea, 0xfa, 0xeb, 0xef, 0x20, 0xff, 0xfb, 0xf0, 0xe1, 0xe0, 0xf0, 0xf5, 0x20, 0xe0, 0xed, 0x20, 0xe8, 0xec, 0xe0, 0xeb, 0xe5, 0xf0, 0xf2, 0xf1, 0x20, 0xff, 0xf0, 0xee, 0xec, 0x20, 0xf1, 0x20, 0xfa, 0xf2, 0xfe, 0xe5, 0xe2, 0x20, 0x2c, 0xe8, 0xf6, 0xf3, 0xed, 0xe2, 0x20, 0xe8, 0xe6, 0xee, 0xe1, 0xe8, 0xf0, 0xf2, 0xd1, 0x20, 0x2c, 0xe8, 0xf0, 0xf2, 0xe5, 0xe2, 0x20, 0xe5, 0xd1 }; const uint8_t GOST_DOUBLE_SECOND[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xfb, 0xe2, 0xe5, 0xf0, 0xee, 0xe3, 0xc8, 0x20 }; const uint32_t GOST_SINGLE_LENGTH = 504; const uint32_t GOST_DOUBLE_LENGTH_FIRST = 512; const uint32_t GOST_DOUBLE_LENGTH_SECOND = 64; const uint8_t GOST_SINGLE_DIGEST_512[] = { 0x48, 0x6f, 0x64, 0xc1, 0x91, 0x78, 0x79, 0x41, 0x7f, 0xef, 0x08, 0x2b, 0x33, 0x81, 0xa4, 0xe2, 0x11, 0xc3, 0x24, 0xf0, 0x74, 0x65, 0x4c, 0x38, 0x82, 0x3a, 0x7b, 0x76, 0xf8, 0x30, 0xad, 0x00, 0xfa, 0x1f, 0xba, 0xe4, 0x2b, 0x12, 0x85, 0xc0, 0x35, 0x2f, 0x22, 0x75, 0x24, 0xbc, 0x9a, 0xb1, 0x62, 0x54, 0x28, 0x8d, 0xd6, 0x86, 0x3d, 0xcc, 0xd5, 0xb9, 0xf5, 0x4a, 0x1a, 0xd0, 0x54, 0x1b }; const uint8_t GOST_SINGLE_DIGEST_256[] = { 0x00, 0x55, 0x7b, 0xe5, 0xe5, 0x84, 0xfd, 0x52, 0xa4, 0x49, 0xb1, 0x6b, 0x02, 0x51, 0xd0, 0x5d, 0x27, 0xf9, 0x4a, 0xb7, 0x6c, 0xba, 0xa6, 0xda, 0x89, 0x0b, 0x59, 0xd8, 0xef, 0x1e, 0x15, 0x9d }; const uint8_t GOST_DOUBLE_DIGEST_512[] = { 0x28, 0xfb, 0xc9, 0xba, 0xda, 0x03, 0x3b, 0x14, 0x60, 0x64, 0x2b, 0xdc, 0xdd, 0xb9, 0x0c, 0x3f, 0xb3, 0xe5, 0x6c, 0x49, 0x7c, 0xcd, 0x0f, 0x62, 0xb8, 0xa2, 0xad, 0x49, 0x35, 0xe8, 0x5f, 0x03, 0x76, 0x13, 0x96, 0x6d, 0xe4, 0xee, 0x00, 0x53, 0x1a, 0xe6, 0x0f, 0x3b, 0x5a, 0x47, 0xf8, 0xda, 0xe0, 0x69, 0x15, 0xd5, 0xf2, 0xf1, 0x94, 0x99, 0x6f, 0xca, 0xbf, 0x26, 0x22, 0xe6, 0x88, 0x1e }; const uint8_t GOST_DOUBLE_DIGEST_256[] = { 0x50, 0x8f, 0x7e, 0x55, 0x3c, 0x06, 0x50, 0x1d, 0x74, 0x9a, 0x66, 0xfc, 0x28, 0xc6, 0xca, 0xc0, 0xb0, 0x05, 0x74, 0x6d, 0x97, 0x53, 0x7f, 0xa8, 0x5d, 0x9e, 0x40, 0x90, 0x4e, 0xfe, 0xd2, 0x9d }; /* ---------------- test-case low-level code ---------------- */ void dump(char *label, const uint8_t *buf, int len) { if (debug) { int i; printf("%s [", label); for (i = 0; i < len; ++i) printf(" %02x", buf[i]); printf(" ]\n"); } } int tc_write(off_t offset, const uint8_t *buf, int len) { dump("write ", buf, len); for (; len > 0; offset += 4, buf += 4, len -= 4) { uint32_t val; val = htonl(*(uint32_t *)buf); eim_write_32(offset, &val); } return 0; } int tc_read(off_t offset, uint8_t *buf, int len) { uint8_t *rbuf = buf; int rlen = len; for (; rlen > 0; offset += 4, rbuf += 4, rlen -= 4) { uint32_t val; eim_read_32(offset, &val); *(uint32_t *)rbuf = ntohl(val); } dump("read ", buf, len); return 0; } int tc_expected(off_t offset, const uint8_t *expected, int len) { uint8_t *buf; int i; buf = malloc(len); if (buf == NULL) { perror("malloc"); return 1; } dump("expect", expected, len); if (tc_read(offset, buf, len) != 0) goto errout; for (i = 0; i < len; ++i) if (buf[i] != expected[i]) { fprintf(stderr, "response byte %d: expected 0x%02x, got 0x%02x\n", i, expected[i], buf[i]); goto errout; } free(buf); return 0; errout: free(buf); return 1; } int tc_block_bits(off_t offset, uint32_t bits) { uint8_t buf[4] = {0, 0, (uint8_t)(bits >> 8), (uint8_t)bits}; return tc_write(offset, buf, 4); } int tc_mode(off_t offset, char mode) { uint8_t buf[4] = { 0, 0, 0, mode }; return tc_write(offset, buf, 4); } int tc_init(off_t offset) { uint8_t buf[4] = { 0, 0, 0, CTRL_INIT_CMD }; return tc_write(offset, buf, 4); } int tc_next(off_t offset) { uint8_t buf_clear[4] = { 0, 0, 0, 0 }; uint8_t buf_next[4] = { 0, 0, 0, CTRL_NEXT_CMD }; tc_write(offset, buf_clear, 4); return tc_write(offset, buf_next, 4); } int tc_final(off_t offset) { uint8_t buf[4] = { 0, 0, 0, CTRL_FINAL_CMD }; return tc_write(offset, buf, 4); } int tc_wait(off_t offset, uint8_t status) { uint8_t buf[4]; #if 0 do { if (tc_read(offset, buf, 4) != 0) return 1; } while (!(buf[3] & status)); return 0; #else int i; for (i = 0; i < 100; ++i) { if (tc_read(offset, buf, 4) != 0) return 1; if (buf[3] & status) return 0; } fprintf(stderr, "tc_wait timed out\n"); return 1; #endif } int tc_wait_ready(off_t offset) { return tc_wait(offset, STATUS_READY_BIT); } int tc_wait_valid(off_t offset) { return tc_wait(offset, STATUS_VALID_BIT); } /* ---------------- Streebog test cases ---------------- */ /* TC0: Read name and version from Streebog core. */ int TC0(void) { uint8_t name0[4] = { 's', 't', 'r', 'e'}; uint8_t name1[4] = { 'e', 'b', 'o', 'g'}; uint8_t version[4] = { '0', '.', '1', '0'}; if (!quiet) printf("TC0: Reading name and version words from Streebog core.\n"); return tc_expected(STREEBOG_ADDR_NAME0, name0, 4) || tc_expected(STREEBOG_ADDR_NAME1, name1, 4) || tc_expected(STREEBOG_ADDR_VERSION, version, 4); } /* TC1: Streebog single block message for 512-bit hash mode. */ int TC1(void) { const uint8_t *block = GOST_SINGLE; const uint8_t *expected = GOST_SINGLE_DIGEST_512; int ret; if (!quiet) printf("TC1: Short (single block) message test for Streebog (512-bit mode).\n"); /* Enable 512-bit mode. */ tc_mode(STREEBOG_ADDR_MODE, STREEBOG_MODE_512); /* Start initial block hashing. */ tc_init(STREEBOG_ADDR_CTRL); /* Write block to Streebog. */ tc_write(STREEBOG_ADDR_BLOCK, block, STREEBOG_BLOCK_LEN); /* Write block length to Streebog. */ tc_block_bits(STREEBOG_ADDR_BLOCK_BITS, GOST_SINGLE_LENGTH); /* Process block. */ tc_next(STREEBOG_ADDR_CTRL); /* Wait for block to be processed. */ tc_wait_ready(STREEBOG_ADDR_STATUS); /* Perform final transformation. */ tc_final(STREEBOG_ADDR_CTRL); /* Wait for hash to be produces. */ tc_wait_valid(STREEBOG_ADDR_STATUS); /* Extract the digest. */ ret = tc_expected(STREEBOG_ADDR_DIGEST, expected, STREEBOG_DIGEST_LEN_512); /* Make sure that core is idle. */ tc_wait_ready(STREEBOG_ADDR_STATUS); return ret; } /* TC2: Streebog double block message for 512-bit hash mode. */ int TC2(void) { const uint8_t *block1 = GOST_DOUBLE_FIRST; const uint8_t *block2 = GOST_DOUBLE_SECOND; const uint8_t *expected = GOST_DOUBLE_DIGEST_512; int ret; if (!quiet) printf("TC2: Long (double block) message test for Streebog (512-bit mode).\n"); /* Enable 512-bit mode. */ tc_mode(STREEBOG_ADDR_MODE, STREEBOG_MODE_512); /* Start initial block hashing. */ tc_init(STREEBOG_ADDR_CTRL); /* Write block to Streebog. */ tc_write(STREEBOG_ADDR_BLOCK, block1, STREEBOG_BLOCK_LEN); /* Write block length to Streebog. */ tc_block_bits(STREEBOG_ADDR_BLOCK_BITS, GOST_DOUBLE_LENGTH_FIRST); /* Process block. */ tc_next(STREEBOG_ADDR_CTRL); /* Wait for block to be processed. */ tc_wait_ready(STREEBOG_ADDR_STATUS); /* Write block to Streebog. */ tc_write(STREEBOG_ADDR_BLOCK, block2, STREEBOG_BLOCK_LEN); /* Write block length to Streebog. */ tc_block_bits(STREEBOG_ADDR_BLOCK_BITS, GOST_DOUBLE_LENGTH_SECOND); /* Process block. */ tc_next(STREEBOG_ADDR_CTRL); /* Wait for block to be processed. */ tc_wait_ready(STREEBOG_ADDR_STATUS); /* Perform final transformation. */ tc_final(STREEBOG_ADDR_CTRL); /* Wait for hash to be produces. */ tc_wait_valid(STREEBOG_ADDR_STATUS); /* Extract the digest. */ ret = tc_expected(STREEBOG_ADDR_DIGEST, expected, STREEBOG_DIGEST_LEN_512); /* Make sure that core is idle. */ tc_wait_ready(STREEBOG_ADDR_STATUS); return ret; } /* TC3: Streebog single block message for 256-bit hash mode. */ int TC3(void) { const uint8_t *block = GOST_SINGLE; const uint8_t *expected = GOST_SINGLE_DIGEST_256; int ret; if (!quiet) printf("TC3: Short (single block) message test for Streebog (256-bit mode).\n"); /* Enable 512-bit mode. */ tc_mode(STREEBOG_ADDR_MODE, STREEBOG_MODE_256); /* Start initial block hashing. */ tc_init(STREEBOG_ADDR_CTRL); /* Write block to Streebog. */ tc_write(STREEBOG_ADDR_BLOCK, block, STREEBOG_BLOCK_LEN); /* Write block length to Streebog. */ tc_block_bits(STREEBOG_ADDR_BLOCK_BITS, GOST_SINGLE_LENGTH); /* Process block. */ tc_next(STREEBOG_ADDR_CTRL); /* Wait for block to be processed. */ tc_wait_ready(STREEBOG_ADDR_STATUS); /* Perform final transformation. */ tc_final(STREEBOG_ADDR_CTRL); /* Wait for hash to be produces. */ tc_wait_valid(STREEBOG_ADDR_STATUS); /* Extract the digest. */ ret = tc_expected(STREEBOG_ADDR_DIGEST, expected, STREEBOG_DIGEST_LEN_256); /* Make sure that core is idle. */ tc_wait_ready(STREEBOG_ADDR_STATUS); return ret; } /* TC4: Streebog double block message for 256-bit hash mode. */ int TC4(void) { const uint8_t *block1 = GOST_DOUBLE_FIRST; const uint8_t *block2 = GOST_DOUBLE_SECOND; const uint8_t *expected = GOST_DOUBLE_DIGEST_256; int ret; if (!quiet) printf("TC4: Long (double block) message test for Streebog (256-bit mode).\n"); /* Enable 512-bit mode. */ tc_mode(STREEBOG_ADDR_MODE, STREEBOG_MODE_256); /* Start initial block hashing. */ tc_init(STREEBOG_ADDR_CTRL); /* Write block to Streebog. */ tc_write(STREEBOG_ADDR_BLOCK, block1, STREEBOG_BLOCK_LEN); /* Write block length to Streebog. */ tc_block_bits(STREEBOG_ADDR_BLOCK_BITS, GOST_DOUBLE_LENGTH_FIRST); /* Process block. */ tc_next(STREEBOG_ADDR_CTRL); /* Wait for block to be processed. */ tc_wait_ready(STREEBOG_ADDR_STATUS); /* Write block to Streebog. */ tc_write(STREEBOG_ADDR_BLOCK, block2, STREEBOG_BLOCK_LEN); /* Write block length to Streebog. */ tc_block_bits(STREEBOG_ADDR_BLOCK_BITS, GOST_DOUBLE_LENGTH_SECOND); /* Process block. */ tc_next(STREEBOG_ADDR_CTRL); /* Wait for block to be processed. */ tc_wait_ready(STREEBOG_ADDR_STATUS); /* Perform final transformation. */ tc_final(STREEBOG_ADDR_CTRL); /* Wait for hash to be produces. */ tc_wait_valid(STREEBOG_ADDR_STATUS); /* Extract the digest. */ ret = tc_expected(STREEBOG_ADDR_DIGEST, expected, STREEBOG_DIGEST_LEN_256); /* Make sure that core is idle. */ tc_wait_ready(STREEBOG_ADDR_STATUS); return ret; } /* ---------------- main ---------------- */ /* signal handler for ctrl-c to end repeat testing */ unsigned long iter = 0; struct timeval tv_start, tv_end; void sighandler(int unused) { double tv_diff; gettimeofday(&tv_end, NULL); tv_diff = (double)(tv_end.tv_sec - tv_start.tv_sec) + (double)(tv_end.tv_usec - tv_start.tv_usec)/1000000; printf("\n%lu iterations in %.3f seconds (%.3f iterations/sec)\n", iter, tv_diff, (double)iter/tv_diff); exit(EXIT_SUCCESS); } int main(int argc, char *argv[]) { typedef int (*tcfp)(void); tcfp all_tests[] = { TC0, TC1, TC2, TC3, TC4 }; char *usage = "Usage: %s [-h] [-d] [-q] [-r] tc...\n"; int i, j, opt; while ((opt = getopt(argc, argv, "h?dqr")) != -1) { switch (opt) { case 'h': case '?': printf(usage, argv[0]); return EXIT_SUCCESS; case 'd': debug = 1; break; case 'q': quiet = 1; break; case 'r': repeat = 1; break; default: fprintf(stderr, usage, argv[0]); return EXIT_FAILURE; } } /* set up EIM */ if (eim_setup() != 0) { fprintf(stderr, "EIM setup failed\n"); return EXIT_FAILURE; } /* repeat one test until interrupted */ if (repeat) { tcfp tc; if (optind != argc - 1) { fprintf(stderr, "only one test case can be repeated\n"); return EXIT_FAILURE; } j = atoi(argv[optind]); if (j < 0 || j >= sizeof(all_tests)/sizeof(all_tests[0])) { fprintf(stderr, "invalid test number %s\n", argv[optind]); return EXIT_FAILURE; } tc = (all_tests[j]); srand(time(NULL)); signal(SIGINT, sighandler); gettimeofday(&tv_start, NULL); while (1) { ++iter; if ((iter & 0xffff) == 0) { printf("."); fflush(stdout); } if (tc() != 0) sighandler(0); } return EXIT_SUCCESS; /*NOTREACHED*/ } /* no args == run all tests */ if (optind >= argc) { for (j = 0; j < sizeof(all_tests)/sizeof(all_tests[0]); ++j) if (all_tests[j]() != 0) return EXIT_FAILURE; return EXIT_SUCCESS; } /* run one or more tests (by number) or groups of tests (by name) */ for (i = optind; i < argc; ++i) { if (strcmp(argv[i], "all") == 0) { for (j = 0; j < sizeof(all_tests)/sizeof(all_tests[0]); ++j) if (all_tests[j]() != 0) return EXIT_FAILURE; } else if (isdigit(argv[i][0]) && (((j = atoi(argv[i])) >= 0) && (j < sizeof(all_tests)/sizeof(all_tests[0])))) { if (all_tests[j]() != 0) return EXIT_FAILURE; } else { fprintf(stderr, "unknown test case %s\n", argv[i]); return EXIT_FAILURE; } } return EXIT_SUCCESS; }