// // simple driver to test "ecdsa384" core in hardware // // // note, that the test program needs a custom bitstream where // the core is located at offset 0 (without the core selector) // // stm32 headers #include "stm-init.h" #include "stm-led.h" #include "stm-fmc.h" // locations of core registers #define CORE_ADDR_NAME0 (0x00 << 2) #define CORE_ADDR_NAME1 (0x01 << 2) #define CORE_ADDR_VERSION (0x02 << 2) #define CORE_ADDR_CONTROL (0x08 << 2) #define CORE_ADDR_STATUS (0x09 << 2) // locations of data buffers #define CORE_ADDR_BUF_K (0x20 << 2) #define CORE_ADDR_BUF_X (0x28 << 2) #define CORE_ADDR_BUF_Y (0x30 << 2) // bit maps #define CORE_CONTROL_BIT_NEXT 0x00000002 #define CORE_STATUS_BIT_READY 0x00000002 // curve selection #define USE_CURVE 1 #include "ecdsa_model.h" #define BUF_NUM_WORDS (OPERAND_WIDTH / (sizeof(uint32_t) << 3)) // 8 // // test vectors // static const uint32_t p256_d[BUF_NUM_WORDS] = ECDSA_D; static const uint32_t p256_qx[BUF_NUM_WORDS] = ECDSA_Q_X; static const uint32_t p256_qy[BUF_NUM_WORDS] = ECDSA_Q_Y; static const uint32_t p256_k[BUF_NUM_WORDS] = ECDSA_K; static const uint32_t p256_rx[BUF_NUM_WORDS] = ECDSA_R_X; static const uint32_t p256_ry[BUF_NUM_WORDS] = ECDSA_R_Y; static const uint32_t p256_i[BUF_NUM_WORDS] = ECDSA_ONE; static const uint32_t p256_gx[BUF_NUM_WORDS] = ECDSA_G_X; static const uint32_t p256_gy[BUF_NUM_WORDS] = ECDSA_G_Y; static const uint32_t p256_z[BUF_NUM_WORDS] = ECDSA_ZERO; static const uint32_t p256_n[BUF_NUM_WORDS] = ECDSA_N; // // prototypes // void toggle_yellow_led(void); int test_p256_multiplier(const uint32_t *k, const uint32_t *px, const uint32_t *py); // // test routine // int main() { int ok; stm_init(); fmc_init(); led_on(LED_GREEN); led_off(LED_RED); led_off(LED_YELLOW); led_off(LED_BLUE); uint32_t core_name0; uint32_t core_name1; fmc_read_32(CORE_ADDR_NAME0, &core_name0); fmc_read_32(CORE_ADDR_NAME1, &core_name1); // "ecds", "a256" if ((core_name0 != 0x65636473) || (core_name1 != 0x61323536)) { led_off(LED_GREEN); led_on(LED_RED); while (1); } // repeat forever while (1) { ok = 1; ok = ok && test_p256_multiplier(p256_d, p256_qx, p256_qy); ok = ok && test_p256_multiplier(p256_k, p256_rx, p256_ry); ok = ok && test_p256_multiplier(p256_z, p256_z, p256_z); ok = ok && test_p256_multiplier(p256_i, p256_gx, p256_gy); ok = ok && test_p256_multiplier(p256_n, p256_z, p256_z); if (!ok) { led_off(LED_GREEN); led_on(LED_RED); } toggle_yellow_led(); } } // // this routine uses the hardware multiplier to obtain Q(qx,qy), which is the // scalar multiple of the base point, qx and qy are then compared to the values // px and py (correct result known in advance) // int test_p256_multiplier(const uint32_t *k, const uint32_t *px, const uint32_t *py) { int i, num_cyc; uint32_t reg_control, reg_status; uint32_t k_word, qx_word, qy_word; // fill k for (i=0; i