blob: 07c1b4fab01763247ade5767af33442459324d31 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
`timescale 1ns / 1ps
module modinv_helper_copy
(
clk, rst_n,
ena, rdy,
s_addr, s_din,
a1_addr, a1_wren, a1_dout
);
//
// Parameters
//
parameter OPERAND_NUM_WORDS = 8;
parameter OPERAND_ADDR_BITS = 3;
parameter BUFFER_NUM_WORDS = 9;
parameter BUFFER_ADDR_BITS = 4;
//
// clog2
//
`include "..\modinv_clog2.v"
//
// Constants
//
localparam PROC_NUM_CYCLES = OPERAND_NUM_WORDS + 2;
localparam PROC_CNT_BITS = clog2(PROC_NUM_CYCLES);
//
// Ports
//
input wire clk;
input wire rst_n;
input wire ena;
output wire rdy;
output wire [ BUFFER_ADDR_BITS-1:0] s_addr;
output wire [OPERAND_ADDR_BITS-1:0] a1_addr;
output wire a1_wren;
input wire [ 31:0] s_din;
output wire [ 31:0] a1_dout;
//
// Counter
//
reg [PROC_CNT_BITS-1:0] proc_cnt;
wire [PROC_CNT_BITS-1:0] proc_cnt_max = PROC_NUM_CYCLES - 1;
wire [PROC_CNT_BITS-1:0] proc_cnt_zero = {PROC_CNT_BITS{1'b0}};
wire [PROC_CNT_BITS-1:0] proc_cnt_next = (proc_cnt < proc_cnt_max) ?
proc_cnt + 1'b1 : proc_cnt_zero;
//
// Addresses
//
reg [OPERAND_ADDR_BITS-1:0] addr_s;
wire [OPERAND_ADDR_BITS-1:0] addr_s_max = OPERAND_NUM_WORDS - 1;
wire [OPERAND_ADDR_BITS-1:0] addr_s_zero = {OPERAND_ADDR_BITS{1'b0}};
wire [OPERAND_ADDR_BITS-1:0] addr_s_next = (addr_s < addr_s_max) ?
addr_s + 1'b1 : addr_s_zero;
reg [OPERAND_ADDR_BITS-1:0] addr_a1;
wire [OPERAND_ADDR_BITS-1:0] addr_a1_max = OPERAND_NUM_WORDS - 1;
wire [OPERAND_ADDR_BITS-1:0] addr_a1_zero = {OPERAND_ADDR_BITS{1'b0}};
wire [OPERAND_ADDR_BITS-1:0] addr_a1_next = (addr_a1 < addr_a1_max) ?
addr_a1 + 1'b1 : addr_a1_zero;
assign s_addr = {{(BUFFER_ADDR_BITS - OPERAND_ADDR_BITS){1'b0}}, addr_s};
assign a1_addr = addr_a1;
//
// Ready Flag
//
assign rdy = (proc_cnt == proc_cnt_zero);
//
// Address Increment Logic
//
wire inc_addr_s;
wire inc_addr_a1;
wire [PROC_CNT_BITS-1:0] cnt_inc_addr_s_start = 1;
wire [PROC_CNT_BITS-1:0] cnt_inc_addr_s_stop = OPERAND_NUM_WORDS + 0;
wire [PROC_CNT_BITS-1:0] cnt_inc_addr_a1_start = 2;
wire [PROC_CNT_BITS-1:0] cnt_inc_addr_a1_stop = OPERAND_NUM_WORDS + 1;
assign inc_addr_s = (proc_cnt >= cnt_inc_addr_s_start) && (proc_cnt <= cnt_inc_addr_s_stop);
assign inc_addr_a1 = (proc_cnt >= cnt_inc_addr_a1_start) && (proc_cnt <= cnt_inc_addr_a1_stop);
always @(posedge clk) begin
//
if (inc_addr_s) addr_s <= addr_s_next;
else addr_s <= addr_s_zero;
//
if (inc_addr_a1) addr_a1 <= addr_a1_next;
else addr_a1 <= addr_a1_zero;
//
end
//
// Write Enable Logic
//
wire wren_a1;
wire [PROC_CNT_BITS-1:0] cnt_wren_a1_start = 2;
wire [PROC_CNT_BITS-1:0] cnt_wren_a1_stop = OPERAND_NUM_WORDS + 1;
assign wren_a1 = (proc_cnt >= cnt_wren_a1_start) && (proc_cnt <= cnt_wren_a1_stop);
assign a1_wren = wren_a1;
//
// Data Logic
//
assign a1_dout = s_din;
//
// Primary Counter Logic
//
always @(posedge clk or negedge rst_n)
//
if (rst_n == 1'b0) proc_cnt <= proc_cnt_zero;
else begin
if (!rdy) proc_cnt <= proc_cnt_next;
else if (ena) proc_cnt <= proc_cnt_next;
end
endmodule
|