From 8dd5dd6b3992a6b6e72dc97bdf947c0746b6bf20 Mon Sep 17 00:00:00 2001 From: Fredrik Thulin Date: Fri, 17 Jul 2015 10:36:18 +0200 Subject: init --- .../Src/stm32f4xx_hal_cryp_ex.c | 3020 ++++++++++++++++++++ 1 file changed, 3020 insertions(+) create mode 100644 Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_cryp_ex.c (limited to 'Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_cryp_ex.c') diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_cryp_ex.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_cryp_ex.c new file mode 100644 index 0000000..23d8ea7 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_cryp_ex.c @@ -0,0 +1,3020 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_cryp_ex.c + * @author MCD Application Team + * @version V1.1.0 + * @date 19-June-2014 + * @brief Extended CRYP HAL module driver + * This file provides firmware functions to manage the following + * functionalities of CRYP extension peripheral: + * + Extended AES processing functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The CRYP Extension HAL driver can be used as follows: + (#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit(): + (##) Enable the CRYP interface clock using __CRYP_CLK_ENABLE() + (##) In case of using interrupts (e.g. HAL_CRYPEx_AESGCM_Encrypt_IT()) + (+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority() + (+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ() + (+) In CRYP IRQ handler, call HAL_CRYP_IRQHandler() + (##) In case of using DMA to control data transfer (e.g. HAL_AES_ECB_Encrypt_DMA()) + (+++) Enable the DMAx interface clock using __DMAx_CLK_ENABLE() + (+++) Configure and enable two DMA streams one for managing data transfer from + memory to peripheral (input stream) and another stream for managing data + transfer from peripheral to memory (output stream) + (+++) Associate the initilalized DMA handle to the CRYP DMA handle + using __HAL_LINKDMA() + (+++) Configure the priority and enable the NVIC for the transfer complete + interrupt on the two DMA Streams. The output stream should have higher + priority than the input stream HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ() + (#)Initialize the CRYP HAL using HAL_CRYP_Init(). This function configures mainly: + (##) The data type: 1-bit, 8-bit, 16-bit and 32-bit + (##) The key size: 128, 192 and 256. This parameter is relevant only for AES + (##) The encryption/decryption key. Its size depends on the algorithm + used for encryption/decryption + (##) The initialization vector (counter). It is not used ECB mode. + (#)Three processing (encryption/decryption) functions are available: + (##) Polling mode: encryption and decryption APIs are blocking functions + i.e. they process the data and wait till the processing is finished + e.g. HAL_CRYPEx_AESGCM_Encrypt() + (##) Interrupt mode: encryption and decryption APIs are not blocking functions + i.e. they process the data under interrupt + e.g. HAL_CRYPEx_AESGCM_Encrypt_IT() + (##) DMA mode: encryption and decryption APIs are not blocking functions + i.e. the data transfer is ensured by DMA + e.g. HAL_CRYPEx_AESGCM_Encrypt_DMA() + (#)When the processing function is called at first time after HAL_CRYP_Init() + the CRYP peripheral is initialized and processes the buffer in input. + At second call, the processing function performs an append of the already + processed buffer. + When a new data block is to be processed, call HAL_CRYP_Init() then the + processing function. + (#)In AES-GCM and AES-CCM modes are an authenticated encryption algorithms + which provide authentication messages. + HAL_AES_GCM_Finish() and HAL_AES_CCM_Finish() are used to provide those + authentication messages. + Call those functions after the processing ones (polling, interrupt or DMA). + e.g. in AES-CCM mode call HAL_CRYPEx_AESCCM_Encrypt() to encrypt the plain data + then call HAL_CRYPEx_AESCCM_Finish() to get the authentication message + (#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2014 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup CRYPEx + * @brief CRYP Extension HAL module driver. + * @{ + */ + +#ifdef HAL_CRYP_MODULE_ENABLED + +#if defined(STM32F437xx) || defined(STM32F439xx) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +#define CRYPEx_TIMEOUT_VALUE 1 +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +static void CRYPEx_GCMCCM_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector, uint32_t IVSize); +static void CRYPEx_GCMCCM_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize); +static HAL_StatusTypeDef CRYPEx_GCMCCM_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t *Input, uint16_t Ilength, uint8_t *Output, uint32_t Timeout); +static HAL_StatusTypeDef CRYPEx_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint32_t Timeout); +static void CRYPEx_GCMCCM_DMAInCplt(DMA_HandleTypeDef *hdma); +static void CRYPEx_GCMCCM_DMAOutCplt(DMA_HandleTypeDef *hdma); +static void CRYPEx_GCMCCM_DMAError(DMA_HandleTypeDef *hdma); +static void CRYPEx_GCMCCM_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr); + +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup CRYPEx_Private_Functions + * @{ + */ + +/** @defgroup CRYPEx_Group1 Extended AES processing functions + * @brief Extended processing functions. + * +@verbatim + ============================================================================== + ##### Extended AES processing functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Encrypt plaintext using AES-128/192/256 using GCM and CCM chaining modes + (+) Decrypt cyphertext using AES-128/192/256 using GCM and CCM chaining modes + (+) Finish the processing. This function is available only for GCM and CCM + [..] Three processing methods are available: + (+) Polling mode + (+) Interrupt mode + (+) DMA mode + +@endverbatim + * @{ + */ + + +/** + * @brief Initializes the CRYP peripheral in AES CCM encryption mode then + * encrypt pPlainData. The cypher data are available in pCypherData. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) +{ + uint32_t tickstart = 0; + uint32_t headersize = hcryp->Init.HeaderSize; + uint32_t headeraddr = (uint32_t)hcryp->Init.Header; + uint32_t loopcounter = 0; + uint32_t bufferidx = 0; + uint8_t blockb0[16] = {0};/* Block B0 */ + uint8_t ctr[16] = {0}; /* Counter */ + uint32_t b0addr = (uint32_t)blockb0; + + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /************************ Formatting the header block *********************/ + if(headersize != 0) + { + /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */ + if(headersize < 65280) + { + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF); + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF); + headersize += 2; + } + else + { + /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */ + hcryp->Init.pScratch[bufferidx++] = 0xFF; + hcryp->Init.pScratch[bufferidx++] = 0xFE; + hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff; + headersize += 6; + } + /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */ + for(loopcounter = 0; loopcounter < headersize; loopcounter++) + { + hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter]; + } + /* Check if the header size is modulo 16 */ + if ((headersize % 16) != 0) + { + /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */ + for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = 0; + } + /* Set the header size to modulo 16 */ + headersize = ((headersize/16) + 1) * 16; + } + /* Set the pointer headeraddr to hcryp->Init.pScratch */ + headeraddr = (uint32_t)hcryp->Init.pScratch; + } + /*********************** Formatting the block B0 **************************/ + if(headersize != 0) + { + blockb0[0] = 0x40; + } + /* Flags byte */ + /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */ + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3); + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07); + + for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++) + { + blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter]; + } + for ( ; loopcounter < 13; loopcounter++) + { + blockb0[loopcounter+1] = 0; + } + + blockb0[14] = (Size >> 8); + blockb0[15] = (Size & 0xFF); + + /************************* Formatting the initial counter *****************/ + /* Byte 0: + Bits 7 and 6 are reserved and shall be set to 0 + Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter blocks + are distinct from B0 + Bits 0, 1, and 2 contain the same encoding of q as in B0 + */ + ctr[0] = blockb0[0] & 0x07; + /* byte 1 to NonceSize is the IV (Nonce) */ + for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++) + { + ctr[loopcounter] = blockb0[loopcounter]; + } + /* Set the LSB to 1 */ + ctr[15] |= 0x01; + + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CCM mode */ + __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, ctr, CRYP_KEYSIZE_128B); + + /* Select init phase */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_INIT); + + b0addr = (uint32_t)blockb0; + /* Write the blockb0 block in the IN FIFO */ + CRYP->DR = *(uint32_t*)(b0addr); + b0addr+=4; + CRYP->DR = *(uint32_t*)(b0addr); + b0addr+=4; + CRYP->DR = *(uint32_t*)(b0addr); + b0addr+=4; + CRYP->DR = *(uint32_t*)(b0addr); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /***************************** Header phase *******************************/ + if(headersize != 0) + { + /* Select header phase */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_HEADER); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(); + + for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_IFEM)) + { + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + } + /* Write the header block in the IN FIFO */ + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + } + /* Save formatted counter into the scratch buffer pScratch */ + for(loopcounter = 0; (loopcounter < 16); loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = ctr[loopcounter]; + } + /* Reset bit 0 */ + hcryp->Init.pScratch[15] &= 0xfe; + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYPEx_GCMCCM_ProcessData(hcryp,pPlainData, Size, pCypherData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES GCM encryption mode then + * encrypt pPlainData. The cypher data are available in pCypherData. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES GCM mode */ + __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + + /* Set the header phase */ + if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Disable the CRYP peripheral */ + __HAL_CRYP_DISABLE(); + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYPEx_GCMCCM_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES GCM decryption mode then + * decrypted pCypherData. The cypher data are available in pPlainData. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the cyphertext buffer, must be a multiple of 16 + * @param pPlainData: Pointer to the plaintext buffer + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES GCM decryption mode */ + __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_GCM_DECRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + + /* Set the header phase */ + if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + /* Disable the CRYP peripheral */ + __HAL_CRYP_DISABLE(); + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYPEx_GCMCCM_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Computes the authentication TAG. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Size: Total length of the plain/cyphertext buffer + * @param AuthTag: Pointer to the authentication buffer + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Finish(CRYP_HandleTypeDef *hcryp, uint16_t Size, uint8_t *AuthTag, uint32_t Timeout) +{ + uint32_t tickstart = 0; + uint32_t headerlength = hcryp->Init.HeaderSize * 8; /* Header length in bits */ + uint32_t inputlength = Size * 8; /* input length in bits */ + uint32_t tagaddr = (uint32_t)AuthTag; + + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_PROCESS) + { + /* Change the CRYP phase */ + hcryp->Phase = HAL_CRYP_PHASE_FINAL; + + /* Disable CRYP to start the final phase */ + __HAL_CRYP_DISABLE(); + + /* Select final phase */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_FINAL); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(); + + /* Write the number of bits in header (64 bits) followed by the number of bits + in the payload */ + if(hcryp->Init.DataType == CRYP_DATATYPE_1B) + { + CRYP->DR = 0; + CRYP->DR = __RBIT(headerlength); + CRYP->DR = 0; + CRYP->DR = __RBIT(inputlength); + } + else if(hcryp->Init.DataType == CRYP_DATATYPE_8B) + { + CRYP->DR = 0; + CRYP->DR = __REV(headerlength); + CRYP->DR = 0; + CRYP->DR = __REV(inputlength); + } + else if(hcryp->Init.DataType == CRYP_DATATYPE_16B) + { + CRYP->DR = 0; + CRYP->DR = __REV16(headerlength); + CRYP->DR = 0; + CRYP->DR = __REV16(inputlength); + } + else if(hcryp->Init.DataType == CRYP_DATATYPE_32B) + { + CRYP->DR = 0; + CRYP->DR = (uint32_t)(headerlength); + CRYP->DR = 0; + CRYP->DR = (uint32_t)(inputlength); + } + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_OFNE)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + + /* Read the Auth TAG in the IN FIFO */ + *(uint32_t*)(tagaddr) = CRYP->DOUT; + tagaddr+=4; + *(uint32_t*)(tagaddr) = CRYP->DOUT; + tagaddr+=4; + *(uint32_t*)(tagaddr) = CRYP->DOUT; + tagaddr+=4; + *(uint32_t*)(tagaddr) = CRYP->DOUT; + } + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Computes the authentication TAG for AES CCM mode. + * @note This API is called after HAL_AES_CCM_Encrypt()/HAL_AES_CCM_Decrypt() + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param AuthTag: Pointer to the authentication buffer + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Finish(CRYP_HandleTypeDef *hcryp, uint8_t *AuthTag, uint32_t Timeout) +{ + uint32_t tickstart = 0; + uint32_t tagaddr = (uint32_t)AuthTag; + uint32_t ctraddr = (uint32_t)hcryp->Init.pScratch; + uint32_t temptag[4] = {0}; /* Temporary TAG (MAC) */ + uint32_t loopcounter; + + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_PROCESS) + { + /* Change the CRYP phase */ + hcryp->Phase = HAL_CRYP_PHASE_FINAL; + + /* Disable CRYP to start the final phase */ + __HAL_CRYP_DISABLE(); + + /* Select final phase */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_FINAL); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(); + + /* Write the counter block in the IN FIFO */ + CRYP->DR = *(uint32_t*)ctraddr; + ctraddr+=4; + CRYP->DR = *(uint32_t*)ctraddr; + ctraddr+=4; + CRYP->DR = *(uint32_t*)ctraddr; + ctraddr+=4; + CRYP->DR = *(uint32_t*)ctraddr; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_OFNE)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + + /* Read the Auth TAG in the IN FIFO */ + temptag[0] = CRYP->DOUT; + temptag[1] = CRYP->DOUT; + temptag[2] = CRYP->DOUT; + temptag[3] = CRYP->DOUT; + } + + /* Copy temporary authentication TAG in user TAG buffer */ + for(loopcounter = 0; loopcounter < hcryp->Init.TagSize ; loopcounter++) + { + /* Set the authentication TAG buffer */ + *((uint8_t*)tagaddr+loopcounter) = *((uint8_t*)temptag+loopcounter); + } + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CCM decryption mode then + * decrypted pCypherData. The cypher data are available in pPlainData. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) +{ + uint32_t tickstart = 0; + uint32_t headersize = hcryp->Init.HeaderSize; + uint32_t headeraddr = (uint32_t)hcryp->Init.Header; + uint32_t loopcounter = 0; + uint32_t bufferidx = 0; + uint8_t blockb0[16] = {0};/* Block B0 */ + uint8_t ctr[16] = {0}; /* Counter */ + uint32_t b0addr = (uint32_t)blockb0; + + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /************************ Formatting the header block *********************/ + if(headersize != 0) + { + /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */ + if(headersize < 65280) + { + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF); + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF); + headersize += 2; + } + else + { + /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */ + hcryp->Init.pScratch[bufferidx++] = 0xFF; + hcryp->Init.pScratch[bufferidx++] = 0xFE; + hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff; + headersize += 6; + } + /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */ + for(loopcounter = 0; loopcounter < headersize; loopcounter++) + { + hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter]; + } + /* Check if the header size is modulo 16 */ + if ((headersize % 16) != 0) + { + /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */ + for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = 0; + } + /* Set the header size to modulo 16 */ + headersize = ((headersize/16) + 1) * 16; + } + /* Set the pointer headeraddr to hcryp->Init.pScratch */ + headeraddr = (uint32_t)hcryp->Init.pScratch; + } + /*********************** Formatting the block B0 **************************/ + if(headersize != 0) + { + blockb0[0] = 0x40; + } + /* Flags byte */ + /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */ + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3); + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07); + + for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++) + { + blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter]; + } + for ( ; loopcounter < 13; loopcounter++) + { + blockb0[loopcounter+1] = 0; + } + + blockb0[14] = (Size >> 8); + blockb0[15] = (Size & 0xFF); + + /************************* Formatting the initial counter *****************/ + /* Byte 0: + Bits 7 and 6 are reserved and shall be set to 0 + Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter + blocks are distinct from B0 + Bits 0, 1, and 2 contain the same encoding of q as in B0 + */ + ctr[0] = blockb0[0] & 0x07; + /* byte 1 to NonceSize is the IV (Nonce) */ + for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++) + { + ctr[loopcounter] = blockb0[loopcounter]; + } + /* Set the LSB to 1 */ + ctr[15] |= 0x01; + + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CCM mode */ + __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CCM_DECRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, ctr, CRYP_KEYSIZE_128B); + + /* Select init phase */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_INIT); + + b0addr = (uint32_t)blockb0; + /* Write the blockb0 block in the IN FIFO */ + CRYP->DR = *(uint32_t*)(b0addr); + b0addr+=4; + CRYP->DR = *(uint32_t*)(b0addr); + b0addr+=4; + CRYP->DR = *(uint32_t*)(b0addr); + b0addr+=4; + CRYP->DR = *(uint32_t*)(b0addr); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /***************************** Header phase *******************************/ + if(headersize != 0) + { + /* Select header phase */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_HEADER); + + /* Enable Crypto processor */ + __HAL_CRYP_ENABLE(); + + for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_IFEM)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Write the header block in the IN FIFO */ + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + } + /* Save formatted counter into the scratch buffer pScratch */ + for(loopcounter = 0; (loopcounter < 16); loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = ctr[loopcounter]; + } + /* Reset bit 0 */ + hcryp->Init.pScratch[15] &= 0xfe; + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYPEx_GCMCCM_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES GCM encryption mode using IT. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Get the buffer addresses and sizes */ + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES GCM mode */ + __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(); + + /* Enable CRYP to start the init phase */ + __HAL_CRYP_ENABLE(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + + } + } + + /* Set the header phase */ + if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK) + { + return HAL_TIMEOUT; + } + /* Disable the CRYP peripheral */ + __HAL_CRYP_DISABLE(); + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + if(Size != 0) + { + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI); + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(); + } + else + { + /* Process Locked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state and phase */ + hcryp->State = HAL_CRYP_STATE_READY; + } + /* Return function status */ + return HAL_OK; + } + else if (__HAL_CRYP_GET_IT(CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + CRYP->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + CRYP->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + CRYP->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + CRYP->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if (__HAL_CRYP_GET_IT(CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = CRYP->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = CRYP->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = CRYP->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = CRYP->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CCM encryption mode using interrupt. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + + uint32_t headersize = hcryp->Init.HeaderSize; + uint32_t headeraddr = (uint32_t)hcryp->Init.Header; + uint32_t loopcounter = 0; + uint32_t bufferidx = 0; + uint8_t blockb0[16] = {0};/* Block B0 */ + uint8_t ctr[16] = {0}; /* Counter */ + uint32_t b0addr = (uint32_t)blockb0; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /************************ Formatting the header block *******************/ + if(headersize != 0) + { + /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */ + if(headersize < 65280) + { + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF); + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF); + headersize += 2; + } + else + { + /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */ + hcryp->Init.pScratch[bufferidx++] = 0xFF; + hcryp->Init.pScratch[bufferidx++] = 0xFE; + hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff; + headersize += 6; + } + /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */ + for(loopcounter = 0; loopcounter < headersize; loopcounter++) + { + hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter]; + } + /* Check if the header size is modulo 16 */ + if ((headersize % 16) != 0) + { + /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */ + for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = 0; + } + /* Set the header size to modulo 16 */ + headersize = ((headersize/16) + 1) * 16; + } + /* Set the pointer headeraddr to hcryp->Init.pScratch */ + headeraddr = (uint32_t)hcryp->Init.pScratch; + } + /*********************** Formatting the block B0 ************************/ + if(headersize != 0) + { + blockb0[0] = 0x40; + } + /* Flags byte */ + /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */ + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3); + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07); + + for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++) + { + blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter]; + } + for ( ; loopcounter < 13; loopcounter++) + { + blockb0[loopcounter+1] = 0; + } + + blockb0[14] = (Size >> 8); + blockb0[15] = (Size & 0xFF); + + /************************* Formatting the initial counter ***************/ + /* Byte 0: + Bits 7 and 6 are reserved and shall be set to 0 + Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter + blocks are distinct from B0 + Bits 0, 1, and 2 contain the same encoding of q as in B0 + */ + ctr[0] = blockb0[0] & 0x07; + /* byte 1 to NonceSize is the IV (Nonce) */ + for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++) + { + ctr[loopcounter] = blockb0[loopcounter]; + } + /* Set the LSB to 1 */ + ctr[15] |= 0x01; + + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CCM mode */ + __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, ctr, hcryp->Init.KeySize); + + /* Select init phase */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_INIT); + + b0addr = (uint32_t)blockb0; + /* Write the blockb0 block in the IN FIFO */ + CRYP->DR = *(uint32_t*)(b0addr); + b0addr+=4; + CRYP->DR = *(uint32_t*)(b0addr); + b0addr+=4; + CRYP->DR = *(uint32_t*)(b0addr); + b0addr+=4; + CRYP->DR = *(uint32_t*)(b0addr); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /***************************** Header phase *****************************/ + if(headersize != 0) + { + /* Select header phase */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_HEADER); + + /* Enable Crypto processor */ + __HAL_CRYP_ENABLE(); + + for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_IFEM)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /* Write the header block in the IN FIFO */ + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Save formatted counter into the scratch buffer pScratch */ + for(loopcounter = 0; (loopcounter < 16); loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = ctr[loopcounter]; + } + /* Reset bit 0 */ + hcryp->Init.pScratch[15] &= 0xfe; + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + if(Size != 0) + { + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI); + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(); + } + else + { + /* Change the CRYP state and phase */ + hcryp->State = HAL_CRYP_STATE_READY; + } + + /* Return function status */ + return HAL_OK; + } + else if (__HAL_CRYP_GET_IT(CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + CRYP->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + CRYP->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + CRYP->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + CRYP->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(CRYP_IT_INI); + /* Call Input transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if (__HAL_CRYP_GET_IT(CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = CRYP->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = CRYP->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = CRYP->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = CRYP->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES GCM decryption mode using IT. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the cyphertext buffer, must be a multiple of 16 + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Get the buffer addresses and sizes */ + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES GCM decryption mode */ + __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_GCM_DECRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(); + + /* Enable CRYP to start the init phase */ + __HAL_CRYP_ENABLE(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + + /* Set the header phase */ + if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK) + { + return HAL_TIMEOUT; + } + /* Disable the CRYP peripheral */ + __HAL_CRYP_DISABLE(); + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + if(Size != 0) + { + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI); + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(); + } + else + { + /* Process Locked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state and phase */ + hcryp->State = HAL_CRYP_STATE_READY; + } + + /* Return function status */ + return HAL_OK; + } + else if (__HAL_CRYP_GET_IT(CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + CRYP->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + CRYP->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + CRYP->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + CRYP->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if (__HAL_CRYP_GET_IT(CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = CRYP->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = CRYP->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = CRYP->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = CRYP->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CCM decryption mode using interrupt + * then decrypted pCypherData. The cypher data are available in pPlainData. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + uint32_t tickstart = 0; + uint32_t headersize = hcryp->Init.HeaderSize; + uint32_t headeraddr = (uint32_t)hcryp->Init.Header; + uint32_t loopcounter = 0; + uint32_t bufferidx = 0; + uint8_t blockb0[16] = {0};/* Block B0 */ + uint8_t ctr[16] = {0}; /* Counter */ + uint32_t b0addr = (uint32_t)blockb0; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /************************ Formatting the header block *******************/ + if(headersize != 0) + { + /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */ + if(headersize < 65280) + { + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF); + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF); + headersize += 2; + } + else + { + /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */ + hcryp->Init.pScratch[bufferidx++] = 0xFF; + hcryp->Init.pScratch[bufferidx++] = 0xFE; + hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff; + headersize += 6; + } + /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */ + for(loopcounter = 0; loopcounter < headersize; loopcounter++) + { + hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter]; + } + /* Check if the header size is modulo 16 */ + if ((headersize % 16) != 0) + { + /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */ + for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = 0; + } + /* Set the header size to modulo 16 */ + headersize = ((headersize/16) + 1) * 16; + } + /* Set the pointer headeraddr to hcryp->Init.pScratch */ + headeraddr = (uint32_t)hcryp->Init.pScratch; + } + /*********************** Formatting the block B0 ************************/ + if(headersize != 0) + { + blockb0[0] = 0x40; + } + /* Flags byte */ + /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */ + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3); + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07); + + for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++) + { + blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter]; + } + for ( ; loopcounter < 13; loopcounter++) + { + blockb0[loopcounter+1] = 0; + } + + blockb0[14] = (Size >> 8); + blockb0[15] = (Size & 0xFF); + + /************************* Formatting the initial counter ***************/ + /* Byte 0: + Bits 7 and 6 are reserved and shall be set to 0 + Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter + blocks are distinct from B0 + Bits 0, 1, and 2 contain the same encoding of q as in B0 + */ + ctr[0] = blockb0[0] & 0x07; + /* byte 1 to NonceSize is the IV (Nonce) */ + for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++) + { + ctr[loopcounter] = blockb0[loopcounter]; + } + /* Set the LSB to 1 */ + ctr[15] |= 0x01; + + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CCM mode */ + __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CCM_DECRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, ctr, hcryp->Init.KeySize); + + /* Select init phase */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_INIT); + + b0addr = (uint32_t)blockb0; + /* Write the blockb0 block in the IN FIFO */ + CRYP->DR = *(uint32_t*)(b0addr); + b0addr+=4; + CRYP->DR = *(uint32_t*)(b0addr); + b0addr+=4; + CRYP->DR = *(uint32_t*)(b0addr); + b0addr+=4; + CRYP->DR = *(uint32_t*)(b0addr); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /***************************** Header phase *****************************/ + if(headersize != 0) + { + /* Select header phase */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_HEADER); + + /* Enable Crypto processor */ + __HAL_CRYP_ENABLE(); + + for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_IFEM)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /* Write the header block in the IN FIFO */ + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Save formatted counter into the scratch buffer pScratch */ + for(loopcounter = 0; (loopcounter < 16); loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = ctr[loopcounter]; + } + /* Reset bit 0 */ + hcryp->Init.pScratch[15] &= 0xfe; + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(); + + /* Return function status */ + return HAL_OK; + } + else if (__HAL_CRYP_GET_IT(CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + CRYP->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + CRYP->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + CRYP->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + CRYP->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if (__HAL_CRYP_GET_IT(CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = CRYP->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = CRYP->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = CRYP->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = CRYP->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES GCM encryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pPlainData; + outputaddr = (uint32_t)pCypherData; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES GCM mode */ + __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(); + + /* Enable CRYP to start the init phase */ + __HAL_CRYP_ENABLE(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(); + + /* Set the header phase */ + if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK) + { + return HAL_TIMEOUT; + } + /* Disable the CRYP peripheral */ + __HAL_CRYP_DISABLE(); + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Set the input and output addresses and start DMA transfer */ + CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Unlock process */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in AES CCM encryption mode using interrupt. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + uint32_t headersize; + uint32_t headeraddr; + uint32_t loopcounter = 0; + uint32_t bufferidx = 0; + uint8_t blockb0[16] = {0};/* Block B0 */ + uint8_t ctr[16] = {0}; /* Counter */ + uint32_t b0addr = (uint32_t)blockb0; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pPlainData; + outputaddr = (uint32_t)pCypherData; + + headersize = hcryp->Init.HeaderSize; + headeraddr = (uint32_t)hcryp->Init.Header; + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /************************ Formatting the header block *******************/ + if(headersize != 0) + { + /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */ + if(headersize < 65280) + { + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF); + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF); + headersize += 2; + } + else + { + /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */ + hcryp->Init.pScratch[bufferidx++] = 0xFF; + hcryp->Init.pScratch[bufferidx++] = 0xFE; + hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff; + headersize += 6; + } + /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */ + for(loopcounter = 0; loopcounter < headersize; loopcounter++) + { + hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter]; + } + /* Check if the header size is modulo 16 */ + if ((headersize % 16) != 0) + { + /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */ + for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = 0; + } + /* Set the header size to modulo 16 */ + headersize = ((headersize/16) + 1) * 16; + } + /* Set the pointer headeraddr to hcryp->Init.pScratch */ + headeraddr = (uint32_t)hcryp->Init.pScratch; + } + /*********************** Formatting the block B0 ************************/ + if(headersize != 0) + { + blockb0[0] = 0x40; + } + /* Flags byte */ + /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */ + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3); + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07); + + for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++) + { + blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter]; + } + for ( ; loopcounter < 13; loopcounter++) + { + blockb0[loopcounter+1] = 0; + } + + blockb0[14] = (Size >> 8); + blockb0[15] = (Size & 0xFF); + + /************************* Formatting the initial counter ***************/ + /* Byte 0: + Bits 7 and 6 are reserved and shall be set to 0 + Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter + blocks are distinct from B0 + Bits 0, 1, and 2 contain the same encoding of q as in B0 + */ + ctr[0] = blockb0[0] & 0x07; + /* byte 1 to NonceSize is the IV (Nonce) */ + for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++) + { + ctr[loopcounter] = blockb0[loopcounter]; + } + /* Set the LSB to 1 */ + ctr[15] |= 0x01; + + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CCM mode */ + __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, ctr, CRYP_KEYSIZE_128B); + + /* Select init phase */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_INIT); + + b0addr = (uint32_t)blockb0; + /* Write the blockb0 block in the IN FIFO */ + CRYP->DR = *(uint32_t*)(b0addr); + b0addr+=4; + CRYP->DR = *(uint32_t*)(b0addr); + b0addr+=4; + CRYP->DR = *(uint32_t*)(b0addr); + b0addr+=4; + CRYP->DR = *(uint32_t*)(b0addr); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /***************************** Header phase *****************************/ + if(headersize != 0) + { + /* Select header phase */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_HEADER); + + /* Enable Crypto processor */ + __HAL_CRYP_ENABLE(); + + for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_IFEM)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /* Write the header block in the IN FIFO */ + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Save formatted counter into the scratch buffer pScratch */ + for(loopcounter = 0; (loopcounter < 16); loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = ctr[loopcounter]; + } + /* Reset bit 0 */ + hcryp->Init.pScratch[15] &= 0xfe; + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Set the input and output addresses and start DMA transfer */ + CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Unlock process */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in AES GCM decryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer. + * @param Size: Length of the cyphertext buffer, must be a multiple of 16 + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pCypherData; + outputaddr = (uint32_t)pPlainData; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES GCM decryption mode */ + __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_GCM_DECRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Enable CRYP to start the init phase */ + __HAL_CRYP_ENABLE(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + + /* Set the header phase */ + if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK) + { + return HAL_TIMEOUT; + } + /* Disable the CRYP peripheral */ + __HAL_CRYP_DISABLE(); + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Set the input and output addresses and start DMA transfer */ + CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Unlock process */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in AES CCM decryption mode using DMA + * then decrypted pCypherData. The cypher data are available in pPlainData. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + uint32_t headersize; + uint32_t headeraddr; + uint32_t loopcounter = 0; + uint32_t bufferidx = 0; + uint8_t blockb0[16] = {0};/* Block B0 */ + uint8_t ctr[16] = {0}; /* Counter */ + uint32_t b0addr = (uint32_t)blockb0; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pCypherData; + outputaddr = (uint32_t)pPlainData; + + headersize = hcryp->Init.HeaderSize; + headeraddr = (uint32_t)hcryp->Init.Header; + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /************************ Formatting the header block *******************/ + if(headersize != 0) + { + /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */ + if(headersize < 65280) + { + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF); + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF); + headersize += 2; + } + else + { + /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */ + hcryp->Init.pScratch[bufferidx++] = 0xFF; + hcryp->Init.pScratch[bufferidx++] = 0xFE; + hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff; + headersize += 6; + } + /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */ + for(loopcounter = 0; loopcounter < headersize; loopcounter++) + { + hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter]; + } + /* Check if the header size is modulo 16 */ + if ((headersize % 16) != 0) + { + /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */ + for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = 0; + } + /* Set the header size to modulo 16 */ + headersize = ((headersize/16) + 1) * 16; + } + /* Set the pointer headeraddr to hcryp->Init.pScratch */ + headeraddr = (uint32_t)hcryp->Init.pScratch; + } + /*********************** Formatting the block B0 ************************/ + if(headersize != 0) + { + blockb0[0] = 0x40; + } + /* Flags byte */ + /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */ + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3); + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07); + + for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++) + { + blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter]; + } + for ( ; loopcounter < 13; loopcounter++) + { + blockb0[loopcounter+1] = 0; + } + + blockb0[14] = (Size >> 8); + blockb0[15] = (Size & 0xFF); + + /************************* Formatting the initial counter ***************/ + /* Byte 0: + Bits 7 and 6 are reserved and shall be set to 0 + Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter + blocks are distinct from B0 + Bits 0, 1, and 2 contain the same encoding of q as in B0 + */ + ctr[0] = blockb0[0] & 0x07; + /* byte 1 to NonceSize is the IV (Nonce) */ + for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++) + { + ctr[loopcounter] = blockb0[loopcounter]; + } + /* Set the LSB to 1 */ + ctr[15] |= 0x01; + + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CCM mode */ + __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CCM_DECRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, ctr, CRYP_KEYSIZE_128B); + + /* Select init phase */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_INIT); + + b0addr = (uint32_t)blockb0; + /* Write the blockb0 block in the IN FIFO */ + CRYP->DR = *(uint32_t*)(b0addr); + b0addr+=4; + CRYP->DR = *(uint32_t*)(b0addr); + b0addr+=4; + CRYP->DR = *(uint32_t*)(b0addr); + b0addr+=4; + CRYP->DR = *(uint32_t*)(b0addr); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + + } + } + /***************************** Header phase *****************************/ + if(headersize != 0) + { + /* Select header phase */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_HEADER); + + /* Enable Crypto processor */ + __HAL_CRYP_ENABLE(); + + for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_IFEM)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /* Write the header block in the IN FIFO */ + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Save formatted counter into the scratch buffer pScratch */ + for(loopcounter = 0; (loopcounter < 16); loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = ctr[loopcounter]; + } + /* Reset bit 0 */ + hcryp->Init.pScratch[15] &= 0xfe; + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + /* Set the input and output addresses and start DMA transfer */ + CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Unlock process */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief This function handles CRYP interrupt request. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval None + */ +void HAL_CRYPEx_GCMCCM_IRQHandler(CRYP_HandleTypeDef *hcryp) +{ + switch(CRYP->CR & CRYP_CR_ALGOMODE_DIRECTION) + { + case CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT: + HAL_CRYPEx_AESGCM_Encrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_AES_GCM_DECRYPT: + HAL_CRYPEx_AESGCM_Decrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT: + HAL_CRYPEx_AESCCM_Encrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_AES_CCM_DECRYPT: + HAL_CRYPEx_AESCCM_Decrypt_IT(hcryp, NULL, 0, NULL); + break; + + default: + break; + } +} + +/** + * @} + */ + +/** + * @brief DMA CRYP Input Data process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void CRYPEx_GCMCCM_DMAInCplt(DMA_HandleTypeDef *hdma) +{ + CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Disable the DMA transfer for input Fifo request by resetting the DIEN bit + in the DMACR register */ + CRYP->DMACR &= (uint32_t)(~CRYP_DMACR_DIEN); + + /* Call input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); +} + +/** + * @brief DMA CRYP Output Data process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void CRYPEx_GCMCCM_DMAOutCplt(DMA_HandleTypeDef *hdma) +{ + CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Disable the DMA transfer for output Fifo request by resetting the DOEN bit + in the DMACR register */ + CRYP->DMACR &= (uint32_t)(~CRYP_DMACR_DOEN); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_DISABLE(); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Call output data transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); +} + +/** + * @brief DMA CRYP communication error callback. + * @param hdma: DMA handle + * @retval None + */ +static void CRYPEx_GCMCCM_DMAError(DMA_HandleTypeDef *hdma) +{ + CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hcryp->State= HAL_CRYP_STATE_READY; + HAL_CRYP_ErrorCallback(hcryp); +} + +/** + * @brief Writes the Key in Key registers. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Key: Pointer to Key buffer + * @param KeySize: Size of Key + * @retval None + */ +static void CRYPEx_GCMCCM_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize) +{ + uint32_t keyaddr = (uint32_t)Key; + + switch(KeySize) + { + case CRYP_KEYSIZE_256B: + /* Key Initialisation */ + CRYP->K0LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + CRYP->K0RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + CRYP->K1LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + CRYP->K1RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + CRYP->K2LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + CRYP->K2RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + CRYP->K3LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + CRYP->K3RR = __REV(*(uint32_t*)(keyaddr)); + break; + case CRYP_KEYSIZE_192B: + CRYP->K1LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + CRYP->K1RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + CRYP->K2LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + CRYP->K2RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + CRYP->K3LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + CRYP->K3RR = __REV(*(uint32_t*)(keyaddr)); + break; + case CRYP_KEYSIZE_128B: + CRYP->K2LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + CRYP->K2RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + CRYP->K3LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + CRYP->K3RR = __REV(*(uint32_t*)(keyaddr)); + break; + default: + break; + } +} + +/** + * @brief Writes the InitVector/InitCounter in IV registers. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param InitVector: Pointer to InitVector/InitCounter buffer + * @param IVSize: Size of the InitVector/InitCounter + * @retval None + */ +static void CRYPEx_GCMCCM_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector, uint32_t IVSize) +{ + uint32_t ivaddr = (uint32_t)InitVector; + + switch(IVSize) + { + case CRYP_KEYSIZE_128B: + CRYP->IV0LR = __REV(*(uint32_t*)(ivaddr)); + ivaddr+=4; + CRYP->IV0RR = __REV(*(uint32_t*)(ivaddr)); + ivaddr+=4; + CRYP->IV1LR = __REV(*(uint32_t*)(ivaddr)); + ivaddr+=4; + CRYP->IV1RR = __REV(*(uint32_t*)(ivaddr)); + break; + /* Whatever key size 192 or 256, Init vector is written in IV0LR and IV0RR */ + case CRYP_KEYSIZE_192B: + CRYP->IV0LR = __REV(*(uint32_t*)(ivaddr)); + ivaddr+=4; + CRYP->IV0RR = __REV(*(uint32_t*)(ivaddr)); + break; + case CRYP_KEYSIZE_256B: + CRYP->IV0LR = __REV(*(uint32_t*)(ivaddr)); + ivaddr+=4; + CRYP->IV0RR = __REV(*(uint32_t*)(ivaddr)); + break; + default: + break; + } +} + +/** + * @brief Process Data: Writes Input data in polling mode and read the Output data. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Input: Pointer to the Input buffer. + * @param Ilength: Length of the Input buffer, must be a multiple of 16 + * @param Output: Pointer to the returned buffer + * @param Timeout: Timeout value + * @retval None + */ +static HAL_StatusTypeDef CRYPEx_GCMCCM_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t *Input, uint16_t Ilength, uint8_t *Output, uint32_t Timeout) +{ + uint32_t tickstart = 0; + uint32_t i = 0; + uint32_t inputaddr = (uint32_t)Input; + uint32_t outputaddr = (uint32_t)Output; + + for(i=0; (i < Ilength); i+=16) + { + /* Write the Input block in the IN FIFO */ + CRYP->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + CRYP->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + CRYP->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + CRYP->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_OFNE)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Read the Output block from the OUT FIFO */ + *(uint32_t*)(outputaddr) = CRYP->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = CRYP->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = CRYP->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = CRYP->DOUT; + outputaddr+=4; + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Sets the header phase + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Input: Pointer to the Input buffer. + * @param Ilength: Length of the Input buffer, must be a multiple of 16 + * @param Timeout: Timeout value + * @retval None + */ +static HAL_StatusTypeDef CRYPEx_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint32_t Timeout) +{ + uint32_t tickstart = 0; + uint32_t loopcounter = 0; + uint32_t headeraddr = (uint32_t)Input; + + /***************************** Header phase *********************************/ + if(hcryp->Init.HeaderSize != 0) + { + /* Select header phase */ + __HAL_CRYP_SET_PHASE(CRYP_PHASE_HEADER); + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(); + + for(loopcounter = 0; (loopcounter < hcryp->Init.HeaderSize); loopcounter+=16) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_IFEM)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Write the Input block in the IN FIFO */ + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + CRYP->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + } + + /* Wait until the complete message has been processed */ + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Sets the DMA configuration and start the DMA transfert. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param inputaddr: Address of the Input buffer + * @param Size: Size of the Input buffer, must be a multiple of 16 + * @param outputaddr: Address of the Output buffer + * @retval None + */ +static void CRYPEx_GCMCCM_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr) +{ + /* Set the CRYP DMA transfer complete callback */ + hcryp->hdmain->XferCpltCallback = CRYPEx_GCMCCM_DMAInCplt; + /* Set the DMA error callback */ + hcryp->hdmain->XferErrorCallback = CRYPEx_GCMCCM_DMAError; + + /* Set the CRYP DMA transfer complete callback */ + hcryp->hdmaout->XferCpltCallback = CRYPEx_GCMCCM_DMAOutCplt; + /* Set the DMA error callback */ + hcryp->hdmaout->XferErrorCallback = CRYPEx_GCMCCM_DMAError; + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(); + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&CRYP->DR, Size/4); + + /* Enable In DMA request */ + CRYP->DMACR = CRYP_DMACR_DIEN; + + /* Enable the DMA Out DMA Stream */ + HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&CRYP->DOUT, outputaddr, Size/4); + + /* Enable Out DMA request */ + CRYP->DMACR |= CRYP_DMACR_DOEN; +} + +/** + * @} + */ +#endif /* STM32F437xx || STM32F439xx */ + +#endif /* HAL_CRYP_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ -- cgit v1.2.3