/* * hash_tester.c * -------------- * This program sends several commands to the coretest_hashes subsystem * in order to verify the SHA-1, SHA-256 and SHA-512/x hash function * cores. * * Note: This version of the program talks to the FPGA over an I2C bus. * * The single and dual block test cases are taken from the * NIST KAT document: * http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/SHA_All.pdf * * * Authors: Joachim Strömbergson, Paul Selkirk * Copyright (c) 2014, SUNET * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include /* I2C configuration */ #define I2C_dev "/dev/i2c-2" #define I2C_addr 0x0f /* command codes */ #define SOC 0x55 #define EOC 0xaa #define READ_CMD 0x10 #define WRITE_CMD 0x11 #define RESET_CMD 0x01 /* response codes */ #define SOR 0xaa #define EOR 0x55 #define READ_OK 0x7f #define WRITE_OK 0x7e #define RESET_OK 0x7d #define UNKNOWN 0xfe #define ERROR 0xfd /* addresses and codes common to all hash cores */ #define ADDR_NAME0 0x00 #define ADDR_NAME1 0x01 #define ADDR_VERSION 0x02 #define ADDR_CTRL 0x08 #define CTRL_INIT_CMD 1 #define CTRL_NEXT_CMD 2 #define ADDR_STATUS 0x09 #define STATUS_READY_BIT 0 #define STATUS_VALID_BIT 1 /* addresses and codes for the specific hash cores */ #define SHA1_ADDR_PREFIX 0x10 #define SHA1_ADDR_BLOCK 0x10 #define SHA1_BLOCK_LEN 16 #define SHA1_ADDR_DIGEST 0x20 #define SHA1_DIGEST_LEN 5 #define SHA256_ADDR_PREFIX 0x20 #define SHA256_ADDR_BLOCK 0x10 #define SHA256_BLOCK_LEN 16 #define SHA256_ADDR_DIGEST 0x20 #define SHA256_DIGEST_LEN 8 #define SHA512_ADDR_PREFIX 0x30 #define SHA512_CTRL_MODE_LOW 2 #define SHA512_CTRL_MODE_HIGH 3 #define SHA512_ADDR_BLOCK 0x10 #define SHA512_BLOCK_LEN 32 #define SHA512_ADDR_DIGEST 0x40 #define SHA512_DIGEST_LEN 16 #define MODE_SHA_512_224 0 #define MODE_SHA_512_256 1 #define MODE_SHA_384 2 #define MODE_SHA_512 3 int i2cfd; int debug = 0; /* SHA-1/SHA-256 One Block Message Sample Input Message: "abc" */ const uint32_t NIST_512_SINGLE[] = { 0x61626380, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000018 }; const uint32_t SHA1_SINGLE_DIGEST[] = { 0xa9993e36, 0x4706816a, 0xba3e2571, 0x7850c26c, 0x9cd0d89d }; const uint32_t SHA256_SINGLE_DIGEST[] = { 0xBA7816BF, 0x8F01CFEA, 0x414140DE, 0x5DAE2223, 0xB00361A3, 0x96177A9C, 0xB410FF61, 0xF20015AD }; /* SHA-1/SHA-256 Two Block Message Sample Input Message: "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" */ const uint32_t NIST_512_DOUBLE0[] = { 0x61626364, 0x62636465, 0x63646566, 0x64656667, 0x65666768, 0x66676869, 0x6768696A, 0x68696A6B, 0x696A6B6C, 0x6A6B6C6D, 0x6B6C6D6E, 0x6C6D6E6F, 0x6D6E6F70, 0x6E6F7071, 0x80000000, 0x00000000 }; const uint32_t NIST_512_DOUBLE1[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000001C0 }; const uint32_t SHA1_DOUBLE_DIGEST[] = { 0x84983E44, 0x1C3BD26E, 0xBAAE4AA1, 0xF95129E5, 0xE54670F1 }; const uint32_t SHA256_DOUBLE_DIGEST[] = { 0x248D6A61, 0xD20638B8, 0xE5C02693, 0x0C3E6039, 0xA33CE459, 0x64FF2167, 0xF6ECEDD4, 0x19DB06C1 }; /* SHA-512 One Block Message Sample Input Message: "abc" */ const uint32_t NIST_1024_SINGLE[] = { 0x61626380, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000018 }; const uint32_t SHA512_224_SINGLE_DIGEST[] = { 0x4634270f, 0x707b6a54, 0xdaae7530, 0x460842e2, 0x0e37ed26, 0x5ceee9a4, 0x3e8924aa }; const uint32_t SHA512_256_SINGLE_DIGEST[] = { 0x53048e26, 0x81941ef9, 0x9b2e29b7, 0x6b4c7dab, 0xe4c2d0c6, 0x34fc6d46, 0xe0e2f131, 0x07e7af23 }; const uint32_t SHA384_SINGLE_DIGEST[] = { 0xcb00753f, 0x45a35e8b, 0xb5a03d69, 0x9ac65007, 0x272c32ab, 0x0eded163, 0x1a8b605a, 0x43ff5bed, 0x8086072b, 0xa1e7cc23, 0x58baeca1, 0x34c825a7 }; const uint32_t SHA512_SINGLE_DIGEST[] = { 0xddaf35a1, 0x93617aba, 0xcc417349, 0xae204131, 0x12e6fa4e, 0x89a97ea2, 0x0a9eeee6, 0x4b55d39a, 0x2192992a, 0x274fc1a8, 0x36ba3c23, 0xa3feebbd, 0x454d4423, 0x643ce80e, 0x2a9ac94f, 0xa54ca49f }; /* SHA-512 Two Block Message Sample Input Message: "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu" */ const uint32_t NIST_1024_DOUBLE0[] = { 0x61626364, 0x65666768, 0x62636465, 0x66676869, 0x63646566, 0x6768696a, 0x64656667, 0x68696a6b, 0x65666768, 0x696a6b6c, 0x66676869, 0x6a6b6c6d, 0x6768696a, 0x6b6c6d6e, 0x68696a6b, 0x6c6d6e6f, 0x696a6b6c, 0x6d6e6f70, 0x6a6b6c6d, 0x6e6f7071, 0x6b6c6d6e, 0x6f707172, 0x6c6d6e6f, 0x70717273, 0x6d6e6f70, 0x71727374, 0x6e6f7071, 0x72737475, 0x80000000, 0x00000000, 0x00000000, 0x00000000 }; const uint32_t NIST_1024_DOUBLE1[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000380 }; const uint32_t SHA512_224_DOUBLE_DIGEST[] = { 0x23fec5bb, 0x94d60b23, 0x30819264, 0x0b0c4533, 0x35d66473, 0x4fe40e72, 0x68674af9 }; const uint32_t SHA512_256_DOUBLE_DIGEST[] = { 0x3928e184, 0xfb8690f8, 0x40da3988, 0x121d31be, 0x65cb9d3e, 0xf83ee614, 0x6feac861, 0xe19b563a }; const uint32_t SHA384_DOUBLE_DIGEST[] = { 0x09330c33, 0xf71147e8, 0x3d192fc7, 0x82cd1b47, 0x53111b17, 0x3b3b05d2, 0x2fa08086, 0xe3b0f712, 0xfcc7c71a, 0x557e2db9, 0x66c3e9fa, 0x91746039 }; const uint32_t SHA512_DOUBLE_DIGEST[] = { 0x8e959b75, 0xdae313da, 0x8cf4f728, 0x14fc143f, 0x8f7779c6, 0xeb9f7fa1, 0x7299aead, 0xb6889018, 0x501d289e, 0x4900f7e4, 0x331b99de, 0xc4b5433a, 0xc7d329ee, 0xb6dd2654, 0x5e96e55b, 0x874be909 }; /* ---------------- I2C low-level code ---------------- */ int i2c_setup(char *dev, int addr) { i2cfd = open(dev, O_RDWR); if (i2cfd < 0) { fprintf(stderr, "Unable to open %s: ", dev); perror(""); i2cfd = 0; return 1; } if (ioctl(i2cfd, I2C_SLAVE, addr) < 0) { fprintf(stderr, "Unable to set I2C slave device 0x%02x: ", addr); perror(""); return 1; } return 0; } int i2c_write(uint8_t *buf, int len) { if (debug) { int i; printf("write ["); for (i = 0; i < len; ++i) printf(" %02x", buf[i]); printf(" ]\n"); } if (write(i2cfd, buf, len) != len) { perror("i2c write failed"); return 1; } return 0; } int i2c_read(uint8_t *b) { /* read() on the i2c device only returns one byte at a time, * and tc_get_resp() needs to parse the response one byte at a time */ if (read(i2cfd, b, 1) != 1) { perror("i2c read failed"); return 1; } return 0; } /* ---------------- test-case low-level code ---------------- */ int tc_send_write_cmd(uint8_t addr0, uint8_t addr1, uint32_t data) { uint8_t buf[9]; buf[0] = SOC; buf[1] = WRITE_CMD; buf[2] = addr0; buf[3] = addr1; buf[4] = (data >> 24) & 0xff; buf[5] = (data >> 16) & 0xff; buf[6] = (data >> 8) & 0xff; buf[7] = data & 0xff; buf[8] = EOC; return i2c_write(buf, sizeof(buf)); } int tc_send_read_cmd(uint8_t addr0, uint8_t addr1) { uint8_t buf[5]; buf[0] = SOC; buf[1] = READ_CMD; buf[2] = addr0; buf[3] = addr1; buf[4] = EOC; return i2c_write(buf, sizeof(buf)); } int tc_get_resp(uint8_t *buf, int len) { int i; for (i = 0; i < len; ++i) { if (i2c_read(&buf[i]) != 0) return 1; if ((i == 0) && (buf[i] != SOR)) { /* we've gotten out of sync, and there's probably nothing we can do */ fprintf(stderr, "response byte 0: expected 0x%02x (SOR), got 0x%02x\n", SOR, buf[0]); return 1; } else if (i == 1) { /* response code */ switch (buf[i]) { case READ_OK: len = 9; break; case WRITE_OK: len = 5; break; case RESET_OK: len = 3; break; case ERROR: case UNKNOWN: len = 4; break; default: /* we've gotten out of sync, and there's probably nothing we can do */ fprintf(stderr, "unknown response code 0x%02x\n", buf[i]); return 1; } } } if (debug) { printf("read ["); for (i = 0; i < len; ++i) printf(" %02x", buf[i]); printf(" ]\n"); } return 0; } int tc_get_expected(uint8_t *expected, int len) { uint8_t buf[9]; int i; if (tc_get_resp(buf, sizeof(buf)) != 0) return 1; for (i = 0; i < len; ++i) { if (buf[i] != expected[i]) { fprintf(stderr, "response byte %d: expected 0x%02x, got 0x%02x\n", i, expected[i], buf[i]); return 1; } } return 0; } int tc_get_write_resp(uint8_t addr0, uint8_t addr1) { uint8_t expected[5]; expected[0] = SOR; expected[1] = WRITE_OK; expected[2] = addr0; expected[3] = addr1; expected[4] = EOR; return tc_get_expected(expected, sizeof(expected)); } int tc_get_read_resp(uint8_t addr0, uint8_t addr1, uint32_t data) { uint8_t expected[9]; expected[0] = SOR; expected[1] = READ_OK; expected[2] = addr0; expected[3] = addr1; expected[4] = (data >> 24) & 0xff; expected[5] = (data >> 16) & 0xff; expected[6] = (data >> 8) & 0xff; expected[7] = data & 0xff; expected[8] = EOR; return tc_get_expected(expected, sizeof(expected)); } int tc_write(uint8_t addr0, uint8_t addr1, uint32_t data) { return (tc_send_write_cmd(addr0, addr1, data) || tc_get_write_resp(addr0, addr1)); } int tc_read(uint8_t addr0, uint8_t addr1, uint32_t data) { return (tc_send_read_cmd(addr0, addr1) || tc_get_read_resp(addr0, addr1, data)); } int tc_init(uint8_t addr0) { return tc_write(addr0, ADDR_CTRL, CTRL_INIT_CMD); } int tc_next(uint8_t addr0) { return tc_write(addr0, ADDR_CTRL, CTRL_NEXT_CMD); } int tc_wait(uint8_t addr0, uint8_t status) { uint8_t buf[9]; do { if (tc_send_read_cmd(addr0, ADDR_STATUS) != 0) return 1; if (tc_get_resp(buf, 9) != 0) return 1; if (buf[1] != READ_OK) return 1; } while ((buf[7] & status) != status); return 0; } int tc_wait_ready(uint8_t addr0) { return tc_wait(addr0, STATUS_READY_BIT); } int tc_wait_valid(uint8_t addr0) { return tc_wait(addr0, STATUS_VALID_BIT); } /* ---------------- SHA-1 test cases ---------------- */ int sha1_read(uint8_t addr, uint32_t data) { return tc_read(SHA1_ADDR_PREFIX, addr, data); } int sha1_write(uint8_t addr, uint32_t data) { return tc_write(SHA1_ADDR_PREFIX, addr, data); } int sha1_init(void) { return tc_init(SHA1_ADDR_PREFIX); } int sha1_next(void) { return tc_next(SHA1_ADDR_PREFIX); } int sha1_wait_ready(void) { return tc_wait_ready(SHA1_ADDR_PREFIX); } int sha1_wait_valid(void) { return tc_wait_valid(SHA1_ADDR_PREFIX); } /* TC1: Read name and version from SHA-1 core. */ int TC1(void) { uint32_t name0 = 0x73686131; /* "sha1" */ uint32_t name1 = 0x20202020; /* " " */ uint32_t version = 0x302e3530; /* "0.50" */ printf("TC1: Reading name, type and version words from SHA-1 core.\n"); return sha1_read(ADDR_NAME0, name0) || sha1_read(ADDR_NAME1, name1) || sha1_read(ADDR_VERSION, version); } /* TC2: SHA-1 Single block message test as specified by NIST. */ int TC2(void) { const uint32_t *block = NIST_512_SINGLE; const uint32_t *expected = SHA1_SINGLE_DIGEST; int i; printf("TC2: Single block message test for SHA-1.\n"); /* Write block to SHA-1. */ for (i = 0; i < SHA1_BLOCK_LEN; ++i) { if (sha1_write(SHA1_ADDR_BLOCK + i, block[i]) != 0) return 1; } /* Start initial block hashing, wait and check status. */ if ((sha1_init() != 0) || (sha1_wait_valid() != 0)) return 1; /* Extract the digest. */ for (i = 0; i < SHA1_DIGEST_LEN; ++i) { if (sha1_read(SHA1_ADDR_DIGEST + i, expected[i]) != 0) return 1; } return 0; } /* TC3: SHA-1 Double block message test as specified by NIST. */ int TC3(void) { const uint32_t *block[2] = { NIST_512_DOUBLE0, NIST_512_DOUBLE1 }; static const uint32_t block0_expected[] = { 0xF4286818, 0xC37B27AE, 0x0408F581, 0x84677148, 0x4A566572 }; const uint32_t *expected = SHA1_DOUBLE_DIGEST; int i; printf("TC3: Double block message test for SHA-1.\n"); /* Write first block to SHA-1. */ for (i = 0; i < SHA1_BLOCK_LEN; ++i) { if (sha1_write(SHA1_ADDR_BLOCK + i, block[0][i]) != 0) return 1; } /* Start initial block hashing, wait and check status. */ if ((sha1_init() != 0) || (sha1_wait_valid() != 0)) return 1; /* Extract the first digest. */ for (i = 0; i < SHA1_DIGEST_LEN; ++i) { if (sha1_read(SHA1_ADDR_DIGEST + i, block0_expected[i]) != 0) return 1; } /* Write second block to SHA-1. */ for (i = 0; i < SHA1_BLOCK_LEN; ++i) { if (sha1_write(SHA1_ADDR_BLOCK + i, block[1][i]) != 0) return 1; } /* Start next block hashing, wait and check status. */ if ((sha1_next() != 0) || (sha1_wait_valid() != 0)) return 1; /* Extract the second digest. */ for (i = 0; i < SHA1_DIGEST_LEN; ++i) { if (sha1_read(SHA1_ADDR_DIGEST + i, expected[i]) != 0) return 1; } return 0; } /* ---------------- SHA-256 test cases ---------------- */ int sha256_read(uint8_t addr, uint32_t data) { return tc_read(SHA256_ADDR_PREFIX, addr, data); } int sha256_write(uint8_t addr, uint32_t data) { return tc_write(SHA256_ADDR_PREFIX, addr, data); } int sha256_init(void) { return tc_init(SHA256_ADDR_PREFIX); } int sha256_next(void) { return tc_next(SHA256_ADDR_PREFIX); } int sha256_wait_ready(void) { return tc_wait_ready(SHA256_ADDR_PREFIX); } int sha256_wait_valid(void) { return tc_wait_valid(SHA256_ADDR_PREFIX); } /* TC4: Read name and version from SHA-256 core. */ int TC4(void) { uint32_t name0 = 0x73686132; /* "sha2" */ uint32_t name1 = 0x2d323536; /* "-256" */ uint32_t version = 0x302e3830; /* "0.80" */ printf("TC4: Reading name, type and version words from SHA-256 core.\n"); return sha256_read(ADDR_NAME0, name0) || sha256_read(ADDR_NAME1, name1) || sha256_read(ADDR_VERSION, version); } /* TC5: SHA-256 Single block message test as specified by NIST. */ int TC5(void) { const uint32_t *block = NIST_512_SINGLE; const uint32_t *expected = SHA256_SINGLE_DIGEST; int i; printf("TC5: Single block message test for SHA-256.\n"); /* Write block to SHA-256. */ for (i = 0; i < SHA256_BLOCK_LEN; ++i) { if (sha256_write(SHA256_ADDR_BLOCK + i, block[i]) != 0) return 1; } /* Start initial block hashing, wait and check status. */ if ((sha256_init() != 0) || (sha256_wait_valid() != 0)) return 1; /* Extract the digest. */ for (i = 0; i < SHA256_DIGEST_LEN; ++i) { if (sha256_read(SHA256_ADDR_DIGEST + i, expected[i]) != 0) return 1; } return 0; } /* TC6: SHA-1 Double block message test as specified by NIST. */ int TC6(void) { const uint32_t *block[2] = { NIST_512_DOUBLE0, NIST_512_DOUBLE1 }; static const uint32_t block0_expected[] = { 0x85E655D6, 0x417A1795, 0x3363376A, 0x624CDE5C, 0x76E09589, 0xCAC5F811, 0xCC4B32C1, 0xF20E533A }; const uint32_t *expected = SHA256_DOUBLE_DIGEST; int i; printf("TC6: Double block message test for SHA-256.\n"); /* Write first block to SHA-256. */ for (i = 0; i < SHA256_BLOCK_LEN; ++i) { if (sha256_write(SHA256_ADDR_BLOCK + i, block[0][i]) != 0) return 1; } /* Start initial block hashing, wait and check status. */ if ((sha256_init() != 0) || (sha256_wait_valid() != 0)) return 1; /* Extract the first digest. */ for (i = 0; i < SHA256_DIGEST_LEN; ++i) { if (sha256_read(SHA256_ADDR_DIGEST + i, block0_expected[i]) != 0) return 1; } /* Write second block to SHA-256. */ for (i = 0; i < SHA256_BLOCK_LEN; ++i) { if (sha256_write(SHA256_ADDR_BLOCK + i, block[1][i]) != 0) return 1; } /* Start next block hashing, wait and check status. */ if ((sha256_next() != 0) || (sha256_wait_valid() != 0)) return 1; /* Extract the second digest. */ for (i = 0; i < SHA256_DIGEST_LEN; ++i) { if (sha256_read(SHA256_ADDR_DIGEST + i, expected[i]) != 0) return 1; } return 0; } /* TC7: SHA-256 Huge message test. */ int TC7(void) { static const uint32_t block[] = { 0xaa55aa55, 0xdeadbeef, 0x55aa55aa, 0xf00ff00f, 0xaa55aa55, 0xdeadbeef, 0x55aa55aa, 0xf00ff00f, 0xaa55aa55, 0xdeadbeef, 0x55aa55aa, 0xf00ff00f, 0xaa55aa55, 0xdeadbeef, 0x55aa55aa, 0xf00ff00f }; /* final digest after 1000 iterations */ static const uint32_t expected[] = { 0x7638f3bc, 0x500dd1a6, 0x586dd4d0, 0x1a1551af, 0xd821d235, 0x2f919e28, 0xd5842fab, 0x03a40f2a }; int i, n = 1000; printf("TC7: Message with %d blocks test for SHA-256.\n", n); /* Write first block to SHA-256. */ for (i = 0; i < SHA256_BLOCK_LEN; ++i) { if (sha256_write( SHA256_ADDR_BLOCK + i, block[i]) != 0) return 1; } /* Start initial block hashing, wait and check status. */ if ((sha256_init() != 0) || (sha256_wait_ready() != 0)) return 1; /* First block done. Do the rest. */ for (i = 1; i < n; ++i) { /* Start next block hashing, wait and check status. */ if ((sha256_next() != 0) || (sha256_wait_ready() != 0)) return 1; } /* XXX valid is probably set at the same time as ready */ if (sha256_wait_valid() != 0) return 1; /* Extract the final digest. */ for (i = 0; i < SHA256_DIGEST_LEN; ++i) { if (sha256_read(SHA256_ADDR_DIGEST + i, expected[i]) != 0) return 1; } return 0; } /* ---------------- SHA-512 test cases ---------------- */ int sha512_read(uint8_t addr, uint32_t data) { return tc_read(SHA512_ADDR_PREFIX, addr, data); } int sha512_write(uint8_t addr, uint32_t data) { return tc_write(SHA512_ADDR_PREFIX, addr, data); } int sha512_init(uint8_t mode) { return tc_write(SHA512_ADDR_PREFIX, ADDR_CTRL, CTRL_INIT_CMD + (mode << SHA512_CTRL_MODE_LOW)); } int sha512_next(uint8_t mode) { return tc_write(SHA512_ADDR_PREFIX, ADDR_CTRL, CTRL_NEXT_CMD + (mode << SHA512_CTRL_MODE_LOW)); } int sha512_wait_ready(void) { return tc_wait_ready(SHA512_ADDR_PREFIX); } int sha512_wait_valid(void) { return tc_wait_valid(SHA512_ADDR_PREFIX); } /* TC8: Read name and version from SHA-512 core. */ int TC8(void) { uint32_t name0 = 0x73686132; /* "sha2" */ uint32_t name1 = 0x2d353132; /* "-512" */ uint32_t version = 0x302e3830; /* "0.80" */ printf("TC8: Reading name, type and version words from SHA-512 core.\n"); return sha512_read(ADDR_NAME0, name0) || sha512_read(ADDR_NAME1, name1) || sha512_read(ADDR_VERSION, version); } /* TC9: SHA-512 Single block message test as specified by NIST. We do this for all modes. */ int tc9(uint8_t mode, const uint32_t *expected, int len) { const uint32_t *block = NIST_1024_SINGLE; int i; /* Write block to SHA-512. */ for (i = 0; i < SHA512_BLOCK_LEN; ++i) { if (sha512_write(SHA512_ADDR_BLOCK + i, block[i]) != 0) return 1; } /* Start initial block hashing, wait and check status. */ if ((sha512_init(mode) != 0) || (sha512_wait_valid() != 0)) return 1; /* Extract the digest. */ for (i = 0; i < len/4; ++i) { if (sha512_read(SHA512_ADDR_DIGEST + i, expected[i]) != 0) return 1; } return 0; } int TC9(void) { printf("TC9-1: Single block message test for SHA-512/224.\n"); if (tc9(MODE_SHA_512_224, SHA512_224_SINGLE_DIGEST, sizeof(SHA512_224_SINGLE_DIGEST)) != 0) return 1; printf("TC9-2: Single block message test for SHA-512/256.\n"); if (tc9(MODE_SHA_512_256, SHA512_256_SINGLE_DIGEST, sizeof(SHA512_256_SINGLE_DIGEST)) != 0) return 1; printf("TC9-3: Single block message test for SHA-384.\n"); if (tc9(MODE_SHA_384, SHA384_SINGLE_DIGEST, sizeof(SHA384_SINGLE_DIGEST)) != 0) return 1; printf("TC9-4: Single block message test for SHA-512.\n"); if (tc9(MODE_SHA_512, SHA512_SINGLE_DIGEST, sizeof(SHA512_SINGLE_DIGEST)) != 0) return 1; return 0; } /* TC10: SHA-512 Double block message test as specified by NIST. We do this for all modes. */ int tc10(uint8_t mode, const uint32_t *expected, int len) { const uint32_t *block[2] = { NIST_1024_DOUBLE0, NIST_1024_DOUBLE1 }; int i; /* Write first block to SHA-512. */ for (i = 0; i < SHA512_BLOCK_LEN; ++i) { if (sha512_write(SHA512_ADDR_BLOCK + i, block[0][i]) != 0) return 1; } /* Start initial block hashing, wait and check status. */ if ((sha512_init(mode) != 0) || (sha512_wait_ready() != 0)) return 1; /* Write second block to SHA-512. */ for (i = 0; i < SHA512_BLOCK_LEN; ++i) { if (sha512_write(SHA512_ADDR_BLOCK + i, block[1][i]) != 0) return 1; } /* Start next block hashing, wait and check status. */ if ((sha512_next(mode) != 0) || (sha512_wait_valid() != 0)) return 1; /* Extract the digest. */ for (i = 0; i < len/4; ++i) { if (sha512_read(SHA512_ADDR_DIGEST + i, expected[i]) != 0) return 1; } return 0; } int TC10(void) { printf("TC10-1: Double block message test for SHA-512/224.\n"); if (tc10(MODE_SHA_512_224, SHA512_224_DOUBLE_DIGEST, sizeof(SHA512_224_DOUBLE_DIGEST)) != 0) return 1; printf("TC10-2: Double block message test for SHA-512/256.\n"); if (tc10(MODE_SHA_512_256, SHA512_256_DOUBLE_DIGEST, sizeof(SHA512_256_DOUBLE_DIGEST)) != 0) return 1; printf("TC10-3: Double block message test for SHA-384.\n"); if (tc10(MODE_SHA_384, SHA384_DOUBLE_DIGEST, sizeof(SHA384_DOUBLE_DIGEST)) != 0) return 1; printf("TC10-4: Double block message test for SHA-512.\n"); if (tc10(MODE_SHA_512, SHA512_DOUBLE_DIGEST, sizeof(SHA512_DOUBLE_DIGEST)) != 0) return 1; return 0; } /* ---------------- main ---------------- */ int main(int argc, char *argv[]) { typedef int (*tcfp)(void); tcfp all_tests[] = { TC1, TC2, TC3, TC4, TC5, TC6, TC7, TC8, TC9, TC10 }; tcfp sha1_tests[] = { TC1, TC2, TC3 }; tcfp sha256_tests[] = { TC4, TC5, TC6, TC7 }; tcfp sha512_tests[] = { TC8, TC9, TC10 }; char *usage = "Usage: %s [-d] [-i I2C_device] [-a I2C_addr] tc...\n"; char *dev = I2C_dev; int addr = I2C_addr; int i, j, opt; while ((opt = getopt(argc, argv, "h?di:a:")) != -1) { switch (opt) { case 'h': case '?': printf(usage, argv[0]); return 0; case 'd': debug = 1; break; case 'i': dev = optarg; break; case 'a': addr = (int)strtol(optarg, NULL, 0); if ((addr < 0x03) || (addr > 0x77)) { fprintf(stderr, "addr must be between 0x03 and 0x77\n"); return 1; } break; default: fprintf(stderr, usage, argv[0]); return 1; } } if (i2c_setup(dev, addr) != 0) return 1; /* no args == run all tests */ if (optind >= argc) { for (j = 0; j < sizeof(all_tests)/sizeof(all_tests[0]); ++j) if (all_tests[j]() != 0) return 1; return 0; } for (i = optind; i < argc; ++i) { if (strcmp(argv[i], "sha1") == 0) { for (j = 0; j < sizeof(sha1_tests)/sizeof(sha1_tests[0]); ++j) if (sha1_tests[j]() != 0) return 1; } else if (strcmp(argv[i], "sha256") == 0) { for (j = 0; j < sizeof(sha256_tests)/sizeof(sha256_tests[0]); ++j) if (sha256_tests[j]() != 0) return 1; } else if (strcmp(argv[i], "sha512") == 0) { for (j = 0; j < sizeof(sha512_tests)/sizeof(sha512_tests[0]); ++j) if (sha512_tests[j]() != 0) return 1; } else if (strcmp(argv[i], "all") == 0) { for (j = 0; j < sizeof(all_tests)/sizeof(all_tests[0]); ++j) if (all_tests[j]() != 0) return 1; } else if (isdigit(argv[i][0]) && (((j = atoi(argv[i])) > 0) && (j <= sizeof(all_tests)/sizeof(all_tests[0])))) { if (all_tests[j - 1]() != 0) return 1; } else { fprintf(stderr, "unknown test case %s\n", argv[i]); return 1; } } return 0; }