aboutsummaryrefslogtreecommitdiff
path: root/sw/test-sha256/novena-eim.c
blob: 1effff147720458b5385e0ba3b32db29baf4009b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
//------------------------------------------------------------------------------
// novena-eim.c
//------------------------------------------------------------------------------


//------------------------------------------------------------------------------
// Headers
//------------------------------------------------------------------------------
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <stdint.h>
#include <sys/mman.h>
#include "novena-eim.h"


//------------------------------------------------------------------------------
// Variables
//------------------------------------------------------------------------------
static long		mem_page_size	= 0;
static int		mem_dev_fd		= -1;
static void *	mem_map_ptr		= MAP_FAILED;
static off_t	mem_base_addr	= 0;


//------------------------------------------------------------------------------
int eim_setup()
//------------------------------------------------------------------------------
{
		// register cleanup function
	int ok = atexit(_eim_cleanup);
	if (ok != 0)
	{	printf("ERROR: atexit() failed.\n");
		return -1;
	}
	
		// determine memory page size to use in mmap()
	mem_page_size = sysconf(_SC_PAGESIZE);
	if (mem_page_size < 1)
	{	printf("ERROR: sysconf(_SC_PAGESIZE) == %ld\n", mem_page_size);
		return -1;
	}
	
		// try to open memory device
	mem_dev_fd = open(MEMORY_DEVICE, O_RDWR | O_SYNC);
	if (mem_dev_fd == -1)
	{	printf("ERROR: open(%s) failed.\n", MEMORY_DEVICE);
		return -1;
	}

		/* Several blocks in the CPU have common pins, we can use I/O MUX Controller
		 * to configure what block will actually use I/O pins. We wait EIM module to be able
		 * to communicate with the on-board FPGA. Let's configure IOMUXC accordingly.
		 */
	_eim_setup_iomuxc();
	
		/* We need to enable clocking of EIM block in order to be able to use it.
		 * Let's configure Clock Controller Module accordingly.
		 */
	_eim_setup_ccm();
	
		/* We need to properly configure EIM mode and all the corresponding parameters.
		 * That's a lot of code, let's do it now.
		 */
	_eim_setup_eim();
	
	
		// done
	return 1;
}


//------------------------------------------------------------------------------
void _eim_cleanup()
//------------------------------------------------------------------------------
{
		// unmap memory if needed
	if (mem_map_ptr != MAP_FAILED)
	{	int ok = munmap(mem_map_ptr, mem_page_size);
		if (ok != 0) printf("WARNING: munmap() failed.\n");
	}

		// close memory device if needed
	if (mem_dev_fd != -1)
	{	int ok = close(mem_dev_fd);
		if (ok != 0) printf("WARNING: close() failed.\n");
	}
}


//------------------------------------------------------------------------------
void _eim_setup_iomuxc()
//------------------------------------------------------------------------------
{
		// create structures
	struct IOMUXC_SW_MUX_CTL_PAD_EIM	reg_mux;				// mux control register
	struct IOMUXC_SW_PAD_CTL_PAD_EIM	reg_pad;				// pad control register
	
		// setup mux control register
	reg_mux.mux_mode		= IOMUXC_MUX_MODE_ALT0;				// ALT0 mode must be used for EIM
	reg_mux.sion			= 0;								// forced input not needed
	reg_mux.reserved_3		= 0;								// must be 0
	reg_mux.reserved_31_5	= 0;								// must be 0

		// setup pad control register
	reg_pad.sre				= IOMUXC_PAD_CTL_SRE_FAST;			// fast slew rate
	reg_pad.dse				= IOMUXC_PAD_CTL_DSE_33_OHM;		// highest drive strength
	reg_pad.speed			= IOMUXC_PAD_CTL_SPEED_MEDIUM_10;	// medium speed
	reg_pad.ode				= IOMUXC_PAD_CTL_ODE_DISABLED;		// open drain not needed
	reg_pad.pke				= IOMUXC_PAD_CTL_PKE_DISABLED;		// neither pull nor keeper are needed
	reg_pad.pue				= IOMUXC_PAD_CTL_PUE_PULL;			// doesn't matter actually, because PKE is disabled
	reg_pad.pus				= IOMUXC_PAD_CTL_PUS_100K_OHM_PU;	// doesn't matter actually, because PKE is disabled
	reg_pad.hys				= IOMUXC_PAD_CTL_HYS_DISABLED;		// use CMOS, not Schmitt trigger input
	reg_pad.reserved_2_1	= 0;								// must be 0
	reg_pad.reserved_10_8	= 0;								// must be 0
	reg_pad.reserved_31_17	= 0;								// must be 0

		// all the pins must be configured to use the same ALT0 mode
	eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_CS0_B,	(uint32_t *)&reg_mux);
	eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_OE_B,	(uint32_t *)&reg_mux);
	eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_RW,		(uint32_t *)&reg_mux);
	eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_LBA_B,	(uint32_t *)&reg_mux);
	eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD00,	(uint32_t *)&reg_mux);
	eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD01,	(uint32_t *)&reg_mux);
	eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD02,	(uint32_t *)&reg_mux);
	eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD03,	(uint32_t *)&reg_mux);
	eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD04,	(uint32_t *)&reg_mux);
	eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD05,	(uint32_t *)&reg_mux);
	eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD06,	(uint32_t *)&reg_mux);
	eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD07,	(uint32_t *)&reg_mux);
	eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD08,	(uint32_t *)&reg_mux);
	eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD09,	(uint32_t *)&reg_mux);
	eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD10,	(uint32_t *)&reg_mux);
	eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD11,	(uint32_t *)&reg_mux);
	eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD12,	(uint32_t *)&reg_mux);
	eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD13,	(uint32_t *)&reg_mux);
	eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD14,	(uint32_t *)&reg_mux);
	eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD15,	(uint32_t *)&reg_mux);
	eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_WAIT_B,	(uint32_t *)&reg_mux);
	eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_BCLK,	(uint32_t *)&reg_mux);

		// we need to configure all the I/O pads too
	eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_CS0_B,	(uint32_t *)&reg_pad);
	eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_OE_B,	(uint32_t *)&reg_pad);
	eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_RW,		(uint32_t *)&reg_pad);
	eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_LBA_B,	(uint32_t *)&reg_pad);
	eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD00,	(uint32_t *)&reg_pad);
	eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD01,	(uint32_t *)&reg_pad);
	eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD02,	(uint32_t *)&reg_pad);
	eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD03,	(uint32_t *)&reg_pad);
	eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD04,	(uint32_t *)&reg_pad);
	eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD05,	(uint32_t *)&reg_pad);
	eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD06,	(uint32_t *)&reg_pad);
	eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD07,	(uint32_t *)&reg_pad);
	eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD08,	(uint32_t *)&reg_pad);
	eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD09,	(uint32_t *)&reg_pad);
	eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD10,	(uint32_t *)&reg_pad);
	eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD11,	(uint32_t *)&reg_pad);
	eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD12,	(uint32_t *)&reg_pad);
	eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD13,	(uint32_t *)&reg_pad);
	eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD14,	(uint32_t *)&reg_pad);
	eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD15,	(uint32_t *)&reg_pad);
	eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_WAIT_B,	(uint32_t *)&reg_pad);
	eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_BCLK,	(uint32_t *)&reg_pad);
}


//------------------------------------------------------------------------------
void _eim_setup_ccm()
//------------------------------------------------------------------------------
{
		// create structure
	struct CCM_CCGR6 ccm_ccgr6;
	
		// read register
	eim_read_32(CCM_CCGR6, (uint32_t *)&ccm_ccgr6);
	
		// modify register
	ccm_ccgr6.cg0_usboh3		= CCM_CGR_ON_EXCEPT_STOP;
	ccm_ccgr6.cg1_usdhc1		= CCM_CGR_OFF;
	ccm_ccgr6.cg2_usdhc2		= CCM_CGR_ON_EXCEPT_STOP;
	ccm_ccgr6.cg3_usdhc3		= CCM_CGR_ON_EXCEPT_STOP;
	
	ccm_ccgr6.cg3_usdhc4		= CCM_CGR_OFF;
	ccm_ccgr6.cg5_eim_slow		= CCM_CGR_ON_EXCEPT_STOP;
	ccm_ccgr6.cg6_vdoaxiclk		= CCM_CGR_OFF;
	ccm_ccgr6.cg7_vpu			= CCM_CGR_OFF;
	
	ccm_ccgr6.cg8_reserved		= 0;
	ccm_ccgr6.cg9_reserved		= 0;
	ccm_ccgr6.cg10_reserved		= 0;
	ccm_ccgr6.cg11_reserved		= 0;
	ccm_ccgr6.cg12_reserved		= 0;
	ccm_ccgr6.cg13_reserved		= 0;
	ccm_ccgr6.cg14_reserved		= 0;
	ccm_ccgr6.cg15_reserved		= 0;
	
		// write register
	eim_write_32(CCM_CCGR6, (uint32_t *)&ccm_ccgr6);
}


//------------------------------------------------------------------------------
void _eim_setup_eim()
//------------------------------------------------------------------------------
{
		// create structures
	struct EIM_CS_GCR1	gcr1;
	struct EIM_CS_GCR2	gcr2;
	struct EIM_CS_RCR1	rcr1;
	struct EIM_CS_RCR2	rcr2;
	struct EIM_CS_WCR1	wcr1;
	struct EIM_CS_WCR2	wcr2;
	
	struct EIM_WCR		wcr;
	struct EIM_WIAR		wiar;
	struct EIM_EAR		ear;
	
		// read all the registers
	eim_read_32(EIM_CS0GCR1, (uint32_t *)&gcr1);
	eim_read_32(EIM_CS0GCR2, (uint32_t *)&gcr2);
	eim_read_32(EIM_CS0RCR1, (uint32_t *)&rcr1);
	eim_read_32(EIM_CS0RCR2, (uint32_t *)&rcr2);
	eim_read_32(EIM_CS0WCR1, (uint32_t *)&wcr1);
	eim_read_32(EIM_CS0WCR2, (uint32_t *)&wcr2);
	
	eim_read_32(EIM_WCR,	(uint32_t *)&wcr);
	eim_read_32(EIM_WIAR,	(uint32_t *)&wiar);
	eim_read_32(EIM_EAR,	(uint32_t *)&ear);
	
		// manipulate registers as needed
	gcr1.csen				= 1;	// chip select is enabled					|
	gcr1.swr				= 1;	// write is sync							|
	gcr1.srd				= 1;	// read is sync								|
	gcr1.mum				= 1;	// address and data are multiplexed			|
	gcr1.wfl				= 0;	// write latency is not fixed				|
	gcr1.rfl				= 0;	// read latency is not fixed				|
	gcr1.cre				= 0;	// CRE signal not needed					|
	//gcr1.crep				= x;	// don't care, CRE not used					|
	gcr1.bl					= 4;	// burst length 							| ?
	gcr1.wc					= 0;	// write is not continuous 				 	| ?
	gcr1.bcd				= 3;	// BCLK divisor is 3+1=4					|
	gcr1.bcs				= 1;	// delay from ~CS to BCLK is 1 cycle		|
	gcr1.dsz				= 1;	// 16 bits per databeat at DATA[15:0]		|
	gcr1.sp					= 0;	// supervisor protection is disabled		|
	gcr1.csrec				= 1;	// ~CS recovery is 1 cycle 					|
	gcr1.aus				= 1;	// address is not shifted 					|
	gcr1.gbc				= 1;	// ~CS gap is 1 cycle						|
	gcr1.wp					= 0;	// write protection is not enabled			|
	//gcr1.psz				= x;	// don't care, page mode is not used		|
	
	gcr2.adh				= 0;	// address hold duration is 1 cycle			|
	//gcr2.daps				= x;	// don't care, DTACK is not used			|
	gcr2.dae				= 0;	// DTACK is not used						|
	//gcr2.dap				= x;	// don't care, DTACK is not used			|
	gcr2.mux16_byp_grant	= 1;	// enable grant mechanism 					| ?
	gcr2.reserved_3_2		= 0;	// must be 0								|
	gcr2.reserved_11_10		= 0;	// must be 0								|
	gcr2.reserved_31_13		= 0;	// must be 0								|
	
	//rcr1.rcsn				= x;	// don't care in sync mode					|
	rcr1.rcsa				= 0;	// no delay for ~CS needed					|
	//rcr1.oen				= x;	// don't care in sync mode					|
	rcr1.oea				= 0;	// no delay for ~OE needed					|
	rcr1.radvn				= 0;	// no delay for ~LBA needed					|
	rcr1.ral				= 0;	// clear ~LBA when needed					|
	rcr1.radva				= 0;	// no delay for ~LBA needed					|
	rcr1.rwsc				= 1;	// one wait state							|
	rcr1.reserved_3			= 0;	// must be 0								|
	rcr1.reserved_7			= 0;	// must be 0								|
	rcr1.reserved_11		= 0;	// must be 0								|
	rcr1.reserved_15		= 0;	// must be 0								|
	rcr1.reserved_23		= 0;	// must be 0								|
	rcr1.reserved_31_30		= 0;	// must be 0								|
	
	//rcr2.rben				= x;	// don't care in sync mode					|
	rcr2.rbe				= 0;	// BE is disabled							|
	//rcr2.rbea				= x;	// don't care when BE is not used			|
	rcr2.rl					= 0;	// read latency is 0 						| ?
	//rcr2.pat				= x;	// don't care when page read is not used	|
	rcr2.apr				= 0;	// page read mode is not used				|
	rcr2.reserved_7			= 0;	// must be 0								|
	rcr2.reserved_11_10		= 0;	// must be 0								|
	rcr2.reserved_31_16		= 0;	// must be 0								|

	//wcr1.wcsn				= x;	// don't care in sync mode					|
	wcr1.wcsa				= 0;	// no delay for ~CS needed					|
	//wcr1.wen				= x;	// don't care in sync mode					|
	wcr1.wea				= 0;	// no delay for ~WR_N needed				|
	//wcr1.wben				= x;	// don't care in sync mode					|
	//wcr1.wbea				= x;	// don't care in sync mode					|
	wcr1.wadvn				= 0;	// no delay for ~LBA needed					|
	wcr1.wadva				= 0;	// no delay for ~LBA needed					|
	wcr1.wwsc				= 1;	// no wait state in needed					|
	wcr1.wbed				= 1;	// BE is disabled							|
	wcr1.wal				= 0;	// clear ~LBA when needed					|

	wcr2.wbcdd				= 0;	// write clock division is not needed		|
	wcr2.reserved_31_1		= 0;	// must be 0								|
	
	wcr.bcm					= 0;	// clock is only active during access		|
	//wcr.gbcd				= x;	// don't care when BCM=0					|
	wcr.inten				= 0;	// interrupt is not used					|
	//wcr.intpol			= x;	// don't care when interrupt is not used	|
	wcr.wdog_en				= 1;	// watchdog is enabled						|
	wcr.wdog_limit			= 00;	// timeout is 128 BCLK cycles				|
	wcr.reserved_3			= 0;	// must be 0								|		
	wcr.reserved_7_6		= 0;	// must be 0								|
	wcr.reserved_31_11		= 0;	// must be 0								|
	
	wiar.ips_req			= 0;	// IPS not needed							|
	wiar.ips_ack			= 0;	// IPS not needed							|
	//wiar.irq				= x;	// don't touch								|
	//wiar.errst			= x;	// don't touch								|
	wiar.aclk_en			= 1;	// clock is enabled							|
	wiar.reserved_31_5		= 0;	// must be 0								|
	
	//ear.error_addr		= x;	// read-only								|
	
		// write modified registers
	eim_write_32(EIM_CS0GCR1,	(uint32_t *)&gcr1);
	eim_write_32(EIM_CS0GCR2,	(uint32_t *)&gcr2);
	eim_write_32(EIM_CS0RCR1,	(uint32_t *)&rcr1);
	eim_write_32(EIM_CS0RCR2,	(uint32_t *)&rcr2);
	eim_write_32(EIM_CS0WCR1,	(uint32_t *)&wcr1);
	eim_write_32(EIM_CS0WCR2,	(uint32_t *)&wcr2);
	eim_write_32(EIM_WCR,		(uint32_t *)&wcr);
	eim_write_32(EIM_WIAR,	(uint32_t *)&wiar);/*
	eim_write_32(EIM_EAR,		(uint32_t *)&ear);*/
}


//------------------------------------------------------------------------------
void eim_write_32(off_t offset, uint32_t *pvalue)
//------------------------------------------------------------------------------
{
		// calculate memory offset
	uint32_t *ptr = (uint32_t *)_eim_calc_offset(offset);
	
		// write data to memory
	memcpy(ptr, pvalue, sizeof(uint32_t));	
}

//------------------------------------------------------------------------------
void eim_read_32(off_t offset, uint32_t *pvalue)
//------------------------------------------------------------------------------
{
		// calculate memory offset
	uint32_t *ptr = (uint32_t *)_eim_calc_offset(offset);
	
		// read data from memory
	memcpy(pvalue, ptr, sizeof(uint32_t));	
}


//------------------------------------------------------------------------------
off_t _eim_calc_offset(off_t offset)
//------------------------------------------------------------------------------
{
		// make sure that memory is mapped
	if (mem_map_ptr == MAP_FAILED) _eim_remap_mem(offset);

		// calculate starting and ending addresses of currently mapped page
	off_t offset_low	= mem_base_addr;
	off_t offset_high	= mem_base_addr + (mem_page_size - 1);
	
		// check that offset is in currently mapped page, remap new page otherwise
	if ((offset < offset_low) || (offset > offset_high)) _eim_remap_mem(offset);
	
		// calculate pointer
	return (off_t)mem_map_ptr + (offset - mem_base_addr);
}


//------------------------------------------------------------------------------
void _eim_remap_mem(off_t offset)
//------------------------------------------------------------------------------
{
		// unmap old memory page if needed
	if (mem_map_ptr != MAP_FAILED)
	{	int ok = munmap(mem_map_ptr, mem_page_size);
		if (ok != 0)
		{	printf("ERROR: munmap() failed.\n");
			exit(EXIT_FAILURE);
		}
	}
	
		// calculate starting address of new page
	while (offset % mem_page_size) offset--;
	
		// try to map new memory page
	mem_map_ptr = mmap(NULL, mem_page_size, PROT_READ | PROT_WRITE, MAP_SHARED, mem_dev_fd, offset);
	if (mem_map_ptr == MAP_FAILED)
	{	printf("ERROR: mmap() failed.\n");
		exit(EXIT_FAILURE);
	}
	
		// save last mapped page address
	mem_base_addr = offset;
}


//------------------------------------------------------------------------------
// End-of-File
//------------------------------------------------------------------------------