//====================================================================== // // fpga_mkm_spi_slave.v // -------------------- // SPI Slave for the FPGA based Master Key Memory (MKM). // // The interface captures serial data from the master and provides // it as bytes to the interface host. Any response from the host // to be transmitted to the master should be given as bytes. // // It is the responsibility of the host to send as much response as // the master expects. // // The clk driving the interface must be >> sclk to allow for // the cycles needed to perform state handling, parsing etc. // // // Author: Joachim Strombergson // Copyright (c) 2019, NORDUnet A/S // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // - Neither the name of the NORDUnet nor the names of its contributors may // be used to endorse or promote products derived from this software // without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED // TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A // PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // //====================================================================== module fpga_mkm_spi_slave( input wire clk, input wire ss, input wire sclk, input wire mosi, output wire miso, output wire spi_active, output wire rx_byte_available, output wire [7 : 0] rx_byte, input wire tx_byte_available, input wire [7 : 0] tx_byte, output wire tx_byte_ack ); //---------------------------------------------------------------- // Internal constant and parameter definitions. //---------------------------------------------------------------- localparam CTRL_IDLE = 3'h0; localparam CTRL_SELECTED = 3'h1; localparam CTRL_POS_EDGE = 3'h2; localparam CTRL_NEG_EDGE = 3'h3; //---------------------------------------------------------------- // Registers including update variables and write enable. //---------------------------------------------------------------- reg ss_sample0_reg; reg ss_sample1_reg; reg ss_reg; reg sclk_sample0_reg; reg sclk_sample1_reg; reg sclk_reg; reg mosi_sample0_reg; reg mosi_sample1_reg; reg mosi_reg; reg [7 : 0] rx_byte_reg = 8'h0; reg [7 : 0] rx_byte_new; reg rx_byte_next; reg [7 : 0] tx_byte_reg = 8'h0; reg [7 : 0] tx_byte_new; reg tx_byte_we; reg tx_byte_next; reg tx_byte_loadz; reg [2 : 0] bit_ctr_reg = 3'h0; reg [2 : 0] bit_ctr_new; reg bit_ctr_we; reg bit_ctr_rst; reg bit_ctr_inc; reg spi_active_reg = 1'h0; reg spi_active_new; reg spi_active_we; reg [2 : 0] spi_slave_ctrl_reg = CTRL_IDLE; reg [2 : 0] spi_slave_ctrl_new; reg spi_slave_ctrl_we; //---------------------------------------------------------------- // Concurrent connectivity for ports etc. //---------------------------------------------------------------- assign miso = tx_byte_reg[7]; assign rx_byte_available = (bit_ctr_reg == 3'h7); assign rx_byte = rx_byte_reg; assign spi_active = spi_active_reg; //---------------------------------------------------------------- // reg_update //---------------------------------------------------------------- always @ (posedge clk) begin : reg_update ss_sample0_reg <= ss; ss_sample1_reg <= ss_sample0_reg; ss_reg <= ss_sample1_reg; sclk_sample0_reg <= sclk; sclk_sample1_reg <= sclk_sample0_reg; sclk_reg <= sclk_sample1_reg; mosi_sample0_reg <= mosi; mosi_sample1_reg <= mosi_sample0_reg; mosi_reg <= mosi_sample1_reg; if (rx_byte_next) rx_byte_reg <= {rx_byte_reg[6 : 0], mosi_reg}; if (bit_ctr_we) bit_ctr_reg <= bit_ctr_new; if (tx_byte_we) tx_byte_reg <= tx_byte_new; if (spi_active_we) spi_active_reg <= spi_active_new; if (spi_slave_ctrl_we) spi_slave_ctrl_reg <= spi_slave_ctrl_new; end //---------------------------------------------------------------- // tx_byte_logic // Update the tx_byte register. Either loading or shifting to // set the next bit to transmit. //---------------------------------------------------------------- always @* begin : tx_byte_logic tx_byte_new = 8'h0; tx_byte_we = 1'h0; if (tx_byte_load) begin tx_byte_new = tx_byte; tx_byte_we = 1'h1; end if (tx_byte_loadz) begin tx_byte_new = 8'h0; tx_byte_we = 1'h1; end if (tx_byte_next) begin tx_byte_new = {tx_byte_reg[6 : 0], 1'h0}; tx_byte_we = 1'h1; end end //---------------------------------------------------------------- // bit_ctr //---------------------------------------------------------------- always @* begin : bit_ctr bit_ctr_new = 3'h0; bit_ctr_we = 1'h0; if (bit_ctr_rst) begin bit_ctr_new = 3'h0; bit_ctr_we = 1'h1; end if (bit_ctr_inc) begin bit_ctr_new = bit_ctr_reg + 1'h1; bit_ctr_we = 1'h1; end end //---------------------------------------------------------------- // spi_slave_ctrl_fsm //---------------------------------------------------------------- always @* begin : spi_slave_ctrl_fsm bit_ctr_rst = 1'h0; bit_ctr_inc = 1'h0; rx_byte_next = 1'h0; tx_byte_loadz = 1'h0; tx_byte_next = 1'h0; spi_active_new = 1'h0; spi_active_we = 1'h0; spi_slave_ctrl_new = CTRL_IDLE; spi_slave_ctrl_we = 1'h0; case (spi_slave_ctrl_reg) CTRL_IDLE: begin if (ss_reg == 0) begin spi_slave_ctrl_new = CTRL_SELECTED; spi_slave_ctrl_we = 1'h1; end end CTRL_SELECTED: begin bit_ctr_rst = 1'h1; tx_byte_loadz = 1'h1; spi_active_new = 1'h1; spi_active_we = 1'h1; spi_slave_ctrl_new = CTRL_POS_EDGE; spi_slave_ctrl_we = 1'h1; end CTRL_POS_EDGE: begin if (ss_reg == 0) begin if ((sclk_sample1_reg == 1'h1) && (sclk_reg == 1'h0)) begin rx_byte_next = 1'h1; tx_byte_next = 1'h1; bit_ctr_inc = 1'h1; spi_slave_ctrl_new = CTRL_NEG_EDGE; spi_slave_ctrl_we = 1'h1; end end else begin spi_active_new = 1'h0; spi_active_we = 1'h1; spi_slave_ctrl_new = CTRL_IDLE; spi_slave_ctrl_we = 1'h1; end end CTRL_NEG_EDGE: begin if (ss_reg == 0) begin if ((sclk_sample1_reg == 1'h0) && (sclk_reg == 1'h1)) begin spi_slave_ctrl_new = CTRL_POS_EDGE; spi_slave_ctrl_we = 1'h1; end end else begin spi_active_new = 1'h0; spi_active_we = 1'h1; spi_slave_ctrl_new = CTRL_IDLE; spi_slave_ctrl_we = 1'h1; end end endcase // case (spi_slave_ctrl_reg) end // block: spi_slave_ctrl_fsm endmodule // fpga_mkm_spi_slave //====================================================================== // EOF fpga_mkm_spi_slave.v //======================================================================