aboutsummaryrefslogtreecommitdiff
path: root/test_vectors/format_test_vectors.py
blob: a49b34b82a3075f55479908ef313e44f7659df5d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
#
# format_test_vectors.py
# ------------------------------------------
# Formats test vectors for ecdsa_fpga_model
#
# Author: Pavel Shatov
# Copyright (c) 2017, NORDUnet A/S
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
# - Redistributions of source code must retain the above copyright notice,
#   this list of conditions and the following disclaimer.
#
# - Redistributions in binary form must reproduce the above copyright
#   notice, this list of conditions and the following disclaimer in the
#   documentation and/or other materials provided with the distribution.
#
# - Neither the name of the NORDUnet nor the names of its contributors may
#   be used to endorse or promote products derived from this software
#   without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
# TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
# TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

#
# This script reads the test vectors generated by regenerate_test_vectors.py
# and writes nicely formatted C header file and Verilog include file.
#

#
# imports
#
import sys
import subprocess
from fastecdsa.curve import P256
from fastecdsa.curve import P384
from fastecdsa.point import Point

# list of curve names of interest
CURVE_P256 = "p256"
CURVE_P384 = "p384"

# the base point for p-256
P256_GX = 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296
P256_GY = 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5

# the base point for p-384
P384_GX = 0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7
P384_GY = 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f  


#
# get part of string between two markers
#
#def string_between(s, s_left, s_right):
#	s_begin = s.index(s_left) + len(s_left)
#	s_end = s.index(s_right, s_begin)
#	return s[s_begin:s_end]

#
# load message from file
#
#def read_message(key):
#	with open(key + ".txt", "r") as f:
#		return f.readlines()[0]
#	
#
# read modulus from file
#
#def read_modulus(key):
#	openssl_command = ["openssl", "rsa", "-in", key + ".key", "-noout", "-modulus"]
#	openssl_stdout = subprocess.check_output(openssl_command).decode("utf-8")
#	return openssl_stdout.strip().split("=")[1]

#
# read private exponent from file
#
#def read_secret(key):
#	openssl_command = ["openssl", "rsa", "-in", key + ".key", "-noout", "-text"]
#	openssl_stdout = subprocess.check_output(openssl_command).decode("utf-8")
#	openssl_secret = string_between(openssl_stdout, "privateExponent", "prime1")
#	openssl_secret = openssl_secret.replace(":", "")
#	openssl_secret = openssl_secret.replace("\n", "")
#	openssl_secret = openssl_secret.replace(" ", "")	
#	return openssl_secret

#
# read part of private key from file
#
#def read_prime1(key):
#	openssl_command = ["openssl", "rsa", "-in", key + ".key", "-noout", "-text"]
#	openssl_stdout = subprocess.check_output(openssl_command).decode("utf-8")
#	openssl_secret = string_between(openssl_stdout, "prime1", "prime2")
#	openssl_secret = openssl_secret.replace(":", "")
#	openssl_secret = openssl_secret.replace("\n", "")
#	openssl_secret = openssl_secret.replace(" ", "")	
#	return openssl_secret
#def read_prime2(key):
#	openssl_command = ["openssl", "rsa", "-in", key + ".key", "-noout", "-text"]
#	openssl_stdout = subprocess.check_output(openssl_command).decode("utf-8")
#	openssl_secret = string_between(openssl_stdout, "prime2", "exponent1")
#	openssl_secret = openssl_secret.replace(":", "")
#	openssl_secret = openssl_secret.replace("\n", "")
#	openssl_secret = openssl_secret.replace(" ", "")	
#	return openssl_secret

#
# read prive exponent from file
#
#def read_exponent1(key):
#	openssl_command = ["openssl", "rsa", "-in", key + ".key", "-noout", "-text"]
#	openssl_stdout = subprocess.check_output(openssl_command).decode("utf-8")
#	openssl_secret = string_between(openssl_stdout, "exponent1", "exponent2")
#	openssl_secret = openssl_secret.replace(":", "")
#	openssl_secret = openssl_secret.replace("\n", "")
#	openssl_secret = openssl_secret.replace(" ", "")	
#	return openssl_secret
#def read_exponent2(key):
#	openssl_command = ["openssl", "rsa", "-in", key + ".key", "-noout", "-text"]
#	openssl_stdout = subprocess.check_output(openssl_command).decode("utf-8")
#	openssl_secret = string_between(openssl_stdout, "exponent2", "coefficient")
#	openssl_secret = openssl_secret.replace(":", "")
#	openssl_secret = openssl_secret.replace("\n", "")
#	openssl_secret = openssl_secret.replace(" ", "")	
#	return openssl_secret

#
# format one test vector
#
def format_c_header(f, curve, da, qax, qay, db, qbx, qby, sx, sy):

	if curve == CURVE_P256: curve_str = "P_256"
	if curve == CURVE_P384: curve_str = "P_384"
	
		# write all numbers in vector
	format_c_array(f, da,  "#define " + curve_str + "_DA"   + " \\\n")
	format_c_array(f, qax, "#define " + curve_str + "_QA_X" + " \\\n")
	format_c_array(f, qay, "#define " + curve_str + "_QA_Y" + " \\\n")
	
	format_c_array(f, db,  "#define " + curve_str + "_DB"   + " \\\n")
	format_c_array(f, qbx, "#define " + curve_str + "_QB_X" + " \\\n")
	format_c_array(f, qby, "#define " + curve_str + "_QB_Y" + " \\\n")

	format_c_array(f, sx,  "#define " + curve_str + "_S_X"  + " \\\n")
	format_c_array(f, sy,  "#define " + curve_str + "_S_Y"  + " \\\n")
	

#
# format one test vector
#
#def format_verilog_include(f, key, n, m, d, s, p, q, dp, dq, mp, mq):
#
#		# calculate factor to bring message into Montgomery domain
#	factor = calc_montgomery_factor(int(key), n)
#	factor_p = calc_montgomery_factor(int(key)//2, p);
#	factor_q = calc_montgomery_factor(int(key)//2, q);
#	
#		# calculate helper coefficients for Montgomery multiplication
#	n_coeff = calc_montgomery_n_coeff(int(key), n)
#	p_coeff = calc_montgomery_n_coeff(int(key)//2, p)
#	q_coeff = calc_montgomery_n_coeff(int(key)//2, q)
#			
#		# calculate the extra coefficient Montgomery multiplication brings in
#	coeff = modinv(1 << int(key), n)
#	
#		# convert m into Montgomery representation
#	m_factor = (m * factor * coeff) % n
#		
#		# write all numbers
#	format_verilog_concatenation(f, m,        "localparam [" + str(int(key)-1) + ":0] M_"        + key + " =\n")
#	format_verilog_concatenation(f, n,        "localparam [" + str(int(key)-1) + ":0] N_"        + key + " =\n")
#	format_verilog_concatenation(f, n_coeff,  "localparam [" + str(int(key)-1) + ":0] N_COEFF_"  + key + " =\n")
#	format_verilog_concatenation(f, factor,   "localparam [" + str(int(key)-1) + ":0] FACTOR_"   + key + " =\n")
#	format_verilog_concatenation(f, coeff,    "localparam [" + str(int(key)-1) + ":0] COEFF_"    + key + " =\n")
#	format_verilog_concatenation(f, m_factor, "localparam [" + str(int(key)-1) + ":0] M_FACTOR_" + key + " =\n")
#	format_verilog_concatenation(f, d,        "localparam [" + str(int(key)-1) + ":0] D_"        + key + " =\n")
#	format_verilog_concatenation(f, s,        "localparam [" + str(int(key)-1) + ":0] S_"        + key + " =\n")
#	
#	format_verilog_concatenation(f, p,        "localparam [" + str(int(key)//2-1) + ":0] P_"        + str(int(key)//2) + " =\n")
#	format_verilog_concatenation(f, q,        "localparam [" + str(int(key)//2-1) + ":0] Q_"        + str(int(key)//2) + " =\n")
#	format_verilog_concatenation(f, p_coeff,  "localparam [" + str(int(key)//2-1) + ":0] P_COEFF_"  + str(int(key)//2) + " =\n")
#	format_verilog_concatenation(f, q_coeff,  "localparam [" + str(int(key)//2-1) + ":0] Q_COEFF_"  + str(int(key)//2) + " =\n")
#	format_verilog_concatenation(f, factor_p, "localparam [" + str(int(key)//2-1) + ":0] FACTOR_P_" + str(int(key)//2) + " =\n")
#	format_verilog_concatenation(f, factor_q, "localparam [" + str(int(key)//2-1) + ":0] FACTOR_Q_" + str(int(key)//2) + " =\n")
#	format_verilog_concatenation(f, dp,       "localparam [" + str(int(key)//2-1) + ":0] DP_"       + str(int(key)//2) + " =\n")
#	format_verilog_concatenation(f, dq,       "localparam [" + str(int(key)//2-1) + ":0] DQ_"       + str(int(key)//2) + " =\n")
#	format_verilog_concatenation(f, mp,       "localparam [" + str(int(key)//2-1) + ":0] MP_"       + str(int(key)//2) + " =\n")
#	format_verilog_concatenation(f, mq,       "localparam [" + str(int(key)//2-1) + ":0] MQ_"       + str(int(key)//2) + " =\n")


#
# nicely format multi-word integer into C array initializer
#
def format_c_array(f, n, s):

		# print '#define XYZ \'
	f.write(s)

		# convert number to hex string and prepend it with zeroes if necessary
	n_hex = hex(n).lstrip("0x").rstrip("L")
	while (len(n_hex) % 8) > 0:
		n_hex = "0" + n_hex
	
		# get number of 32-bit words
	num_words = len(n_hex) // 8

		# print all words in n
	w = 0
	while w < num_words:
	
		n_part = ""

			# add tab for every new line
		if w == 0:
			n_part += "\t{"
		elif (w % 4) == 0:
			n_part += "\t "
			
			# add current word
		n_part += "0x" + n_hex[8 * w : 8 * (w + 1)]
		
			# add separator or newline
		if (w + 1) == num_words:
			n_part += "}\n"
		else:
			n_part += ", "
			if (w % 4) == 3:
				n_part += "\\\n"		
				
		w += 1
		
			# write current part
		f.write(n_part)
	
		# write final newline
	f.write("\n")


#def format_verilog_concatenation(f, n, s):
#
#		# print 'localparam ZZZ ='
#	f.write(s)
#	
#		# convert number to hex string and prepend it with zeroes if necessary
#	n_hex = hex(n).split("0x")[1]
#	while (len(n_hex) % 8) > 0:
#		n_hex = "0" + n_hex
#	
#		# get number of 32-bit words
#	num_words = len(n_hex) // 8
#
#		# print all words in n
#	w = 0
#	while w < num_words:
#	
#		n_part = ""
#		
#		if w == 0:
#			n_part += "\t{"
#		elif (w % 4) == 0:
#			n_part += "\t "
#			
#		n_part += "32'h" + n_hex[8 * w : 8 * (w + 1)]
#		
#		if (w + 1) == num_words:
#			n_part += "};\n"
#		else:
#			n_part += ", "
#			if (w % 4) == 3:
#				n_part += "\n"		
#		w += 1
#		
#		f.write(n_part)
#	
#	f.write("\n")


	#
	# returns d, qx, qy, where
	# d is private key and qx, qy is the corresponding public key
	#
def get_key(party, curve):

		# generate private key filename
	key_file = party + "_" + curve + ".key"
		
		# retrieve key components using openssl
	openssl_command = ["openssl", "ec", "-in", key_file, "-noout", "-text"]	
	openssl_stdout = subprocess.check_output(openssl_command).decode("utf-8")
	stdout_lines = openssl_stdout.splitlines()
	
	found_priv = False
	found_pub = False
	
	key_priv = ""
	key_pub = ""
	
		# process lines looking for "priv:" and "pub:" markers
	for line in stdout_lines:
	
			# found private key marker?
		if line.strip() == "priv:":
			found_priv = True
			found_pub = False
			continue
			
			# found public key marker?
		if line.strip() == "pub:":		# openssl 1.0.2g prints 'pub: ' (extra space before newline),
			found_pub = True			# so we need compare against line.strip(), not just line
			found_priv = False
			continue
			
			# found part of private key?
		if found_priv:
			if not line.startswith(" "):
				found_priv = False
				continue
			else:
				key_priv += line.strip()
			
			# found part of public key?
		if found_pub:
			if not line.startswith(" "):
				found_pub = False
				continue
			else:
				key_pub += line.strip()
			
		# do some cleanup and sanity checking on private key
		#  * remove extra leading zero byte if present
		#  * remove colons
		#  * check length (256 bits or 384 bits)
	while key_priv.startswith("00"):
		key_priv = key_priv[2:]
		
	key_priv = key_priv.replace(":", "")
		
	if curve == CURVE_P256 and len(key_priv) != 256 / 4: sys.exit()
	if curve == CURVE_P384 and len(key_priv) != 384 / 4: sys.exit()
	
		# do some cleanup and sanity checking on public key
		#  * make sure, that uncompressed form marker (0x04) is present and
		#    then remove it
		#  * remove colons
		#  * check length (2x256 or 2x384 bits)
	if not key_pub.startswith("04"): sys.exit()
		
	key_pub = key_pub[2:]
	key_pub = key_pub.replace(":", "")

	if curve == CURVE_P256 and len(key_pub) != 2 * 256 / 4: sys.exit()
	if curve == CURVE_P384 and len(key_pub) != 2 * 384 / 4: sys.exit()
	
		# split public key into parts
	if curve == CURVE_P256:
		key_pub_x = key_pub[  0: 64]
		key_pub_y = key_pub[ 64:128]
	
	if curve == CURVE_P384:
		key_pub_x = key_pub[  0: 96]
		key_pub_y = key_pub[ 96:192]
	
		# convert from strings to integers
	key_priv = int(key_priv, 16)
	key_pub_x = int(key_pub_x, 16)
	key_pub_y = int(key_pub_y, 16)
	
		# another sanity check (make sure, that Q is actually d * G)
	if curve == CURVE_P256:
		G = Point(P256_GX, P256_GY, curve=P256)
		Q = Point(key_pub_x, key_pub_y, curve=P256)

	if curve == CURVE_P384:
		G = Point(P384_GX, P384_GY, curve=P384)
		Q = Point(key_pub_x, key_pub_y, curve=P384)
	
		# multiply using fastecdsa
	R = key_priv * G

	if R.x != Q.x: sys.exit()
	if R.y != Q.y: sys.exit()
		
		# done
	return key_priv, key_pub_x, key_pub_y

	
if __name__ == "__main__":

		# list of curves to process
	curves = [CURVE_P256, CURVE_P384]

		# open output files
	file_h = open('ecdsa_fpga_model_ecdh_vectors.h', 'w')
#	file_v = open('modexp_fpga_model_vectors.v', 'w')
	
		# write headers
	file_h.write("/* Generated automatically, do not edit. */\n\n")
#	file_v.write("/* Generated automatically, do not edit. */\n\n")
	
		# process all the keys
	for curve in curves:

			# load keys
		da, qax, qay = get_key("alice", curve)
		db, qbx, qby = get_key("bob",   curve)
		
			# Alice's public key
		if (curve == CURVE_P256): QA = Point(qax, qay, curve=P256)
		if (curve == CURVE_P384): QA = Point(qax, qay, curve=P384)

			# Bob's public key
		if (curve == CURVE_P256): QB = Point(qbx, qby, curve=P256)
		if (curve == CURVE_P384): QB = Point(qbx, qby, curve=P384)
		
			# we derive the shared secret two different ways (from Alice's and
			# from Bob's perspective, they must be identical of course
		QAB = da * QB	# Alice's secret
		QBA = db * QA	# Bob's secret
		
		if (QAB.x != QBA.x): sys.exit()
		if (QBA.y != QAB.y): sys.exit()
		
		print("Derived shared secret.");

			# format numbers and write to file
		format_c_header(file_h, curve, da, qax, qay, db, qbx, qby, QAB.x, QBA.y)
#		format_verilog_include(file_v, key, modulus, message, secret, signature, prime1, prime2, exponent1, exponent2, message1, message2)

		# done
	file_h.close()
#	file_v.close()
	
		# everything went just fine
	print("Test vectors formatted.")

#
# End of file
#