diff options
Diffstat (limited to 'rtl/src/verilog')
-rw-r--r-- | rtl/src/verilog/cipher_selector.v | 115 | ||||
-rw-r--r-- | rtl/src/verilog/core_selector.v | 365 | ||||
-rw-r--r-- | rtl/src/verilog/eim_arbiter.v | 20 | ||||
-rw-r--r-- | rtl/src/verilog/eim_arbiter_cdc.v | 28 | ||||
-rw-r--r-- | rtl/src/verilog/eim_memory.v | 182 | ||||
-rw-r--r-- | rtl/src/verilog/novena_baseline_top.v | 40 | ||||
-rw-r--r-- | rtl/src/verilog/novena_regs.v | 80 | ||||
-rw-r--r-- | rtl/src/verilog/rng_selector.v | 114 |
8 files changed, 730 insertions, 214 deletions
diff --git a/rtl/src/verilog/cipher_selector.v b/rtl/src/verilog/cipher_selector.v new file mode 100644 index 0000000..31dfe4b --- /dev/null +++ b/rtl/src/verilog/cipher_selector.v @@ -0,0 +1,115 @@ +//====================================================================== +// +// cipher_selector.v +// ----------------- +// Top level wrapper that creates the Cryptech coretest system. +// The wrapper contains instances of external interface, coretest +// and the core to be tested. And if more than one core is +// present the wrapper also includes address and data muxes. +// +// +// Authors: Joachim Strombergson, Paul Selkirk, Pavel Shatov +// Copyright (c) 2014-2015, NORDUnet A/S All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// - Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// - Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// +// - Neither the name of the NORDUnet nor the names of its contributors may +// be used to endorse or promote products derived from this software +// without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED +// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +//====================================================================== + +module cipher_selector + ( + input wire sys_clk, + input wire sys_rst,
+ input wire sys_ena, + + input wire [13: 0] sys_eim_addr, + input wire sys_eim_wr, + input wire sys_eim_rd, + output wire [31 : 0] sys_read_data, + input wire [31 : 0] sys_write_data + ); +
+
+ //
+ // Output Register
+ //
+ reg [31: 0] tmp_read_data;
+ assign sys_read_data = tmp_read_data;
+
+
+ /* So far we have no CIPHER cores, let's make some dummy 32-bit registers here
+ * to prevent ISE from complaining that we don't use input ports.
+ */
+
+ reg [31: 0] reg_dummy_first;
+ reg [31: 0] reg_dummy_second;
+ reg [31: 0] reg_dummy_third;
+
+ always @(posedge sys_clk) + // + if (sys_rst) begin
+ reg_dummy_first <= {8{4'hD}};
+ reg_dummy_second <= {8{4'hE}};
+ reg_dummy_third <= {8{4'hF}}; + end else if (sys_ena) begin
+ //
+ if (sys_eim_wr) begin
+ //
+ // WRITE handler
+ //
+ case (sys_eim_addr)
+ 14'd0: reg_dummy_first <= sys_write_data;
+ 14'd1: reg_dummy_second <= sys_write_data;
+ 14'd2: reg_dummy_third <= sys_write_data;
+ endcase
+ //
+ end
+ //
+ if (sys_eim_rd) begin
+ //
+ // READ handler
+ //
+ case (sys_eim_addr)
+ 14'd0: tmp_read_data <= reg_dummy_first;
+ 14'd1: tmp_read_data <= reg_dummy_second;
+ 14'd2: tmp_read_data <= reg_dummy_third; + //
+ default: tmp_read_data <= {32{1'b0}}; // read non-existent locations as zeroes
+ /* + default: tmp_read_data <= {32{1'bX}}; // don't care what to read from non-existent locations
+ */
+ endcase
+ //
+ end
+ //
+ end + + +endmodule + +//====================================================================== +// EOF core_selector.v +//====================================================================== diff --git a/rtl/src/verilog/core_selector.v b/rtl/src/verilog/core_selector.v index 7479848..e39a8b1 100644 --- a/rtl/src/verilog/core_selector.v +++ b/rtl/src/verilog/core_selector.v @@ -1,6 +1,6 @@ //====================================================================== // -// coretest_hashes.v +// core_selector.v // ----------------- // Top level wrapper that creates the Cryptech coretest system. // The wrapper contains instances of external interface, coretest @@ -42,182 +42,203 @@ module core_selector ( input wire sys_clk, - input wire sys_rst, + input wire sys_rst,
+ input wire sys_ena, input wire [13: 0] sys_eim_addr, input wire sys_eim_wr, input wire sys_eim_rd, - output wire [31 : 0] read_data, - input wire [31 : 0] write_data + output wire [31 : 0] sys_read_data, + input wire [31 : 0] sys_write_data ); - - - //---------------------------------------------------------------- - // Internal constant and parameter definitions. - //---------------------------------------------------------------- - parameter SHA1_ADDR_PREFIX = 6'b000100; // 0x1000 - 0x13ff - parameter SHA256_ADDR_PREFIX = 6'b001000; // 0x2000 - 0x23ff - parameter SHA512_ADDR_PREFIX = 6'b001100; // 0x3000 - 0x33ff - - - //---------------------------------------------------------------- - // Wires and registers - //---------------------------------------------------------------- - wire clk = sys_clk; - wire reset_n = !sys_rst; - wire [13:0] address = sys_eim_addr; - wire cs = sys_eim_wr | sys_eim_rd; - wire we = sys_eim_wr; - - reg [31:0] read_reg; - reg error_reg; - - // sha1 connections. - reg sha1_cs; - reg sha1_we; - reg [7:0] sha1_address; - reg [31:0] sha1_write_data; - wire [31:0] sha1_read_data; - wire sha1_error; - - // sha256 connections. - reg sha256_cs; - reg sha256_we; - reg [7:0] sha256_address; - reg [31:0] sha256_write_data; - wire [31:0] sha256_read_data; - wire sha256_error; - - // sha512 connections. - reg sha512_cs; - reg sha512_we; - reg [7:0] sha512_address; - reg [31:0] sha512_write_data; - wire [31:0] sha512_read_data; - wire sha512_error; - - - //---------------------------------------------------------------- - // Concurrent assignment. - //---------------------------------------------------------------- - assign read_data = read_reg; - - //---------------------------------------------------------------- - // Core instantiations. - //---------------------------------------------------------------- - sha1 sha1( - // Clock and reset. - .clk(clk), - .reset_n(reset_n), - - // Control. - .cs(sha1_cs), - .we(sha1_we), - - // Data ports. - .address(sha1_address), - .write_data(sha1_write_data), - .read_data(sha1_read_data), - .error(sha1_error) - ); - - - sha256 sha256( - // Clock and reset. - .clk(clk), - .reset_n(reset_n), - - // Control. - .cs(sha256_cs), - .we(sha256_we), - - // Data ports. - .address(sha256_address), - .write_data(sha256_write_data), - .read_data(sha256_read_data), - .error(sha256_error) - ); - - - sha512 sha512( - // Clock and reset. - .clk(clk), - .reset_n(reset_n), - - // Control. - .cs(sha512_cs), - .we(sha512_we), - - // Data ports. - .address(sha512_address), - .write_data(sha512_write_data), - .read_data(sha512_read_data), - .error(sha512_error) - ); - - //---------------------------------------------------------------- - // address_mux - // - // Combinational data mux that handles addressing between - // cores using the 32-bit memory like interface. - //---------------------------------------------------------------- - always @* - begin : address_mux - // Default assignments. - sha1_cs = 0; - sha1_we = 0; - sha1_address = 8'h00; - sha1_write_data = 32'h00000000; - - sha256_cs = 0; - sha256_we = 0; - sha256_address = 8'h00; - sha256_write_data = 32'h00000000; - - sha512_cs = 0; - sha512_we = 0; - sha512_address = 8'h00; - sha512_write_data = 32'h00000000; - - // address mux - case (address[13:8]) - SHA1_ADDR_PREFIX: - begin - sha1_cs = 1; - sha1_we = we; - sha1_address = address[7:0]; - sha1_write_data = write_data; - read_reg = sha1_read_data; - error_reg = sha1_error; - end - - SHA256_ADDR_PREFIX: - begin - sha256_cs = 1; - sha256_we = we; - sha256_address = address[7:0]; - sha256_write_data = write_data; - read_reg = sha256_read_data; - error_reg = sha256_error; - end - - SHA512_ADDR_PREFIX: - begin - sha512_cs = 1; - sha512_we = we; - sha512_address = address[7:0]; - sha512_write_data = write_data; - read_reg = sha512_read_data; - error_reg = sha512_error; - end - - default: - begin - read_reg = 32'hZZZZ; - end - endcase - - end // address_mux +
+
+ /* In this memory segment (HASHES) we have 14 address bits. Every core has 8-bit internal address space,
+ * so we can have up to 2^(14-8) = 64 cores here.
+ *
+ * Core #0 is not an actual HASH core, but a set of board-level (global) registers, that can be used to
+ * get information about hardware (board type, bitstream version and so on).
+ *
+ * So far we have three cores: SHA-1, SHA-256 and SHA-512.
+ */
+
+ /*********************************************************
+ * To add new HASH core named XXX follow the steps below *
+ *********************************************************
+ *
+ * 1. Add corresponding `define under "List of Available Cores", this will allow users to exclude your
+ * core from implementation to save some slices in case they don't need it.
+ *
+ * `define USE_CORE_XXX
+ *
+ *
+ * 2. Choose address of your new core and add corresponding line under "Core Address Table". Core addresses
+ * can be in the range from 1 to 63 inclusively. Core address 0 is reserved for a page of global registers
+ * and must not be used.
+ *
+ * localparam CORE_ADDR_XXX = 6'dN;
+ *
+ *
+ * 3. Add instantiation of your new core after all existing cores surrounded by conditional synthesis directives.
+ * You also need a 32-bit output (read data) bus for your core and an enable flag. Note that sys_rst in
+ * an active-high sync reset signal.
+ *
+ * `ifdef USE_CORE_XXX
+ * wire [31: 0] read_data_xxx;
+ * wire enable_xxx = sys_ena && (addr_core_num == CORE_ADDR_XXX);
+ * xxx xxx_inst + * ( + * .clk(sys_clk), + * .reset_n(~sys_rst), + * .cs(enable_xxx & (sys_eim_rd | sys_eim_wr)), + * .we(sys_eim_wr), + * .address(addr_core_reg), + * .write_data(sys_write_data), + * .read_data(read_data_xxx), + * .error() + * );
+ * `endif
+ *
+ *
+ * 4. Add previously created data bus to "Output (Read Data) Multiplexor" in the end of this file.
+ *
+ * `ifdef USE_CORE_XXX CORE_ADDR_XXX: sys_read_data_mux = read_data_xxx; `endif
+ *
+ */
+
+
+ //----------------------------------------------------------------
+ // Address Decoder
+ //----------------------------------------------------------------
+ wire [ 5: 0] addr_core_num = sys_eim_addr[13: 8]; // upper 6 bits specify core being addressed
+ wire [ 7: 0] addr_core_reg = sys_eim_addr[ 7: 0]; // lower 8 bits specify register offset in core
+
+
+ /* We can comment following lines to exclude cores from implementation
+ * in case we run out of slices.
+ */
+
+ //----------------------------------------------------------------
+ // List of Available Cores
+ //----------------------------------------------------------------
+ `define USE_CORE_SHA1
+ `define USE_CORE_SHA256
+ `define USE_CORE_SHA512
+
+
+ //----------------------------------------------------------------
+ // Core Address Table
+ //----------------------------------------------------------------
+ localparam CORE_ADDR_GLOBAL_REGS = 6'd0;
+ localparam CORE_ADDR_SHA1 = 6'd1;
+ localparam CORE_ADDR_SHA256 = 6'd2;
+ localparam CORE_ADDR_SHA512 = 6'd3;
+
+
+ //----------------------------------------------------------------
+ // Global Registers
+ //---------------------------------------------------------------- + wire [31: 0] read_data_global;
+ wire enable_global = sys_ena && (addr_core_num == CORE_ADDR_GLOBAL_REGS);
+ novena_regs novena_regs_inst + ( + .clk(sys_clk), + .rst(sys_rst), + + .cs(enable_global & (sys_eim_rd | sys_eim_wr)), + .we(sys_eim_wr), + + .address(addr_core_reg), + .write_data(sys_write_data), + .read_data(read_data_global)
+ );
+
+
+ //----------------------------------------------------------------
+ // SHA-1
+ //----------------------------------------------------------------
+ `ifdef USE_CORE_SHA1
+ wire [31: 0] read_data_sha1;
+ wire enable_sha1 = sys_ena && (addr_core_num == CORE_ADDR_SHA1);
+ sha1 sha1_inst + ( + .clk(sys_clk), + .reset_n(~sys_rst), + + .cs(enable_sha1 & (sys_eim_rd | sys_eim_wr)), + .we(sys_eim_wr), + + .address(addr_core_reg), + .write_data(sys_write_data), + .read_data(read_data_sha1), + .error() + );
+ `endif
+
+
+ //----------------------------------------------------------------
+ // SHA-256
+ //----------------------------------------------------------------
+ `ifdef USE_CORE_SHA256
+ wire [31: 0] read_data_sha256;
+ wire enable_sha256 = sys_ena && (addr_core_num == CORE_ADDR_SHA256);
+ sha256 sha256_inst + ( + .clk(sys_clk), + .reset_n(~sys_rst), + + .cs(enable_sha256 & (sys_eim_rd | sys_eim_wr)), + .we(sys_eim_wr), + + .address(addr_core_reg), + .write_data(sys_write_data), + .read_data(read_data_sha256), + .error() + );
+ `endif
+
+
+ //----------------------------------------------------------------
+ // SHA-512
+ //----------------------------------------------------------------
+ `ifdef USE_CORE_SHA512
+ wire [31: 0] read_data_sha512;
+ wire enable_sha512 = sys_ena && (addr_core_num == CORE_ADDR_SHA512);
+ sha512 sha512_inst + ( + .clk(sys_clk), + .reset_n(~sys_rst), + + .cs(enable_sha512 & (sys_eim_rd | sys_eim_wr)), + .we(sys_eim_wr), + + .address(addr_core_reg), + .write_data(sys_write_data), + .read_data(read_data_sha512), + .error() + );
+ `endif
+
+
+ //----------------------------------------------------------------
+ // Output (Read Data) Multiplexor
+ //----------------------------------------------------------------
+ reg [31: 0] sys_read_data_mux;
+ assign sys_read_data = sys_read_data_mux;
+
+ always @*
+ // + case (addr_core_num)
+ //
+ CORE_ADDR_GLOBAL_REGS: sys_read_data_mux = read_data_global;
+ `ifdef USE_CORE_SHA1 CORE_ADDR_SHA1: sys_read_data_mux = read_data_sha1; `endif
+ `ifdef USE_CORE_SHA256 CORE_ADDR_SHA256: sys_read_data_mux = read_data_sha256; `endif
+ `ifdef USE_CORE_SHA512 CORE_ADDR_SHA512: sys_read_data_mux = read_data_sha512; `endif
+ //
+ default: sys_read_data_mux = {32{1'b0}};
+ // + endcase
+
endmodule diff --git a/rtl/src/verilog/eim_arbiter.v b/rtl/src/verilog/eim_arbiter.v index 3dc6260..d21799f 100644 --- a/rtl/src/verilog/eim_arbiter.v +++ b/rtl/src/verilog/eim_arbiter.v @@ -39,7 +39,7 @@ module eim_arbiter ( - eim_bclk, eim_cs0_n, eim_da, + eim_bclk, eim_cs0_n, eim_da, eim_a, eim_lba_n, eim_wr_n, eim_oe_n, eim_wait_n, @@ -55,7 +55,8 @@ module eim_arbiter // input wire eim_bclk; // | eim bus input wire eim_cs0_n; // | - inout wire [15: 0] eim_da; // | + inout wire [15: 0] eim_da; // |
+ input wire [18:16] eim_a; // | input wire eim_lba_n; // | input wire eim_wr_n; // | input wire eim_oe_n; // | @@ -63,7 +64,7 @@ module eim_arbiter input wire sys_clk; // system clock - output wire [13: 0] sys_addr; // | user bus + output wire [16: 0] sys_addr; // | user bus output wire sys_wren; // | output wire [31: 0] sys_data_out; // | output wire sys_rden; // | @@ -107,7 +108,7 @@ module eim_arbiter localparam EIM_FSM_STATE_READ_DONE = 5'b1_0_111; // transaction complete reg [ 4: 0] eim_fsm_state = EIM_FSM_STATE_INIT; // fsm state - reg [13: 0] eim_addr_latch = {14{1'bX}}; // transaction address + reg [16: 0] eim_addr_latch = {17{1'bX}}; // transaction address reg [15: 0] eim_write_lsb_latch = {16{1'bX}}; // lower 16 bits of data to write /* These flags are used to wake up from INIT state. */ @@ -183,7 +184,7 @@ module eim_arbiter always @(posedge eim_bclk) // if ((eim_fsm_state == EIM_FSM_STATE_INIT) && (eim_write_start_flag || eim_read_start_flag)) - eim_addr_latch <= da_ro[15:2]; + eim_addr_latch <= {eim_a[18:16], da_ro[15:2]}; // @@ -256,10 +257,11 @@ module eim_arbiter // /* This block is used to transfer request data from BCLK clock domain to SYS_CLK clock domain and - * then transfer acknowledge from SYS_CLK to BCLK clock domain in return. Af first 1+1+14+32 = 48 bits - * are transfered, these are: write flag, read flag, address, write data. During read transaction - * some bogus write data is passed, which is not used later anyway. During read requests 32 bits of data - * are returned, during write requests 32 bits of bogus data are returned, that are never used later. + * then transfer acknowledge from SYS_CLK to BCLK clock domain in return. Af first 1+1+3+14+32 = 51 bits + * are transfered, these are: write flag, read flag, msb part of address, lsb part of address, write data. + * During read transaction some bogus write data is passed, which is not used later anyway. During read + * requests 32 bits of data are returned, during write requests 32 bits of bogus data are returned, + * that are never used later. */ eim_arbiter_cdc eim_cdc diff --git a/rtl/src/verilog/eim_arbiter_cdc.v b/rtl/src/verilog/eim_arbiter_cdc.v index c9df62e..a0412fe 100644 --- a/rtl/src/verilog/eim_arbiter_cdc.v +++ b/rtl/src/verilog/eim_arbiter_cdc.v @@ -49,11 +49,11 @@ module eim_arbiter_cdc input wire eim_clk; // eim clock input wire eim_req; // eim transaction request output wire eim_ack; // eim transaction acknowledge - input wire [47: 0] eim_din; // data from cpu to fpga (write access) + input wire [50: 0] eim_din; // data from cpu to fpga (write access) output wire [31: 0] eim_dout; // data from fpga to cpu (read access) input wire sys_clk; // user internal clock - output wire [13: 0] sys_addr; // user access address + output wire [16: 0] sys_addr; // user access address output wire sys_wren; // user write flag output wire [31: 0] sys_data_out; // user write data output wire sys_rden; // user read flag @@ -64,11 +64,11 @@ module eim_arbiter_cdc // EIM_CLK -> SYS_CLK Request // wire sys_req; // request pulse in sys_clk clock domain - wire [47: 0] sys_dout; // transaction data in sys_clk clock domain + wire [50: 0] sys_dout; // transaction data in sys_clk clock domain cdc_bus_pulse # ( - .DATA_WIDTH (48) // {write, read, addr, data} + .DATA_WIDTH (51) // {write, read, msb addr, lsb addr, data} ) cdc_eim_sys ( @@ -85,16 +85,16 @@ module eim_arbiter_cdc // // Output Registers // - reg [13: 0] sys_addr_reg = {14{1'bX}}; // - reg sys_wren_reg = 1'b0; // + reg sys_wren_reg = 1'b0; //
+ reg sys_rden_reg = 1'b0; //
+ reg [16: 0] sys_addr_reg = {17{1'bX}}; // reg [31: 0] sys_data_out_reg = {32{1'bX}}; // - reg sys_rden_reg = 1'b0; // - +
+ assign sys_wren = sys_wren_reg;
+ assign sys_rden = sys_rden_reg; assign sys_addr = sys_addr_reg; - assign sys_wren = sys_wren_reg; assign sys_data_out = sys_data_out_reg; - assign sys_rden = sys_rden_reg; - + // // System (User) Clock Access Handler @@ -102,10 +102,10 @@ module eim_arbiter_cdc always @(posedge sys_clk) // if (sys_req) begin // request detected? - sys_wren_reg <= sys_dout[47]; // set write flag if needed - sys_addr_reg <= sys_dout[45:32]; // set operation address + sys_wren_reg <= sys_dout[50]; // set write flag if needed
+ sys_rden_reg <= sys_dout[49]; // set read flag if needed + sys_addr_reg <= sys_dout[48:32]; // set operation address sys_data_out_reg <= sys_dout[31: 0]; // set data to write - sys_rden_reg <= sys_dout[46]; // set read flag if needed end else begin // no request active sys_wren_reg <= 1'b0; // clear write flag sys_rden_reg <= 1'b0; // clear read flag diff --git a/rtl/src/verilog/eim_memory.v b/rtl/src/verilog/eim_memory.v new file mode 100644 index 0000000..5258376 --- /dev/null +++ b/rtl/src/verilog/eim_memory.v @@ -0,0 +1,182 @@ +//====================================================================== +// +// coretest_hashes.v +// ----------------- +// Top level wrapper that creates the Cryptech coretest system. +// The wrapper contains instances of external interface, coretest +// and the core to be tested. And if more than one core is +// present the wrapper also includes address and data muxes. +// +// +// Author: Pavel Shatov +// Copyright (c) 2014-2015, NORDUnet A/S All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// - Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// - Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// +// - Neither the name of the NORDUnet nor the names of its contributors may +// be used to endorse or promote products derived from this software +// without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED +// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +//======================================================================
+
+module eim_memory
+ (
+ input wire sys_clk, + input wire sys_rst, + + input wire [16: 0] sys_eim_addr, + input wire sys_eim_wr, + input wire sys_eim_rd, + output wire [31: 0] sys_read_data, + input wire [31: 0] sys_write_data
+ );
+
+
+ /* Three upper bits of address [16:14] are used to select memory segment.
+ * There can be eight segments. So far segment 0 is used for hashes,
+ * segment 1 is reserved for random number generators, segment 2 is reserved
+ * for chiphers. Other segments are not used so far.
+ */
+
+ /* Every segment has its own memory map, take at look at corresponding selectors
+ * for more information.
+ */
+
+ //----------------------------------------------------------------
+ // Segment Decoder
+ //----------------------------------------------------------------
+ localparam SEGMENT_ADDR_HASHES = 3'd0;
+ localparam SEGMENT_ADDR_RNGS = 3'd1;
+ localparam SEGMENT_ADDR_CIPHERS = 3'd2;
+
+ wire [ 2: 0] addr_segment = sys_eim_addr[16:14]; // 3 upper bits are decoded here
+ wire [13: 0] addr_segment_int = sys_eim_addr[13: 0]; // 14 lower bits are decoded individually
+ // in corresponding segment selectors
+
+ wire [31: 0] segment_hashes_read_data; // data read from HASHES segment
+ wire [31: 0] segment_rngs_read_data; // data read from RNGS segment
+ wire [31: 0] segment_ciphers_read_data; // data read from CIPHERS segment
+
+ wire segment_enable_hashes = (addr_segment == SEGMENT_ADDR_HASHES) ? 1'b1 : 1'b0; // HASHES segment is being addressed
+ wire segment_enable_rngs = (addr_segment == SEGMENT_ADDR_RNGS) ? 1'b1 : 1'b0; // RNGS segment is being addressed
+ wire segment_enable_ciphers = (addr_segment == SEGMENT_ADDR_CIPHERS) ? 1'b1 : 1'b0; // CIPHERS segment is being addressed
+
+
+ //----------------------------------------------------------------
+ // Output (Read Data) Bus
+ //----------------------------------------------------------------
+ reg [31: 0] sys_read_data_reg;
+ assign sys_read_data = sys_read_data_reg;
+
+ always @*
+ //
+ case (addr_segment)
+ SEGMENT_ADDR_HASHES: sys_read_data_reg = segment_hashes_read_data;
+ SEGMENT_ADDR_RNGS: sys_read_data_reg = segment_rngs_read_data;
+ SEGMENT_ADDR_CIPHERS: sys_read_data_reg = segment_ciphers_read_data;
+ default: sys_read_data_reg = {32{1'b0}};
+ endcase
+
+
+
+ //---------------------------------------------------------------- + // HASH Core Selector + // + // This selector is used to map core registers into + // EIM address space and select which core to send EIM read and + // write operations to. + //----------------------------------------------------------------
+ core_selector segment_cores
+ (
+ .sys_clk(sys_clk), + .sys_rst(sys_rst), +
+ .sys_ena(segment_enable_hashes), // only enable active selector
+ + .sys_eim_addr(addr_segment_int), // we only connect 14 lower bits of address here,
+ // because we have already decoded 3 upper bits earlier,
+ // every segment can have its own address decoder. + .sys_eim_wr(sys_eim_wr), + .sys_eim_rd(sys_eim_rd), + + .sys_write_data(sys_write_data), + .sys_read_data(segment_hashes_read_data) // output from HASHES segment
+ );
+
+
+ //---------------------------------------------------------------- + // RNG Selector + // + // This selector is used to map random number generator registers into + // EIM address space and select which RNG to send EIM read and + // write operations to. So far there are no RNG cores. + //----------------------------------------------------------------
+ rng_selector segment_rngs
+ (
+ .sys_clk(sys_clk), + .sys_rst(sys_rst), +
+ .sys_ena(segment_enable_rngs), // only enable active selector
+ + .sys_eim_addr(addr_segment_int), // we only connect 14 lower bits of address here,
+ // because we have already decoded 3 upper bits earlier,
+ // every segment can have its own address decoder. + .sys_eim_wr(sys_eim_wr), + .sys_eim_rd(sys_eim_rd), + + .sys_write_data(sys_write_data), + .sys_read_data(segment_rngs_read_data) // output from RNGS segment
+ );
+
+
+ //---------------------------------------------------------------- + // CIPHER Selector + // + // This selector is used to map cipher registers into + // EIM address space and select which CIPHER to send EIM read and + // write operations to. So far there are no CIPHER cores. + //----------------------------------------------------------------
+ cipher_selector segment_ciphers
+ (
+ .sys_clk(sys_clk), + .sys_rst(sys_rst), +
+ .sys_ena(segment_enable_ciphers), // only enable active selector
+ + .sys_eim_addr(addr_segment_int), // we only connect 14 lower bits of address here,
+ // because we have already decoded 3 upper bits earlier,
+ // every segment can have its own address decoder. + .sys_eim_wr(sys_eim_wr), + .sys_eim_rd(sys_eim_rd), + + .sys_write_data(sys_write_data), + .sys_read_data(segment_ciphers_read_data) // output from CIPHERS segment
+ );
+
+
+endmodule
+
+
+//====================================================================== +// EOF eim_memory.v +//====================================================================== diff --git a/rtl/src/verilog/novena_baseline_top.v b/rtl/src/verilog/novena_baseline_top.v index 20bf28d..cc9e5e7 100644 --- a/rtl/src/verilog/novena_baseline_top.v +++ b/rtl/src/verilog/novena_baseline_top.v @@ -49,13 +49,14 @@ module novena_baseline_top input wire reset_mcu_b_pin, // Cryptech avalanche noise board input and LED outputs - input wire ct_avalanche_noise, - output wire [07 : 0] ct_avalanche_led, + input wire ct_noise, + output wire [07 : 0] ct_led, // EIM interface input wire eim_bclk, // EIM burst clock. Started by the CPU. input wire eim_cs0_n, // Chip select (active low). - inout wire [15 : 0] eim_da, // Bidirectional address and data port. + inout wire [15 : 0] eim_da, // Bidirectional address and data port.
+ input wire [18: 16] eim_a, // MSB part of address port. input wire eim_lba_n, // Latch address signal (active low). input wire eim_wr_n, // write enable signal (active low). input wire eim_oe_n, // output enable signal (active low). @@ -98,7 +99,7 @@ module novena_baseline_top // EIM arbiter handles EIM access and transfers it into // `sys_clk' clock domain. //---------------------------------------------------------------- - wire [13: 0] sys_eim_addr; + wire [16: 0] sys_eim_addr; wire sys_eim_wr; wire sys_eim_rd; wire [31: 0] sys_eim_dout; @@ -107,9 +108,10 @@ module novena_baseline_top eim_arbiter eim ( .eim_bclk(eim_bclk_buf), - .eim_cs0_n (eim_cs0_n), - .eim_da(eim_da), - .eim_lba_n (eim_lba_n), + .eim_cs0_n(eim_cs0_n), + .eim_da(eim_da),
+ .eim_a(eim_a), + .eim_lba_n(eim_lba_n), .eim_wr_n(eim_wr_n), .eim_oe_n(eim_oe_n), .eim_wait_n(eim_wait_n), @@ -125,24 +127,23 @@ module novena_baseline_top //---------------------------------------------------------------- - // Core Selector (MUX) + // Memory Mapper // - // This multiplexer is used to map ore registers into - // EIM address space and select which core to send EIM read and - // write operations to. - //---------------------------------------------------------------- - core_selector mux - ( - .sys_clk(sys_clk), + // This multiplexer is used to map different types of cores, such as
+ // hashes, RNGs and ciphers to different regions (segments) of memory. + //----------------------------------------------------------------
+ eim_memory mem
+ (
+ .sys_clk(sys_clk), .sys_rst(sys_rst), .sys_eim_addr(sys_eim_addr), .sys_eim_wr(sys_eim_wr), .sys_eim_rd(sys_eim_rd), - .write_data(sys_eim_dout), - .read_data(sys_eim_din) - ); + .sys_write_data(sys_eim_dout), + .sys_read_data(sys_eim_din)
+ ); //---------------------------------------------------------------- @@ -166,7 +167,7 @@ module novena_baseline_top // Logic specific to the Cryptech use of the Novena. // Currently we just hard wire the LED outputs. //---------------------------------------------------------------- - assign ct_avalanche_led = 8'h55; + assign ct_led = {8{ct_noise}}; //---------------------------------------------------------------- @@ -178,6 +179,7 @@ module novena_baseline_top // been configured. //---------------------------------------------------------------- assign apoptosis_pin = 1'b0; +
endmodule diff --git a/rtl/src/verilog/novena_regs.v b/rtl/src/verilog/novena_regs.v new file mode 100644 index 0000000..88b35ab --- /dev/null +++ b/rtl/src/verilog/novena_regs.v @@ -0,0 +1,80 @@ +`timescale 1ns / 1ps
+
+module novena_regs
+ ( + input wire clk, + input wire rst, + + input wire cs, + input wire we, + + input wire [ 7 : 0] address, + input wire [31 : 0] write_data, + output wire [31 : 0] read_data
+ );
+
+
+ //----------------------------------------------------------------
+ // Board-Level Registers
+ //----------------------------------------------------------------
+ localparam ADDR_BOARD_TYPE = 8'h00; // board id
+ localparam ADDR_FIRMWARE_VER = 8'h01; // bitstream version
+ localparam ADDR_DUMMY_REG = 8'hFF; // general-purpose register
+
+
+ //----------------------------------------------------------------
+ // Constants
+ //----------------------------------------------------------------
+ localparam NOVENA_BOARD_TYPE = 32'h50565431; // PVT1
+ localparam NOVENA_DESIGN_VER = 32'h00_01_00_0b; // v0.1.0b + + + //
+ // Output Register
+ //
+ reg [31: 0] tmp_read_data;
+ assign read_data = tmp_read_data;
+
+
+ /* This dummy register can be used by users to check that they can actually write something.
+ */
+
+ reg [31: 0] reg_dummy;
+
+
+ //
+ // Access Handler
+ //
+ always @(posedge clk) + // + if (rst) reg_dummy <= {32{1'b0}}; + else if (cs) begin
+ //
+ if (we) begin
+ //
+ // WRITE handler
+ //
+ case (address)
+ ADDR_DUMMY_REG: reg_dummy <= write_data;
+ endcase
+ //
+ end else begin
+ //
+ // READ handler
+ //
+ case (address)
+ ADDR_BOARD_TYPE: tmp_read_data <= NOVENA_BOARD_TYPE;
+ ADDR_FIRMWARE_VER: tmp_read_data <= NOVENA_DESIGN_VER;
+ ADDR_DUMMY_REG: tmp_read_data <= reg_dummy;
+ //
+ default: tmp_read_data <= {32{1'b0}}; // read non-existent locations as zeroes
+ /* + default: tmp_read_data <= {32{1'bX}}; // don't care what to read from non-existent locations
+ */
+ endcase
+ //
+ end
+ //
+ end +
+endmodule
diff --git a/rtl/src/verilog/rng_selector.v b/rtl/src/verilog/rng_selector.v new file mode 100644 index 0000000..7a1fe7c --- /dev/null +++ b/rtl/src/verilog/rng_selector.v @@ -0,0 +1,114 @@ +//====================================================================== +// +// rng_selector.v +// ----------------- +// Top level wrapper that creates the Cryptech coretest system. +// The wrapper contains instances of external interface, coretest +// and the core to be tested. And if more than one core is +// present the wrapper also includes address and data muxes. +// +// +// Authors: Joachim Strombergson, Paul Selkirk, Pavel Shatov +// Copyright (c) 2014-2015, NORDUnet A/S All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// - Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// - Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// +// - Neither the name of the NORDUnet nor the names of its contributors may +// be used to endorse or promote products derived from this software +// without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED +// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +//====================================================================== + +module rng_selector + ( + input wire sys_clk, + input wire sys_rst,
+ input wire sys_ena, + + input wire [13: 0] sys_eim_addr, + input wire sys_eim_wr, + input wire sys_eim_rd, + output wire [31 : 0] sys_read_data, + input wire [31 : 0] sys_write_data + ); +
+
+ //
+ // Output Register
+ //
+ reg [31: 0] tmp_read_data;
+ assign sys_read_data = tmp_read_data;
+
+
+ /* So far we have no RNG cores, let's make some dummy 32-bit registers here
+ * to prevent ISE from complaining that we don't use input ports.
+ */
+
+ reg [31: 0] reg_dummy_first;
+ reg [31: 0] reg_dummy_second;
+ reg [31: 0] reg_dummy_third;
+
+ always @(posedge sys_clk) + // + if (sys_rst) begin
+ reg_dummy_first <= {8{4'hA}};
+ reg_dummy_second <= {8{4'hB}};
+ reg_dummy_third <= {8{4'hC}}; + end else if (sys_ena) begin
+ //
+ if (sys_eim_wr) begin
+ //
+ // WRITE handler
+ //
+ case (sys_eim_addr)
+ 14'd0: reg_dummy_first <= sys_write_data;
+ 14'd1: reg_dummy_second <= sys_write_data;
+ 14'd2: reg_dummy_third <= sys_write_data;
+ endcase
+ //
+ end
+ //
+ if (sys_eim_rd) begin
+ //
+ // READ handler
+ //
+ case (sys_eim_addr)
+ 14'd0: tmp_read_data <= reg_dummy_first;
+ 14'd1: tmp_read_data <= reg_dummy_second;
+ 14'd2: tmp_read_data <= reg_dummy_third; + //
+ default: tmp_read_data <= {32{1'b0}}; // read non-existent locations as zeroes
+ /* + default: tmp_read_data <= {32{1'bX}}; // don't care what to read from non-existent locations
+ */
+ endcase
+ //
+ end
+ //
+ end + +endmodule + +//====================================================================== +// EOF core_selector.v +//====================================================================== |