//======================================================================
//
// keywrap.v
// --------
// Top level wrapper for the KEY WRAP core.
//
// Since $clog2() is not supported by all tools, and constant
// functions are not supported by some other tools we need to
// do the size to number of bits calculation by hand.
// 8192 bytes = 2048 32 bit words. This requires 11 bits.
// We need additional space for control and status words. But
// since we have filled the address space, we need another MSB
// in the address. Thus ADDR_BITS = 12 bits.
//
// 0x000 - 0x7ff are for control and status.
// 0x800 - 0xfff are for data storage
//
//
// Author: Joachim Strombergson
// Copyright (c) 2018, NORDUnet A/S
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module keywrap #(parameter ADDR_BITS = 13)
(
input wire clk,
input wire reset_n,
output wire mkm_spi_sclk,
output wire mkm_spi_cs_n,
input wire mkm_spi_do,
output wire mkm_spi_di,
input wire cs,
input wire we,
input wire [(ADDR_BITS - 1) : 0] address,
input wire [31 : 0] write_data,
output wire [31 : 0] read_data,
output wire error
);
//----------------------------------------------------------------
// Internal constant and parameter definitions.
//----------------------------------------------------------------
localparam ADDR_NAME0 = 8'h00;
localparam ADDR_NAME1 = 8'h01;
localparam ADDR_VERSION = 8'h02;
localparam ADDR_CTRL = 8'h08;
localparam CTRL_INIT_BIT = 0;
localparam CTRL_NEXT_BIT = 1;
localparam CTRL_READ_BIT = 2;
localparam CTRL_WRITE_BIT = 3;
localparam ADDR_STATUS = 8'h09;
localparam STATUS_READY_BIT = 0;
localparam STATUS_VALID_BIT = 1;
localparam ADDR_CONFIG = 8'h0a;
localparam CONFIG_ENCDEC_BIT = 0;
localparam CONFIG_KEYLEN_BIT = 1;
localparam CONFIG_MKS_BIT = 2;
localparam ADDR_RLEN = 8'h0c;
localparam ADDR_A0 = 8'h0e;
localparam ADDR_A1 = 8'h0f;
localparam ADDR_KEY0 = 8'h10;
localparam ADDR_KEY1 = 8'h11;
localparam ADDR_KEY2 = 8'h12;
localparam ADDR_KEY3 = 8'h13;
localparam ADDR_KEY4 = 8'h14;
localparam ADDR_KEY5 = 8'h15;
localparam ADDR_KEY6 = 8'h16;
localparam ADDR_KEY7 = 8'h17;
localparam ADDR_MSTATUS = 8'h20;
localparam CORE_NAME0 = 32'h6b657920; // "key "
localparam CORE_NAME1 = 32'h77726170; // "wrap"
localparam CORE_VERSION = 32'h302e3830; // "0.80"
localparam MEM_BITS = ADDR_BITS - 1;
localparam RLEN_BITS = ADDR_BITS - 2;
localparam PAD = ADDR_BITS - 8;
// If set to one, will allow read access to key memory.
// Should be set to zero in all production FPGA bitstreams.
localparam DEBUG_MKM_READ = 1'h1;
//----------------------------------------------------------------
// Registers including update variables and write enable.
//----------------------------------------------------------------
reg init_reg;
reg init_new;
reg next_reg;
reg next_new;
reg read_reg;
reg read_new;
reg write_reg;
reg write_new;
reg mkey_mstatus_reg;
reg mkey_mstatus_new;
reg encdec_reg;
reg keylen_reg;
reg config_we;
reg [(RLEN_BITS - 1) : 0] rlen_reg;
reg rlen_we;
reg [31 : 0] a0_reg;
reg a0_we;
reg [31 : 0] a1_reg;
reg a1_we;
reg [31 : 0] key_reg [0 : 7];
reg key_we;
reg [31 : 0] mstatus_reg;
reg mstatus_we;
reg [31 : 0] api_rd_delay_reg;
reg [31 : 0] api_rd_delay_new;
reg valid_reg;
reg ready_reg;
//----------------------------------------------------------------
// Wires.
//----------------------------------------------------------------
reg [31 : 0] tmp_read_data;
reg tmp_error;
reg core_api_we;
wire [(MEM_BITS - 1) : 0] core_api_addr;
wire core_ready;
wire core_valid;
wire [255 : 0] core_key;
wire [255 : 0] core_mkey;
wire [31 : 0] core_mstatus;
wire [63 : 0] core_a_init;
wire [63 : 0] core_a_result;
wire [31 : 0] core_api_rd_data;
//----------------------------------------------------------------
// Concurrent connectivity for ports etc.
//----------------------------------------------------------------
assign read_data = tmp_read_data;
assign error = tmp_error;
assign core_key = {key_reg[0], key_reg[1], key_reg[2], key_reg[3],
key_reg[4], key_reg[5], key_reg[6], key_reg[7]};
assign core_api_addr = address[(MEM_BITS - 1) : 0];
assign core_a_init = {a0_reg, a1_reg};
//----------------------------------------------------------------
// keywrap core instantiation.
//----------------------------------------------------------------
keywrap_core #(.MEM_BITS(MEM_BITS))
core(
.clk(clk),
.reset_n(reset_n),
.mkm_spi_sclk(mkm_spi_sclk),
.mkm_spi_cs_n(mkm_spi_cs_n),
.mkm_spi_do(mkm_spi_do),
.mkm_spi_di(mkm_spi_di),
.init(init_reg),
.next(next_reg),
.read(read_reg),
.write(write_reg),
.mkey_mstatus(mkey_mstatus_reg),
.encdec(encdec_reg),
.ready(core_ready),
.valid(core_valid),
.rlen(rlen_reg),
.key(core_key),
.keylen(keylen_reg),
.status(mstatus_reg),
.mkey(core_mkey),
.mstatus(core_mstatus),
.a_init(core_a_init),
.a_result(core_a_result),
.api_we(core_api_we),
.api_addr(core_api_addr),
.api_wr_data(write_data),
.api_rd_data(core_api_rd_data)
);
//----------------------------------------------------------------
// reg_update
//----------------------------------------------------------------
always @ (posedge clk or negedge reset_n)
begin : reg_update
integer i;
if (!reset_n)
begin
for (i = 0 ; i < 8 ; i = i + 1)
key_reg[i] <= 32'h0;
init_reg <= 1'h0;
next_reg <= 1'h0;
read_reg <= 1'h0;
write_reg <= 1'h0;
mkey_mstatus_reg <= 1'h0;
encdec_reg <= 1'h0;
keylen_reg <= 1'h0;
mstatus_reg <= 32'h0;
rlen_reg <= {RLEN_BITS{1'h0}};
valid_reg <= 1'h0;
ready_reg <= 1'h0;
a0_reg <= 32'h0;
a1_reg <= 32'h0;
api_rd_delay_reg <= 32'h0;
end
else
begin
ready_reg <= core_ready;
valid_reg <= core_valid;
init_reg <= init_new;
next_reg <= next_new;
read_reg <= read_new;
write_reg <= write_new;
mkey_mstatus_reg <= mkey_mstatus_new;
api_rd_delay_reg <= api_rd_delay_new;
if (config_we)
begin
mkey_mstatus_reg <= write_data[CONFIG_MKS_BIT];
encdec_reg <= write_data[CONFIG_ENCDEC_BIT];
keylen_reg <= write_data[CONFIG_KEYLEN_BIT];
end
if (rlen_we)
rlen_reg <= write_data[12 : 0];
if (a0_we)
a0_reg <= write_data;
if (a1_we)
a1_reg <= write_data;
if (mstatus_we)
mstatus_reg <= write_data;
if (key_we)
key_reg[address[2 : 0]] <= write_data;
end
end // reg_update
//----------------------------------------------------------------
// api
//
// The interface command decoding logic.
//----------------------------------------------------------------
always @*
begin : api
init_new = 1'h0;
next_new = 1'h0;
read_new = 1'h0;
write_new = 1'h0;
config_we = 1'h0;
rlen_we = 1'h0;
key_we = 1'h0;
core_api_we = 1'h0;
a0_we = 1'h0;
a1_we = 1'h0;
mstatus_we = 1'h0;
tmp_read_data = 32'h0;
tmp_error = 1'h0;
api_rd_delay_new = 32'h0;
// api_mux
if (address[(ADDR_BITS - 1)])
tmp_read_data = core_api_rd_data;
else
tmp_read_data = api_rd_delay_reg;
if (cs)
begin
if (we)
begin
// Write access
if (address == {{PAD{1'h0}}, ADDR_CTRL})
begin
init_new = write_data[CTRL_INIT_BIT];
next_new = write_data[CTRL_NEXT_BIT];
read_new = write_data[CTRL_READ_BIT];
write_new = write_data[CTRL_WRITE_BIT];
end
if (address == {{PAD{1'h0}}, ADDR_CONFIG})
config_we = 1'h1;
if (address == {{PAD{1'h0}}, ADDR_RLEN})
rlen_we = 1'h1;
if (address == {{PAD{1'h0}}, ADDR_A0})
a0_we = 1'h1;
if (address == {{PAD{1'h0}}, ADDR_A1})
a1_we = 1'h1;
if (address == {{PAD{1'h0}}, ADDR_MSTATUS})
mstatus_we = 1'h1;
if ((address >= {{PAD{1'h0}}, ADDR_KEY0}) &&
(address <= {{PAD{1'h0}}, ADDR_KEY7}))
key_we = 1'h1;
if (address[(ADDR_BITS - 1)])
core_api_we = 1'h1;
end // if (we)
else
begin
// Read access
if (address == {{PAD{1'h0}}, ADDR_NAME0})
api_rd_delay_new = CORE_NAME0;
if (address == {{PAD{1'h0}}, ADDR_NAME1})
api_rd_delay_new = CORE_NAME1;
if (address == {{PAD{1'h0}}, ADDR_VERSION})
api_rd_delay_new = CORE_VERSION;
if (address == {{PAD{1'h0}}, ADDR_CTRL})
api_rd_delay_new = {26'h0, keylen_reg, encdec_reg, write_reg, read_reg, next_reg, init_reg};
if (address == {{PAD{1'h0}}, ADDR_STATUS})
api_rd_delay_new = {30'h0, valid_reg, ready_reg};
if (address == {{PAD{1'h0}}, ADDR_RLEN})
api_rd_delay_new = {19'h0, rlen_reg};
if (address == {{PAD{1'h0}}, ADDR_A0})
api_rd_delay_new = core_a_result[63 : 32];
if (address == {{PAD{1'h0}}, ADDR_A1})
api_rd_delay_new = core_a_result[31 : 0];
if (address == {{PAD{1'h0}}, ADDR_MSTATUS})
api_rd_delay_new = core_mstatus;
// Warning: Should be disabled after mkmif
// integration has been completed.
if (DEBUG_MKM_READ)
if ((address >= {{PAD{1'h0}},ADDR_KEY0}) && (address <= {{PAD{1'h0}}, ADDR_KEY7}))
api_rd_delay_new = core_mkey[(7 - (address - {{PAD{1'h0}}, ADDR_KEY7})) * 32 +: 32];
end // else: !if(we)
end // if (cs)
end // block: api
endmodule // keywrap
//======================================================================
// EOF keywrap.v
//======================================================================