1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
`timescale 1ns / 1ps
module modinv_helper_reduce_update
(
clk, rst_n,
ena, rdy,
s_is_odd, k_is_nul,
s_addr, s_wren, s_dout,
u_addr, u_din,
v_addr, v_din
);
//
// Parameters
//
parameter BUFFER_NUM_WORDS = 9;
parameter BUFFER_ADDR_BITS = 4;
//
// clog2
//
`include "..\modinv_clog2.v"
//
// Constants
//
localparam PROC_NUM_CYCLES = BUFFER_NUM_WORDS + 3;
localparam PROC_CNT_BITS = clog2(PROC_NUM_CYCLES);
//
// Ports
//
input wire clk;
input wire rst_n;
input wire ena;
output wire rdy;
input wire s_is_odd;
input wire k_is_nul;
output wire [BUFFER_ADDR_BITS-1:0] s_addr;
output wire [BUFFER_ADDR_BITS-1:0] u_addr;
output wire [BUFFER_ADDR_BITS-1:0] v_addr;
output wire s_wren;
output wire [ 32-1:0] s_dout;
input wire [ 32-1:0] u_din;
input wire [ 32-1:0] v_din;
//
// Counter
//
reg [PROC_CNT_BITS-1:0] proc_cnt;
wire [PROC_CNT_BITS-1:0] proc_cnt_max = PROC_NUM_CYCLES - 1;
wire [PROC_CNT_BITS-1:0] proc_cnt_zero = {PROC_CNT_BITS{1'b0}};
wire [PROC_CNT_BITS-1:0] proc_cnt_next = (proc_cnt < proc_cnt_max) ?
proc_cnt + 1'b1 : proc_cnt_zero;
//
// Addresses
//
reg [BUFFER_ADDR_BITS-1:0] addr_in;
wire [BUFFER_ADDR_BITS-1:0] addr_in_max = BUFFER_NUM_WORDS - 1;
wire [BUFFER_ADDR_BITS-1:0] addr_in_zero = {BUFFER_ADDR_BITS{1'b0}};
wire [BUFFER_ADDR_BITS-1:0] addr_in_next = (addr_in < addr_in_max) ?
addr_in + 1'b1 : addr_in_zero;
reg [BUFFER_ADDR_BITS-1:0] addr_out;
wire [BUFFER_ADDR_BITS-1:0] addr_out_max = BUFFER_NUM_WORDS - 1;
wire [BUFFER_ADDR_BITS-1:0] addr_out_zero = {BUFFER_ADDR_BITS{1'b0}};
wire [BUFFER_ADDR_BITS-1:0] addr_out_next = (addr_out < addr_out_max) ?
addr_out + 1'b1 : addr_out_zero;
assign s_addr = addr_out;
assign u_addr = addr_in;
assign v_addr = addr_in;
//
// Ready Flag
//
assign rdy = (proc_cnt == proc_cnt_zero);
//
// Address Increment Logic
//
wire inc_addr_in;
wire inc_addr_out;
wire [PROC_CNT_BITS-1:0] cnt_inc_addr_in_start = 1;
wire [PROC_CNT_BITS-1:0] cnt_inc_addr_in_stop = BUFFER_NUM_WORDS;
wire [PROC_CNT_BITS-1:0] cnt_inc_addr_out_start = 2;
wire [PROC_CNT_BITS-1:0] cnt_inc_addr_out_stop = BUFFER_NUM_WORDS + 1;
assign inc_addr_in = (proc_cnt >= cnt_inc_addr_in_start) && (proc_cnt <= cnt_inc_addr_in_stop);
assign inc_addr_out = (proc_cnt >= cnt_inc_addr_out_start) && (proc_cnt <= cnt_inc_addr_out_stop);
always @(posedge clk) begin
//
if (inc_addr_in) addr_in <= addr_in_next;
else addr_in <= addr_in_zero;
//
if (inc_addr_out) addr_out <= addr_out_next;
else addr_out <= addr_out_zero;
//
end
//
// Write Enable Logic
//
wire wren_out;
wire [PROC_CNT_BITS-1:0] cnt_wren_out_start = 2;
wire [PROC_CNT_BITS-1:0] cnt_wren_out_stop = BUFFER_NUM_WORDS + 1;
assign wren_out = (proc_cnt >= cnt_wren_out_start) && (proc_cnt <= cnt_wren_out_stop);
assign s_wren = wren_out && !k_is_nul; //s_wren_allow && !v_eq_1 && !rdy;
//
// Data Logic
//
assign s_dout = s_is_odd ? v_din : u_din;
//
// Primary Counter Logic
//
always @(posedge clk or negedge rst_n)
//
if (rst_n == 1'b0) proc_cnt <= proc_cnt_zero;
else begin
if (!rdy) proc_cnt <= proc_cnt_next;
else if (ena) proc_cnt <= proc_cnt_next;
end
endmodule
|