1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
|
//------------------------------------------------------------------------------
//
// ecdsa_fpga_curve_abstract.cpp
// ----------------------------------------------
// Elliptic curve arithmetic procedures for ECDSA
//
// Authors: Pavel Shatov
//
// Copyright 2015-2016, 2018 NORDUnet A/S
// Copyright 2021 The Commons Conservancy Cryptech Project
// SPDX-License-Identifier: BSD-3-Clause
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// - Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Headers
//------------------------------------------------------------------------------
#include "ecdsa_fpga_model.h"
//------------------------------------------------------------------------------
// Globals
//------------------------------------------------------------------------------
FPGA_BUFFER ECDSA_GX, ECDSA_GY;
FPGA_BUFFER ECDSA_HX, ECDSA_HY;
FPGA_BUFFER ECDSA_N;
//------------------------------------------------------------------------------
void fpga_curve_init()
//------------------------------------------------------------------------------
{
int w; // word counter
FPGA_BUFFER tmp_gx = ECDSA_GX_INIT, tmp_gy = ECDSA_GY_INIT;
FPGA_BUFFER tmp_hx = ECDSA_HX_INIT, tmp_hy = ECDSA_HY_INIT;
FPGA_BUFFER tmp_n = ECDSA_N_INIT;
/* fill buffers for large multi-word integers */
for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
{ ECDSA_GX.words[w] = tmp_gx.words[FPGA_OPERAND_NUM_WORDS - (w+1)];
ECDSA_GY.words[w] = tmp_gy.words[FPGA_OPERAND_NUM_WORDS - (w+1)];
ECDSA_HX.words[w] = tmp_hx.words[FPGA_OPERAND_NUM_WORDS - (w+1)];
ECDSA_HY.words[w] = tmp_hy.words[FPGA_OPERAND_NUM_WORDS - (w+1)];
ECDSA_N.words[w] = tmp_n.words[FPGA_OPERAND_NUM_WORDS - (w+1)];
}
}
//------------------------------------------------------------------------------
//
// Elliptic curve base point scalar multiplication routine.
//
// Q(qx,qy) = k * G(px,py)
//
// Note, that Q is supposed to be in affine coordinates. Multiplication is done
// using the Montgomery ladder method.
//
//------------------------------------------------------------------------------
void fpga_curve_base_scalar_multiply_abstract(const FPGA_BUFFER *k, FPGA_BUFFER *qx, FPGA_BUFFER *qy)
//------------------------------------------------------------------------------
{
int word_count, bit_count; // counters
FPGA_BUFFER r0x, r0y, r0z; // intermediate result
FPGA_BUFFER r1x, r1y, r1z; // intermediate result
FPGA_BUFFER sx, sy, sz; // temporary variable
FPGA_BUFFER tx, ty, tz; // temporary variable
/* set initial value of R0 to point at infinity, R1 to the base point */
fpga_multiword_copy(&ECDSA_ONE, &r0x);
fpga_multiword_copy(&ECDSA_ONE, &r0y);
fpga_multiword_copy(&ECDSA_ZERO, &r0z);
fpga_multiword_copy(&ECDSA_GX, &r1x);
fpga_multiword_copy(&ECDSA_GY, &r1y);
fpga_multiword_copy(&ECDSA_ONE, &r1z);
/* handy vars */
FPGA_WORD k_word_shifted;
bool k_bit;
/* process bits of k left-to-right */
for (word_count=FPGA_OPERAND_NUM_WORDS; word_count>0; word_count--)
for (bit_count=FPGA_WORD_WIDTH; bit_count>0; bit_count--)
{
k_word_shifted = k->words[word_count-1] >> (bit_count-1);
k_bit = (k_word_shifted & 1) == 1;
#ifdef DUMP_CYCLE_STATES
dump_cycle_header(word_count, bit_count, k_bit);
#endif
/* calculate S = R0 + R */
fpga_curve_add_jacobian_abstract_2(&r0x, &r0y, &r0z, &r1x, &r1y, &r1z, &sx, &sy, &sz);
/* calculate T = 2 * (R0 | R1) */
if (!k_bit)
fpga_curve_double_jacobian_abstract(&r0x, &r0y, &r0z, &tx, &ty, &tz);
else
fpga_curve_double_jacobian_abstract(&r1x, &r1y, &r1z, &tx, &ty, &tz);
//
// dump cycle state
//
#ifdef DUMP_CYCLE_STATES
dump_cycle_state(&r0x, &r0y, &r0z, &r1x, &r1y, &r1z,
&sx, &sy, &sz, &tx, &ty, &tz);
#endif
/* now update working variables */
if (!k_bit)
{ fpga_multiword_copy(&tx, &r0x);
fpga_multiword_copy(&ty, &r0y);
fpga_multiword_copy(&tz, &r0z);
fpga_multiword_copy(&sx, &r1x);
fpga_multiword_copy(&sy, &r1y);
fpga_multiword_copy(&sz, &r1z);
}
else
{ fpga_multiword_copy(&tx, &r1x);
fpga_multiword_copy(&ty, &r1y);
fpga_multiword_copy(&tz, &r1z);
fpga_multiword_copy(&sx, &r0x);
fpga_multiword_copy(&sy, &r0y);
fpga_multiword_copy(&sz, &r0z);
}
}
//
// we now need to convert the point to affine coordinates
//
FPGA_BUFFER a2, a3;
#ifdef DUMP_UOP_OUTPUTS
_DUMP_MODULAR_RESULTS = true;
#endif
fpga_modular_inv23(&r0z, &a2, &a3);
fpga_modular_mul(&r0x, &a2, qx); // qx = px * (pz^-1)^2 (mod q)
fpga_modular_mul(&r0y, &a3, qy); // qy = py * (pz^-1)^3 (mod q)
_DUMP_MODULAR_RESULTS = false;
// check, that rz is non-zero (not point at infinity)
bool rz_is_zero = fpga_multiword_is_zero(&r0z);
// handle special case (result is point at infinity)
if (rz_is_zero)
{ fpga_multiword_copy(&ECDSA_ZERO, qx);
fpga_multiword_copy(&ECDSA_ZERO, qy);
}
}
//------------------------------------------------------------------------------
//
// Elliptic curve point doubling routine.
//
// R(rx,ry,rz) = 2 * P(px,py,pz)
//
// Note, that P(px,py,pz) is supposed to be in projective Jacobian coordinates,
// R will be in projective Jacobian coordinates.
//
// This routine implements algorithm 3.21 from "Guide to Elliptic Curve
// Cryptography", the only difference is that step 6. does T1 = T2 + T2 and
// then T2 = T2 + T1 instead of T2 = 3 * T2, because our addition is much
// faster, than multiplication.
//
// Note, that this routine also handles one special case, namely when P is at
// infinity. No actual extra "handling" is necessary, since when pz is zero,
// rz will also be zero (and that's what the "at infinity" check takes into
// account).
//
// Instead of actual modular division, multiplication by pre-computed constant
// (2^-1 mod q) is done.
//
//------------------------------------------------------------------------------
void fpga_curve_double_jacobian_abstract(const FPGA_BUFFER *px,
const FPGA_BUFFER *py,
const FPGA_BUFFER *pz,
FPGA_BUFFER *rx,
FPGA_BUFFER *ry,
FPGA_BUFFER *rz)
//------------------------------------------------------------------------------
{
FPGA_BUFFER t1, t2, t3, t4, t5; // temporary variables
#ifdef DUMP_UOP_OUTPUTS
_DUMP_MODULAR_RESULTS = true;
#endif
fpga_modular_mul(pz, pz, &t1);
fpga_modular_sub(px, &t1, &t2);
fpga_modular_add(px, &t1, &t3);
fpga_modular_mul(&t3, &t2, &t4);
fpga_modular_add(&t4, &t4, &t1);
fpga_modular_add(&t1, &t4, &t2);
fpga_modular_add(py, py, ry);
fpga_modular_mul(pz, ry, rz);
fpga_modular_mul(ry, ry, &t1);
fpga_modular_mul(px, &t1, &t3);
fpga_modular_mul(&t1, &t1, &t4);
fpga_modular_mul(&t4, &ECDSA_DELTA, &t5);
fpga_modular_mul(&t2, &t2, &t4);
fpga_modular_add(&t3, &t3, &t1);
fpga_modular_sub(&t4, &t1, rx);
fpga_modular_sub(&t3, rx, &t1);
fpga_modular_mul(&t1, &t2, &t3);
fpga_modular_sub(&t3, &t5, ry);
_DUMP_MODULAR_RESULTS = false;
}
//------------------------------------------------------------------------------
//
// Elliptic curve point addition routine.
//
// R(rx,ry,rz) = P(px,py,pz) + Q(qx,qy,qz)
//
// Note, that P(px, py, pz) and Q(qx, qy, qz) are supposed to be in projective
// Jacobian coordinates, R(rx, ry, rz) will be in projective Jacobian
// coordinates too.
//
// This routine implements the Point Addition algorithm from
// https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
//
// Since the routine is means to be used with Montgomery ladder, the invariant
// R1 - R0 = G means, that the two special cases P == Q and P == -Q can never
// happen and the checks are redundant. The checks for P === O and Q == O are
// necessary, however. Note, that P and Q can't be at infinity at the same time
// though.
//
// WARNING: This procedure does not take any active measures to keep run-time
// constant. The main purpose of this model is to help debug Verilog code for
// FPGA, so *DO NOT* use is anywhere near production!
//
//------------------------------------------------------------------------------
void fpga_curve_add_jacobian_abstract_2(const FPGA_BUFFER *px,
const FPGA_BUFFER *py,
const FPGA_BUFFER *pz,
const FPGA_BUFFER *qx,
const FPGA_BUFFER *qy,
const FPGA_BUFFER *qz,
FPGA_BUFFER *rx,
FPGA_BUFFER *ry,
FPGA_BUFFER *rz)
//------------------------------------------------------------------------------
{
bool pz_is_zero = fpga_multiword_is_zero(pz);
bool qz_is_zero = fpga_multiword_is_zero(qz);
FPGA_BUFFER t1, t2, t3, t4, t5, t6, t7, t8;
#ifdef DUMP_UOP_OUTPUTS
_DUMP_MODULAR_RESULTS = true;
#endif
fpga_modular_mul(pz, pz, &t1); // pz2 = pz * pz (pz squared)
fpga_modular_mul(qz, qz, &t2); // qz2 = qz * qz (qz squared)
fpga_modular_mul(pz, &t1, &t3); // pz3 = pz * pz2 (pz cubed)
fpga_modular_mul(qz, &t2, &t4); // qz3 = qz * qz2 (qz cubed)
fpga_modular_mul(px, &t2, &t5); // pxz = px * qz2 (px z-adjusted)
fpga_modular_mul(qx, &t1, &t2); // qxz = qx * pz2 (qx z-adjusted)
fpga_modular_mul(py, &t4, &t6); // pyz = py * qz3 (py z-adjusted)
fpga_modular_mul(qy, &t3, &t4); // qyz = qy * pz3 (qy z-adjusted)
fpga_modular_sub(&t2, &t5, &t7); // dqpx = qxz - pxz (x-coordinate delta)
fpga_modular_sub(&t4, &t6, &t8); // dqpy = qyz - pyz (y-coordinate delta)
fpga_modular_mul(pz, qz, &t1); // pqz = pz * qz
fpga_modular_mul(&t7, &t1, rz); // rz = pqz * qdpx
fpga_modular_mul(&t8, &t8, &t2); // dqpy2 = dqpy * dqpy
fpga_modular_mul(&t7, &t7, &t3); // dqpx2 = dqpx * dqpx
fpga_modular_mul(&t7, &t3, &t4); // dqpx3 = dqpx * dqpx2
fpga_modular_sub(&t2, &t4, &t1); // t1 = dqpy2 - dqpx3
fpga_modular_mul(&t5, &t3, &t2); // t2 = pxz * dqpx2
fpga_modular_add(&t2, &t2, &t3); // t3 = 2 * t2 (= t2 + t2, which is faster)
fpga_modular_sub(&t1, &t3, rx); // rx = t1 - t3
fpga_modular_sub(&t2, rx, &t1); // t1 = t2 - rx
fpga_modular_mul(&t1, &t8, &t2); // t2 = t1 * dqpy
fpga_modular_mul(&t6, &t4, &t3); // t3 = pyz * dqpx3
fpga_modular_sub(&t2, &t3, ry); // ry = t2 - t3
_DUMP_MODULAR_RESULTS = false;
// P == O
if (pz_is_zero)
{ fpga_multiword_copy(qx, rx);
fpga_multiword_copy(qy, ry);
fpga_multiword_copy(qz, rz);
return;
}
// Q == O
if (qz_is_zero)
{ fpga_multiword_copy(px, rx);
fpga_multiword_copy(py, ry);
fpga_multiword_copy(pz, rz);
return;
}
}
//------------------------------------------------------------------------------
// End-of-File
//------------------------------------------------------------------------------
|