/**
******************************************************************************
* @file GPIO/GPIO_IOToggle/Src/main.c
* @author MCD Application Team
* @version V1.0.1
* @date 26-February-2014
* @brief This example describes how to configure and use GPIOs through
* the STM32F4xx HAL API.
******************************************************************************
* @attention
*
*
© COPYRIGHT(c) 2014 STMicroelectronics
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm_init.h"
//#include "stm32f4xx_hal.h"
//#include "stm32f4xx_hal_rcc.h"
/** @addtogroup STM32F4xx_HAL_Examples
* @{
*/
/** @addtogroup GPIO_IOToggle
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define UART1_BAUD_RATE 460800
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
static GPIO_InitTypeDef GPIO_InitStruct;
TIM_HandleTypeDef htim2;
UART_HandleTypeDef huart1;
DMA_HandleTypeDef hdma_tim;
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static void Error_Handler(void);
static void MX_GPIO_Init(void);
static void MX_TIM2_Init(uint32_t *counters_buf, uint16_t counters);
static void MX_USART1_UART_Init(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
void stm_init(uint32_t *buf0, uint16_t counters)
{
/* Generic STM32 initialization.
To proceed, 3 steps are required: */
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch, instruction and Data caches
- Configure the Systick to generate an interrupt each 1 msec
- Set NVIC Group Priority to 4
- Global MSP (MCU Support Package) initialization
*/
HAL_Init();
/* Configure the system clock */
SystemClock_Config();
/* System interrupt init*/
/* Sets the priority grouping field */
HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_0);
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM2_Init(buf0, counters);
MX_USART1_UART_Init();
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 42000000
* HCLK(Hz) = 42000000
* AHB Prescaler = 1
* APB1 Prescaler = 1
* APB2 Prescaler = 1
* HSI Frequency(Hz) = 16000000
* PLL_M = 8
* PLL_N = 336
* PLL_P = 8
* PLL_Q = 7 (unused)
* VDD(V) = 3.3
* Main regulator output voltage = Scale2 mode
* Flash Latency(WS) = 1
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* Enable Power Control clock */
__PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);
/* Enable HSE Oscillator and activate PLL with HSE as source.
*
* With 8 MHz HSE oscillator, M=/8, N=*336, P=/8 gives 42 MHz SYSCLK.
* Divider Q is unused in this configuration.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV8;
RCC_OscInitStruct.PLL.PLLQ = 7;
if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
Error_Handler();
}
/* Select PLL as system clock source */
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; /* AHB prescaler */
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; /* APB1 prescaler /1 gives 42 MHz APB1 */
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; /* APB2 prescaler /1 gives 42 MHz APB2 */
if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) {
Error_Handler();
}
}
/** Configure pins as
PB12 ------> GREEN LED
PB13 ------> YELLOW LED
PB14 ------> GREEN lED
PB15 ------> BLUE LED
PA1 ------> TIM2_CH2 (Avalanche noise)
*/
void MX_GPIO_Init(void)
{
/* GPIO Ports Clock Enable */
__GPIOA_CLK_ENABLE();
__GPIOB_CLK_ENABLE();
__GPIOC_CLK_ENABLE();
/*Configure LED GPIO pins PB12==red, PB13==yellow, PB14==green, PB15==blue */
GPIO_InitStruct.Pin = LED_RED | LED_YELLOW | LED_GREEN | LED_BLUE;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_LOW;
HAL_GPIO_Init(LED_PORT, &GPIO_InitStruct);
/* Configure PA1 (TIM2_Channel2) (Avalanche noise trigger) */
GPIO_InitStruct.Pin = GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF1_TIM2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
/* TIM2 init function.
* TIM2 is used in capture mode, triggered off the avalanche noise pin PA1.
*/
void MX_TIM2_Init(uint32_t *counters_buf, uint16_t counters)
{
TIM_IC_InitTypeDef sICConfig;
__DMA1_CLK_ENABLE();
__TIM2_CLK_ENABLE();
__GPIOA_CLK_ENABLE();
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 0xffff;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.RepetitionCounter = 0;
/* Configure the Input Capture of channel 2.
* Trigger on rising edge. ICFilter = 0 means trigger on every event.
*/
sICConfig.ICPolarity = TIM_ICPOLARITY_RISING;
sICConfig.ICSelection = TIM_ICSELECTION_DIRECTTI;
sICConfig.ICPrescaler = TIM_ICPSC_DIV1;
sICConfig.ICFilter = 0; /* If set - Ignore additional state changes for a short while */
if (HAL_TIM_IC_Init(&htim2) != HAL_OK) {
/* Initialization Error */
Error_Handler();
}
if (HAL_TIM_IC_ConfigChannel(&htim2, &sICConfig, TIM_CHANNEL_2) != HAL_OK) {
/* Initialization Error */
Error_Handler();
}
/* Start the TIM input capture operation */
if (HAL_TIM_IC_Start_DMA(&htim2, TIM_CHANNEL_2, counters_buf, counters) != HAL_OK) {
/* Starting Error */
Error_Handler();
}
}
/* USART1 init function
*
* USART1 uses PA9 and PA10.
*/
void MX_USART1_UART_Init(void)
{
huart1.Instance = USART1;
huart1.Init.BaudRate = UART1_BAUD_RATE;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX; /* Only Transmit */
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK) {
/* Initialization Error */
Error_Handler();
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
HAL_GPIO_WritePin(LED_PORT, LED_RED, GPIO_PIN_SET);
while(1) { ; }
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/