1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
`timescale 1ns / 1ps
module modinv_helper_init
(
clk, rst_n,
ena, rdy,
a_addr, a_din,
q_addr, q_din,
r_addr, r_wren, r_dout,
s_addr, s_wren, s_dout,
u_addr, u_wren, u_dout,
v_addr, v_wren, v_dout
);
//
// Parameters
//
parameter OPERAND_NUM_WORDS = 8;
parameter OPERAND_ADDR_BITS = 3;
parameter BUFFER_NUM_WORDS = 9;
parameter BUFFER_ADDR_BITS = 4;
//
// clog2
//
`include "..\modinv_clog2.v"
//
// Constants
//
localparam PROC_NUM_CYCLES = OPERAND_NUM_WORDS + 3;
localparam PROC_CNT_BITS = clog2(PROC_NUM_CYCLES);
//
// Ports
//
input wire clk;
input wire rst_n;
input wire ena;
output wire rdy;
output wire [OPERAND_ADDR_BITS-1:0] a_addr;
output wire [OPERAND_ADDR_BITS-1:0] q_addr;
output wire [ BUFFER_ADDR_BITS-1:0] r_addr;
output wire [ BUFFER_ADDR_BITS-1:0] s_addr;
output wire [ BUFFER_ADDR_BITS-1:0] u_addr;
output wire [ BUFFER_ADDR_BITS-1:0] v_addr;
output wire r_wren;
output wire s_wren;
output wire u_wren;
output wire v_wren;
input wire [ 31:0] a_din;
input wire [ 31:0] q_din;
output wire [ 31:0] r_dout;
output wire [ 31:0] s_dout;
output wire [ 31:0] u_dout;
output wire [ 31:0] v_dout;
//
// Counter
//
reg [PROC_CNT_BITS-1:0] proc_cnt;
wire [PROC_CNT_BITS-1:0] proc_cnt_max = PROC_NUM_CYCLES - 1;
wire [PROC_CNT_BITS-1:0] proc_cnt_zero = {PROC_CNT_BITS{1'b0}};
wire [PROC_CNT_BITS-1:0] proc_cnt_next = (proc_cnt < proc_cnt_max) ?
proc_cnt + 1'b1 : proc_cnt_zero;
//
// Addresses
//
reg [OPERAND_ADDR_BITS-1:0] addr_aq;
wire [OPERAND_ADDR_BITS-1:0] addr_aq_max = OPERAND_NUM_WORDS - 1;
wire [OPERAND_ADDR_BITS-1:0] addr_aq_zero = {OPERAND_ADDR_BITS{1'b0}};
wire [OPERAND_ADDR_BITS-1:0] addr_aq_next = (addr_aq < addr_aq_max) ?
addr_aq + 1'b1 : addr_aq_zero;
reg [BUFFER_ADDR_BITS-1:0] addr_rsuv;
wire [BUFFER_ADDR_BITS-1:0] addr_rsuv_max = BUFFER_NUM_WORDS - 1;
wire [BUFFER_ADDR_BITS-1:0] addr_rsuv_zero = {BUFFER_ADDR_BITS{1'b0}};
wire [BUFFER_ADDR_BITS-1:0] addr_rsuv_next = (addr_rsuv < addr_rsuv_max) ?
addr_rsuv + 1'b1 : addr_rsuv_zero;
assign a_addr = addr_aq;
assign q_addr = addr_aq;
assign r_addr = addr_rsuv;
assign s_addr = addr_rsuv;
assign u_addr = addr_rsuv;
assign v_addr = addr_rsuv;
//
// Ready Flag
//
assign rdy = (proc_cnt == proc_cnt_zero);
//
// Address Increment Logic
//
wire inc_addr_aq;
wire inc_addr_rsuv;
wire [PROC_CNT_BITS-1:0] cnt_inc_addr_aq_start = 1;
wire [PROC_CNT_BITS-1:0] cnt_inc_addr_aq_stop = OPERAND_NUM_WORDS;
wire [PROC_CNT_BITS-1:0] cnt_inc_addr_rsuv_start = 2;
wire [PROC_CNT_BITS-1:0] cnt_inc_addr_rsuv_stop = BUFFER_NUM_WORDS + 1;
assign inc_addr_aq = (proc_cnt >= cnt_inc_addr_aq_start) && (proc_cnt <= cnt_inc_addr_aq_stop);
assign inc_addr_rsuv = (proc_cnt >= cnt_inc_addr_rsuv_start) && (proc_cnt <= cnt_inc_addr_rsuv_stop);
always @(posedge clk) begin
//
if (inc_addr_aq) addr_aq <= addr_aq_next;
else addr_aq <= addr_aq_zero;
//
if (inc_addr_rsuv) addr_rsuv <= addr_rsuv_next;
else addr_rsuv <= addr_rsuv_zero;
//
end
//
// Write Enable Logic
//
wire wren_rsuv;
wire [PROC_CNT_BITS-1:0] cnt_wren_rsuv_start = 2;
wire [PROC_CNT_BITS-1:0] cnt_wren_rsuv_stop = BUFFER_NUM_WORDS + 1;
assign wren_rsuv = (proc_cnt >= cnt_wren_rsuv_start) && (proc_cnt <= cnt_wren_rsuv_stop);
assign r_wren = wren_rsuv;
assign s_wren = wren_rsuv;
assign u_wren = wren_rsuv;
assign v_wren = wren_rsuv;
//
// Data Logic
//
assign r_dout = 32'd0;
assign s_dout = (proc_cnt == cnt_wren_rsuv_start) ? 32'd1 : 32'd0;
assign u_dout = (proc_cnt != cnt_wren_rsuv_stop) ? q_din : 32'd0;
assign v_dout = (proc_cnt != cnt_wren_rsuv_stop) ? a_din : 32'd0;
//
// Primary Counter Logic
//
always @(posedge clk or negedge rst_n)
//
if (rst_n == 1'b0) proc_cnt <= proc_cnt_zero;
else begin
if (!rdy) proc_cnt <= proc_cnt_next;
else if (ena) proc_cnt <= proc_cnt_next;
end
endmodule
|