1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
|
/*
* stm-ice40mkm.c
* --------------
* Functions for configuring the Lattice iCE40-based master key memory.
*
* Copyright 2021 The Commons Conservancy Cryptech Project
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "stm-ice40mkm.h"
#include "stm-init.h"
#include "stm-fpgacfg.h"
/* handle to SPI3 */
static SPI_HandleTypeDef hspi_ice40mkm;
/*
* initialize SPI3 peripheral and assert reset signal
*/
void ice40mkm_init(void)
{
/* initialize GPIO pins */
ICE40MKM_GPIO_INIT();
/*
* datasheet says up to 45 MHz is fine, but that's apparently for master mode
* slave speed not explicitly defined, but TN-02001-3.2 says only up to 25 MHz
* 4x prescaler is used for 22.5 MHz (2x works fine, but might be out of specs)
*/
/* SPI3 (iCE40 slave SPI configuration interface) init function */
hspi_ice40mkm.Instance = SPI3;
hspi_ice40mkm.Init.Mode = SPI_MODE_MASTER;
hspi_ice40mkm.Init.Direction = SPI_DIRECTION_2LINES;
hspi_ice40mkm.Init.DataSize = SPI_DATASIZE_8BIT;
hspi_ice40mkm.Init.CLKPolarity = SPI_POLARITY_HIGH;
hspi_ice40mkm.Init.CLKPhase = SPI_PHASE_2EDGE;
hspi_ice40mkm.Init.NSS = SPI_NSS_SOFT;
hspi_ice40mkm.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
hspi_ice40mkm.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi_ice40mkm.Init.TIMode = SPI_TIMODE_DISABLE;
hspi_ice40mkm.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi_ice40mkm.Init.CRCPolynomial = 10;
HAL_SPI_Init(&hspi_ice40mkm);
/* assert iCE40 reset */
_ice40mkm_reset_assert();
}
/*
* force iCE40 into slave SPI mode
* read bitstream from the end of the main FPGA's config memory
* send the bitstream to iCE40
* check, that "config done" went high
*
* return codes:
* 0 = success
* 1 = serial transfer timeout
* 2 = bad magic marker (image missing?)
* 3 = config done did not go high (crc error, etc)
*/
int ice40mkm_configure(void)
{
HAL_StatusTypeDef prom_ok;
size_t c;
uint8_t prom_buf[N25Q128_PAGE_SIZE];
uint8_t prom_marker[] = ICE40_MAGIC_MARKER;
int prom_marker_bad = 1, cdone_state;
uint32_t prom_addr, prom_sector_index;
uint32_t page, num_pages = ICE40_BITSTREAM_SECTORS *
(N25Q128_SECTOR_SIZE / N25Q128_PAGE_SIZE);
/*
* assuming ice40mkm_init() has already been called (reset
* has already been asserted), activate chip-select and
* de-assert reset to force device into slave mode, then
* wait for 2 ms to allow internal "housekeeping" to finish
*/
_ice40mkm_chip_select(); //
HAL_Delay(1); // minimum reset duration is 200 ns
_ice40mkm_reset_deassert(); //
HAL_Delay(2); // minimum wait time is 1200 us
/*
* send 8 dummy clock ticks when chip select is high,
* then revert to low chip select
*/
_ice40mkm_chip_deselect();
prom_ok = HAL_SPI_Transmit(&hspi_ice40mkm, prom_buf, 1, N25Q128_SPI_TIMEOUT);
if (prom_ok != HAL_OK) return 1;
_ice40mkm_chip_select();
/*
* device is now ready to receive the bitstream
*
* the mkm bitmap is stored right after the main bitstream and is aligned
* on sector boundary
*
* the very first page of the bitstream starts with a magic marker,
* which can be used to detect whether the bitstream is present
*/
/* claim access to FPGA config storage */
fpgacfg_access_control(ALLOW_ARM);
/*
* first read the very first page of each sector to find the offset of
* the mkm bitmap, skip the very first sector (there's no
* sane way for the mkm bitmap may start there)
*
* then read the bitstream page-by-page and send it over SPI3
*
* note, that bitstream is slightly smaller than two sectors, so we're
* sending some 0xFF's after the binary image, which is harmless
* (just some dummy clock cycles)
*/
for (prom_sector_index = 1; prom_sector_index < N25Q128_NUM_SECTORS; prom_sector_index += 1)
{
/* read next page */
prom_addr = prom_sector_index * N25Q128_SECTOR_SIZE;
prom_ok = fpgacfg_read_data(prom_addr, prom_buf, N25Q128_PAGE_SIZE);
if (prom_ok != HAL_OK) break;
/* check magic marker */
prom_marker_bad = 0;
for (c=0; c<sizeof prom_marker; c++)
if (prom_buf[c] != prom_marker[c]) {
prom_marker_bad = 1;
break;
}
/* mkm bitmap found! */
if (!prom_marker_bad) break;
}
/* check, that magic marker was correct */
if (prom_marker_bad) return 2;
/* send the mkm bitmap */
for (page=0; page<num_pages; page++)
{
/* read next page */
prom_ok = fpgacfg_read_data(prom_addr, prom_buf, N25Q128_PAGE_SIZE);
if (prom_ok != HAL_OK) break;
/* send page to iCE40 */
prom_ok = HAL_SPI_Transmit(&hspi_ice40mkm, prom_buf, N25Q128_PAGE_SIZE, N25Q128_SPI_TIMEOUT);
if (prom_ok != HAL_OK) break;
/* increment address */
prom_addr += N25Q128_PAGE_SIZE;
}
/* relinquish access to FPGA config storage */
fpgacfg_access_control(ALLOW_FPGA);
/* check, that all the pages were written */
if (page != num_pages) return 1;
/* clear chip-select */
_ice40mkm_chip_deselect();
/*
* we should wait for at least 100 clock ticks before sampling
* the CDONE pin, we can only wait for multiples of 8, so let's
* wait for 128 (16 bytes) to be on the safe side
*/
prom_ok = HAL_SPI_Transmit(&hspi_ice40mkm, prom_buf, 16, N25Q128_SPI_TIMEOUT);
if (prom_ok != HAL_OK) return 3;
/* now check config done pin */
cdone_state = _ice40mkm_cdone();
if (!cdone_state) return 3;
/*
* we should wait for at least 49 clock ticks after CDONE turns high to
* release SPI pins for user application, we're not using them anyway, but
* let's still follow vendor's recommendations just in case; we can only wait
* for multiples of 8, so let's wait for 64 ticks (8 bytes) instead of 49.
*/
prom_ok = HAL_SPI_Transmit(&hspi_ice40mkm, prom_buf, 8, N25Q128_SPI_TIMEOUT);
if (prom_ok != HAL_OK) return 1;
/* cool, everything went fine, zero code means success */
return 0;
}
|