1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
|
/**
******************************************************************************
* @file stm32f4xx_hal_flash_ex.c
* @author MCD Application Team
* @version V1.3.2
* @date 26-June-2015
* @brief Extended FLASH HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the FLASH extension peripheral:
* + Extended programming operations functions
*
@verbatim
==============================================================================
##### Flash Extension features #####
==============================================================================
[..] Comparing to other previous devices, the FLASH interface for STM32F427xx/437xx and
STM32F429xx/439xx devices contains the following additional features
(+) Capacity up to 2 Mbyte with dual bank architecture supporting read-while-write
capability (RWW)
(+) Dual bank memory organization
(+) PCROP protection for all banks
##### How to use this driver #####
==============================================================================
[..] This driver provides functions to configure and program the FLASH memory
of all STM32F427xx/437xx andSTM32F429xx/439xx devices. It includes
(#) FLASH Memory Erase functions:
(++) Lock and Unlock the FLASH interface using HAL_FLASH_Unlock() and
HAL_FLASH_Lock() functions
(++) Erase function: Erase sector, erase all sectors
(++) There are two modes of erase :
(+++) Polling Mode using HAL_FLASHEx_Erase()
(+++) Interrupt Mode using HAL_FLASHEx_Erase_IT()
(#) Option Bytes Programming functions: Use HAL_FLASHEx_OBProgram() to :
(++) Set/Reset the write protection
(++) Set the Read protection Level
(++) Set the BOR level
(++) Program the user Option Bytes
(#) Advanced Option Bytes Programming functions: Use HAL_FLASHEx_AdvOBProgram() to :
(++) Extended space (bank 2) erase function
(++) Full FLASH space (2 Mo) erase (bank 1 and bank 2)
(++) Dual Boot activation
(++) Write protection configuration for bank 2
(++) PCROP protection configuration and control for both banks
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
/** @defgroup FLASHEx FLASHEx
* @brief FLASH HAL Extension module driver
* @{
*/
#ifdef HAL_FLASH_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup FLASHEx_Private_Constants
* @{
*/
#define SECTOR_MASK ((uint32_t)0xFFFFFF07)
#define FLASH_TIMEOUT_VALUE ((uint32_t)50000)/* 50 s */
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @addtogroup FLASHEx_Private_Variables
* @{
*/
extern FLASH_ProcessTypeDef pFlash;
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/** @addtogroup FLASHEx_Private_Functions
* @{
*/
/* Option bytes control */
static void FLASH_MassErase(uint8_t VoltageRange, uint32_t Banks);
static HAL_StatusTypeDef FLASH_OB_EnableWRP(uint32_t WRPSector, uint32_t Banks);
static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WRPSector, uint32_t Banks);
static HAL_StatusTypeDef FLASH_OB_RDP_LevelConfig(uint8_t Level);
static HAL_StatusTypeDef FLASH_OB_UserConfig(uint8_t Iwdg, uint8_t Stop, uint8_t Stdby);
static HAL_StatusTypeDef FLASH_OB_BOR_LevelConfig(uint8_t Level);
static uint8_t FLASH_OB_GetUser(void);
static uint16_t FLASH_OB_GetWRP(void);
static uint8_t FLASH_OB_GetRDP(void);
static uint8_t FLASH_OB_GetBOR(void);
#if defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE) || defined(STM32F446xx)
static HAL_StatusTypeDef FLASH_OB_EnablePCROP(uint32_t Sector);
static HAL_StatusTypeDef FLASH_OB_DisablePCROP(uint32_t Sector);
#endif /* STM32F401xC || STM32F401xE || STM32F411xE || STM32F446xx */
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx)|| defined(STM32F439xx)
static HAL_StatusTypeDef FLASH_OB_EnablePCROP(uint32_t SectorBank1, uint32_t SectorBank2, uint32_t Banks);
static HAL_StatusTypeDef FLASH_OB_DisablePCROP(uint32_t SectorBank1, uint32_t SectorBank2, uint32_t Banks);
static HAL_StatusTypeDef FLASH_OB_BootConfig(uint8_t BootConfig);
#endif /* STM32F427xx || STM32F437xx || STM32F429xx|| STM32F439xx */
extern HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup FLASHEx_Exported_Functions FLASHEx Exported Functions
* @{
*/
/** @defgroup FLASHEx_Exported_Functions_Group1 Extended IO operation functions
* @brief Extended IO operation functions
*
@verbatim
===============================================================================
##### Extended programming operation functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to manage the Extension FLASH
programming operations Operations.
@endverbatim
* @{
*/
/**
* @brief Perform a mass erase or erase the specified FLASH memory sectors
* @param[in] pEraseInit: pointer to an FLASH_EraseInitTypeDef structure that
* contains the configuration information for the erasing.
*
* @param[out] SectorError: pointer to variable that
* contains the configuration information on faulty sector in case of error
* (0xFFFFFFFF means that all the sectors have been correctly erased)
*
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_Erase(FLASH_EraseInitTypeDef *pEraseInit, uint32_t *SectorError)
{
HAL_StatusTypeDef status = HAL_ERROR;
uint32_t index = 0;
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Check the parameters */
assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase));
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
if(status == HAL_OK)
{
/*Initialization of SectorError variable*/
*SectorError = 0xFFFFFFFF;
if(pEraseInit->TypeErase == FLASH_TYPEERASE_MASSERASE)
{
/*Mass erase to be done*/
FLASH_MassErase((uint8_t) pEraseInit->VoltageRange, pEraseInit->Banks);
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
/* if the erase operation is completed, disable the MER Bit */
FLASH->CR &= (~FLASH_MER_BIT);
}
else
{
/* Check the parameters */
assert_param(IS_FLASH_NBSECTORS(pEraseInit->NbSectors + pEraseInit->Sector));
/* Erase by sector by sector to be done*/
for(index = pEraseInit->Sector; index < (pEraseInit->NbSectors + pEraseInit->Sector); index++)
{
FLASH_Erase_Sector(index, (uint8_t) pEraseInit->VoltageRange);
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
/* If the erase operation is completed, disable the SER Bit */
FLASH->CR &= (~FLASH_CR_SER);
FLASH->CR &= SECTOR_MASK;
if(status != HAL_OK)
{
/* In case of error, stop erase procedure and return the faulty sector*/
*SectorError = index;
break;
}
}
}
}
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
return status;
}
/**
* @brief Perform a mass erase or erase the specified FLASH memory sectors with interrupt enabled
* @param pEraseInit: pointer to an FLASH_EraseInitTypeDef structure that
* contains the configuration information for the erasing.
*
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_Erase_IT(FLASH_EraseInitTypeDef *pEraseInit)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Check the parameters */
assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase));
/* Enable End of FLASH Operation interrupt */
__HAL_FLASH_ENABLE_IT(FLASH_IT_EOP);
/* Enable Error source interrupt */
__HAL_FLASH_ENABLE_IT(FLASH_IT_ERR);
/* Clear pending flags (if any) */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR |\
FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR| FLASH_FLAG_PGSERR);
if(pEraseInit->TypeErase == FLASH_TYPEERASE_MASSERASE)
{
/*Mass erase to be done*/
pFlash.ProcedureOnGoing = FLASH_PROC_MASSERASE;
pFlash.Bank = pEraseInit->Banks;
FLASH_MassErase((uint8_t) pEraseInit->VoltageRange, pEraseInit->Banks);
}
else
{
/* Erase by sector to be done*/
/* Check the parameters */
assert_param(IS_FLASH_NBSECTORS(pEraseInit->NbSectors + pEraseInit->Sector));
pFlash.ProcedureOnGoing = FLASH_PROC_SECTERASE;
pFlash.NbSectorsToErase = pEraseInit->NbSectors;
pFlash.Sector = pEraseInit->Sector;
pFlash.VoltageForErase = (uint8_t)pEraseInit->VoltageRange;
/*Erase 1st sector and wait for IT*/
FLASH_Erase_Sector(pEraseInit->Sector, pEraseInit->VoltageRange);
}
return status;
}
/**
* @brief Program option bytes
* @param pOBInit: pointer to an FLASH_OBInitStruct structure that
* contains the configuration information for the programming.
*
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_OBProgram(FLASH_OBProgramInitTypeDef *pOBInit)
{
HAL_StatusTypeDef status = HAL_ERROR;
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Check the parameters */
assert_param(IS_OPTIONBYTE(pOBInit->OptionType));
/*Write protection configuration*/
if((pOBInit->OptionType & OPTIONBYTE_WRP) == OPTIONBYTE_WRP)
{
assert_param(IS_WRPSTATE(pOBInit->WRPState));
if(pOBInit->WRPState == OB_WRPSTATE_ENABLE)
{
/*Enable of Write protection on the selected Sector*/
status = FLASH_OB_EnableWRP(pOBInit->WRPSector, pOBInit->Banks);
}
else
{
/*Disable of Write protection on the selected Sector*/
status = FLASH_OB_DisableWRP(pOBInit->WRPSector, pOBInit->Banks);
}
}
/*Read protection configuration*/
if((pOBInit->OptionType & OPTIONBYTE_RDP) == OPTIONBYTE_RDP)
{
status = FLASH_OB_RDP_LevelConfig(pOBInit->RDPLevel);
}
/*USER configuration*/
if((pOBInit->OptionType & OPTIONBYTE_USER) == OPTIONBYTE_USER)
{
status = FLASH_OB_UserConfig(pOBInit->USERConfig&OB_IWDG_SW,
pOBInit->USERConfig&OB_STOP_NO_RST,
pOBInit->USERConfig&OB_STDBY_NO_RST);
}
/*BOR Level configuration*/
if((pOBInit->OptionType & OPTIONBYTE_BOR) == OPTIONBYTE_BOR)
{
status = FLASH_OB_BOR_LevelConfig(pOBInit->BORLevel);
}
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
return status;
}
/**
* @brief Get the Option byte configuration
* @param pOBInit: pointer to an FLASH_OBInitStruct structure that
* contains the configuration information for the programming.
*
* @retval None
*/
void HAL_FLASHEx_OBGetConfig(FLASH_OBProgramInitTypeDef *pOBInit)
{
pOBInit->OptionType = OPTIONBYTE_WRP | OPTIONBYTE_RDP | OPTIONBYTE_USER | OPTIONBYTE_BOR;
/*Get WRP*/
pOBInit->WRPSector = (uint32_t)FLASH_OB_GetWRP();
/*Get RDP Level*/
pOBInit->RDPLevel = (uint32_t)FLASH_OB_GetRDP();
/*Get USER*/
pOBInit->USERConfig = (uint8_t)FLASH_OB_GetUser();
/*Get BOR Level*/
pOBInit->BORLevel = (uint32_t)FLASH_OB_GetBOR();
}
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx)|| defined(STM32F439xx) ||\
defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE) || defined(STM32F446xx)
/**
* @brief Program option bytes
* @param pAdvOBInit: pointer to an FLASH_AdvOBProgramInitTypeDef structure that
* contains the configuration information for the programming.
*
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_AdvOBProgram (FLASH_AdvOBProgramInitTypeDef *pAdvOBInit)
{
HAL_StatusTypeDef status = HAL_ERROR;
/* Check the parameters */
assert_param(IS_OBEX(pAdvOBInit->OptionType));
/*Program PCROP option byte*/
if(((pAdvOBInit->OptionType) & OPTIONBYTE_PCROP) == OPTIONBYTE_PCROP)
{
/* Check the parameters */
assert_param(IS_PCROPSTATE(pAdvOBInit->PCROPState));
if((pAdvOBInit->PCROPState) == OB_PCROP_STATE_ENABLE)
{
/*Enable of Write protection on the selected Sector*/
#if defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE) || defined(STM32F446xx)
status = FLASH_OB_EnablePCROP(pAdvOBInit->Sectors);
#else /* STM32F427xx || STM32F437xx || STM32F429xx|| STM32F439xx */
status = FLASH_OB_EnablePCROP(pAdvOBInit->SectorsBank1, pAdvOBInit->SectorsBank2, pAdvOBInit->Banks);
#endif /* STM32F401xC || STM32F401xE || STM32F411xE || STM32F446xx */
}
else
{
/*Disable of Write protection on the selected Sector*/
#if defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE) || defined(STM32F446xx)
status = FLASH_OB_DisablePCROP(pAdvOBInit->Sectors);
#else /* STM32F427xx || STM32F437xx || STM32F429xx|| STM32F439xx */
status = FLASH_OB_DisablePCROP(pAdvOBInit->SectorsBank1, pAdvOBInit->SectorsBank2, pAdvOBInit->Banks);
#endif /* STM32F401xC || STM32F401xE || STM32F411xE || STM32F446xx */
}
}
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx)|| defined(STM32F439xx)
/*Program BOOT config option byte*/
if(((pAdvOBInit->OptionType) & OPTIONBYTE_BOOTCONFIG) == OPTIONBYTE_BOOTCONFIG)
{
status = FLASH_OB_BootConfig(pAdvOBInit->BootConfig);
}
#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */
return status;
}
/**
* @brief Get the OBEX byte configuration
* @param pAdvOBInit: pointer to an FLASH_AdvOBProgramInitTypeDef structure that
* contains the configuration information for the programming.
*
* @retval None
*/
void HAL_FLASHEx_AdvOBGetConfig(FLASH_AdvOBProgramInitTypeDef *pAdvOBInit)
{
#if defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE) || defined(STM32F446xx)
/*Get Sector*/
pAdvOBInit->Sectors = (*(__IO uint16_t *)(OPTCR_BYTE2_ADDRESS));
#else /* STM32F427xx || STM32F437xx || STM32F429xx|| STM32F439xx */
/*Get Sector for Bank1*/
pAdvOBInit->SectorsBank1 = (*(__IO uint16_t *)(OPTCR_BYTE2_ADDRESS));
/*Get Sector for Bank2*/
pAdvOBInit->SectorsBank2 = (*(__IO uint16_t *)(OPTCR1_BYTE2_ADDRESS));
/*Get Boot config OB*/
pAdvOBInit->BootConfig = *(__IO uint8_t *)OPTCR_BYTE0_ADDRESS;
#endif /* STM32F401xC || STM32F401xE || STM32F411xE || STM32F446xx */
}
/**
* @brief Select the Protection Mode
*
* @note After PCROP activated Option Byte modification NOT POSSIBLE! excepted
* Global Read Out Protection modification (from level1 to level0)
* @note Once SPRMOD bit is active unprotection of a protected sector is not possible
* @note Read a protected sector will set RDERR Flag and write a protected sector will set WRPERR Flag
* @note This function can be used only for STM32F42xxx/STM32F43xxx/STM32F401xx/STM32F411xx/STM32F446xx devices.
*
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_OB_SelectPCROP(void)
{
uint8_t optiontmp = 0xFF;
/* Mask SPRMOD bit */
optiontmp = (uint8_t)((*(__IO uint8_t *)OPTCR_BYTE3_ADDRESS) & (uint8_t)0x7F);
/* Update Option Byte */
*(__IO uint8_t *)OPTCR_BYTE3_ADDRESS = (uint8_t)(OB_PCROP_SELECTED | optiontmp);
return HAL_OK;
}
/**
* @brief Deselect the Protection Mode
*
* @note After PCROP activated Option Byte modification NOT POSSIBLE! excepted
* Global Read Out Protection modification (from level1 to level0)
* @note Once SPRMOD bit is active unprotection of a protected sector is not possible
* @note Read a protected sector will set RDERR Flag and write a protected sector will set WRPERR Flag
* @note This function can be used only for STM32F42xxx/STM32F43xxx/STM32F401xx/STM32F411xx/STM32F446xx devices.
*
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_OB_DeSelectPCROP(void)
{
uint8_t optiontmp = 0xFF;
/* Mask SPRMOD bit */
optiontmp = (uint8_t)((*(__IO uint8_t *)OPTCR_BYTE3_ADDRESS) & (uint8_t)0x7F);
/* Update Option Byte */
*(__IO uint8_t *)OPTCR_BYTE3_ADDRESS = (uint8_t)(OB_PCROP_DESELECTED | optiontmp);
return HAL_OK;
}
#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx || STM32F401xC || STM32F401xE || STM32F411xE */
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx)|| defined(STM32F439xx)
/**
* @brief Returns the FLASH Write Protection Option Bytes value for Bank 2
* @note This function can be used only for STM32F427X and STM32F429X devices.
* @retval The FLASH Write Protection Option Bytes value
*/
uint16_t HAL_FLASHEx_OB_GetBank2WRP(void)
{
/* Return the FLASH write protection Register value */
return (*(__IO uint16_t *)(OPTCR1_BYTE2_ADDRESS));
}
#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */
/**
* @}
*/
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx)|| defined(STM32F439xx)
/**
* @brief Full erase of FLASH memory sectors
* @param VoltageRange: The device voltage range which defines the erase parallelism.
* This parameter can be one of the following values:
* @arg FLASH_VOLTAGE_RANGE_1: when the device voltage range is 1.8V to 2.1V,
* the operation will be done by byte (8-bit)
* @arg FLASH_VOLTAGE_RANGE_2: when the device voltage range is 2.1V to 2.7V,
* the operation will be done by half word (16-bit)
* @arg FLASH_VOLTAGE_RANGE_3: when the device voltage range is 2.7V to 3.6V,
* the operation will be done by word (32-bit)
* @arg FLASH_VOLTAGE_RANGE_4: when the device voltage range is 2.7V to 3.6V + External Vpp,
* the operation will be done by double word (64-bit)
*
* @param Banks: Banks to be erased
* This parameter can be one of the following values:
* @arg FLASH_BANK_1: Bank1 to be erased
* @arg FLASH_BANK_2: Bank2 to be erased
* @arg FLASH_BANK_BOTH: Bank1 and Bank2 to be erased
*
* @retval HAL Status
*/
static void FLASH_MassErase(uint8_t VoltageRange, uint32_t Banks)
{
uint32_t tmp_psize = 0;
/* Check the parameters */
assert_param(IS_VOLTAGERANGE(VoltageRange));
assert_param(IS_FLASH_BANK(Banks));
/* if the previous operation is completed, proceed to erase all sectors */
FLASH->CR &= CR_PSIZE_MASK;
FLASH->CR |= tmp_psize;
if(Banks == FLASH_BANK_BOTH)
{
/* bank1 & bank2 will be erased*/
FLASH->CR |= FLASH_MER_BIT;
}
else if(Banks == FLASH_BANK_1)
{
/*Only bank1 will be erased*/
FLASH->CR |= FLASH_CR_MER1;
}
else
{
/*Only bank2 will be erased*/
FLASH->CR |= FLASH_CR_MER2;
}
FLASH->CR |= FLASH_CR_STRT;
}
/**
* @brief Erase the specified FLASH memory sector
* @param Sector: FLASH sector to erase
* The value of this parameter depend on device used within the same series
* @param VoltageRange: The device voltage range which defines the erase parallelism.
* This parameter can be one of the following values:
* @arg FLASH_VOLTAGE_RANGE_1: when the device voltage range is 1.8V to 2.1V,
* the operation will be done by byte (8-bit)
* @arg FLASH_VOLTAGE_RANGE_2: when the device voltage range is 2.1V to 2.7V,
* the operation will be done by half word (16-bit)
* @arg FLASH_VOLTAGE_RANGE_3: when the device voltage range is 2.7V to 3.6V,
* the operation will be done by word (32-bit)
* @arg FLASH_VOLTAGE_RANGE_4: when the device voltage range is 2.7V to 3.6V + External Vpp,
* the operation will be done by double word (64-bit)
*
* @retval None
*/
void FLASH_Erase_Sector(uint32_t Sector, uint8_t VoltageRange)
{
uint32_t tmp_psize = 0;
/* Check the parameters */
assert_param(IS_FLASH_SECTOR(Sector));
assert_param(IS_VOLTAGERANGE(VoltageRange));
if(VoltageRange == FLASH_VOLTAGE_RANGE_1)
{
tmp_psize = FLASH_PSIZE_BYTE;
}
else if(VoltageRange == FLASH_VOLTAGE_RANGE_2)
{
tmp_psize = FLASH_PSIZE_HALF_WORD;
}
else if(VoltageRange == FLASH_VOLTAGE_RANGE_3)
{
tmp_psize = FLASH_PSIZE_WORD;
}
else
{
tmp_psize = FLASH_PSIZE_DOUBLE_WORD;
}
/* Need to add offset of 4 when sector higher than FLASH_SECTOR_11 */
if(Sector > FLASH_SECTOR_11)
{
Sector += 4;
}
/* If the previous operation is completed, proceed to erase the sector */
FLASH->CR &= CR_PSIZE_MASK;
FLASH->CR |= tmp_psize;
FLASH->CR &= SECTOR_MASK;
FLASH->CR |= FLASH_CR_SER | (Sector << POSITION_VAL(FLASH_CR_SNB));
FLASH->CR |= FLASH_CR_STRT;
}
/**
* @brief Enable the write protection of the desired bank1 or bank 2 sectors
*
* @note When the memory read protection level is selected (RDP level = 1),
* it is not possible to program or erase the flash sector i if CortexM4
* debug features are connected or boot code is executed in RAM, even if nWRPi = 1
* @note Active value of nWRPi bits is inverted when PCROP mode is active (SPRMOD =1).
*
* @param WRPSector: specifies the sector(s) to be write protected.
* This parameter can be one of the following values:
* @arg WRPSector: A value between OB_WRP_SECTOR_0 and OB_WRP_SECTOR_23
* @arg OB_WRP_SECTOR_All
* @note BANK2 starts from OB_WRP_SECTOR_12
*
* @param Banks: Enable write protection on all the sectors for the specific bank
* This parameter can be one of the following values:
* @arg FLASH_BANK_1: WRP on all sectors of bank1
* @arg FLASH_BANK_2: WRP on all sectors of bank2
* @arg FLASH_BANK_BOTH: WRP on all sectors of bank1 & bank2
*
* @retval HAL FLASH State
*/
static HAL_StatusTypeDef FLASH_OB_EnableWRP(uint32_t WRPSector, uint32_t Banks)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_OB_WRP_SECTOR(WRPSector));
assert_param(IS_FLASH_BANK(Banks));
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
if(status == HAL_OK)
{
if(((WRPSector == OB_WRP_SECTOR_All) && ((Banks == FLASH_BANK_1) || (Banks == FLASH_BANK_BOTH))) ||
(WRPSector < OB_WRP_SECTOR_12))
{
if(WRPSector == OB_WRP_SECTOR_All)
{
/*Write protection on all sector of BANK1*/
*(__IO uint16_t*)OPTCR_BYTE2_ADDRESS &= (~(WRPSector>>12));
}
else
{
/*Write protection done on sectors of BANK1*/
*(__IO uint16_t*)OPTCR_BYTE2_ADDRESS &= (~WRPSector);
}
}
else
{
/*Write protection done on sectors of BANK2*/
*(__IO uint16_t*)OPTCR1_BYTE2_ADDRESS &= (~(WRPSector>>12));
}
/*Write protection on all sector of BANK2*/
if((WRPSector == OB_WRP_SECTOR_All) && (Banks == FLASH_BANK_BOTH))
{
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
if(status == HAL_OK)
{
*(__IO uint16_t*)OPTCR1_BYTE2_ADDRESS &= (~(WRPSector>>12));
}
}
}
return status;
}
/**
* @brief Disable the write protection of the desired bank1 or bank 2 sectors
*
* @note When the memory read protection level is selected (RDP level = 1),
* it is not possible to program or erase the flash sector i if CortexM4
* debug features are connected or boot code is executed in RAM, even if nWRPi = 1
* @note Active value of nWRPi bits is inverted when PCROP mode is active (SPRMOD =1).
*
* @param WRPSector: specifies the sector(s) to be write protected.
* This parameter can be one of the following values:
* @arg WRPSector: A value between OB_WRP_SECTOR_0 and OB_WRP_SECTOR_23
* @arg OB_WRP_Sector_All
* @note BANK2 starts from OB_WRP_SECTOR_12
*
* @param Banks: Disable write protection on all the sectors for the specific bank
* This parameter can be one of the following values:
* @arg FLASH_BANK_1: Bank1 to be erased
* @arg FLASH_BANK_2: Bank2 to be erased
* @arg FLASH_BANK_BOTH: Bank1 and Bank2 to be erased
*
* @retval HAL Status
*/
static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WRPSector, uint32_t Banks)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_OB_WRP_SECTOR(WRPSector));
assert_param(IS_FLASH_BANK(Banks));
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
if(status == HAL_OK)
{
if(((WRPSector == OB_WRP_SECTOR_All) && ((Banks == FLASH_BANK_1) || (Banks == FLASH_BANK_BOTH))) ||
(WRPSector < OB_WRP_SECTOR_12))
{
if(WRPSector == OB_WRP_SECTOR_All)
{
/*Write protection on all sector of BANK1*/
*(__IO uint16_t*)OPTCR_BYTE2_ADDRESS |= (uint16_t)(WRPSector>>12);
}
else
{
/*Write protection done on sectors of BANK1*/
*(__IO uint16_t*)OPTCR_BYTE2_ADDRESS |= (uint16_t)WRPSector;
}
}
else
{
/*Write protection done on sectors of BANK2*/
*(__IO uint16_t*)OPTCR1_BYTE2_ADDRESS |= (uint16_t)(WRPSector>>12);
}
/*Write protection on all sector of BANK2*/
if((WRPSector == OB_WRP_SECTOR_All) && (Banks == FLASH_BANK_BOTH))
{
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
if(status == HAL_OK)
{
*(__IO uint16_t*)OPTCR1_BYTE2_ADDRESS |= (uint16_t)(WRPSector>>12);
}
}
}
return status;
}
/**
* @brief Configure the Dual Bank Boot.
*
* @note This function can be used only for STM32F42xxx/43xxx devices.
*
* @param BootConfig specifies the Dual Bank Boot Option byte.
* This parameter can be one of the following values:
* @arg OB_Dual_BootEnabled: Dual Bank Boot Enable
* @arg OB_Dual_BootDisabled: Dual Bank Boot Disabled
* @retval None
*/
K1RR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr));
break;
case CRYP_KEYSIZE_128B:
hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr));
break;
default:
break;
}
}
/**
* @brief Writes the InitVector/InitCounter in IV registers.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param InitVector: Pointer to InitVector/InitCounter buffer
* @retval None
*/
static void CRYPEx_GCMCCM_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector)
{
uint32_t ivaddr = (uint32_t)InitVector;
hcryp->Instance->IV0LR = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4;
hcryp->Instance->IV0RR = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4;
hcryp->Instance->IV1LR = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4;
hcryp->Instance->IV1RR = __REV(*(uint32_t*)(ivaddr));
}
/**
* @brief Process Data: Writes Input data in polling mode and read the Output data.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Input: Pointer to the Input buffer.
* @param Ilength: Length of the Input buffer, must be a multiple of 16
* @param Output: Pointer to the returned buffer
* @param Timeout: Timeout value
* @retval None
*/
static HAL_StatusTypeDef CRYPEx_GCMCCM_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t *Input, uint16_t Ilength, uint8_t *Output, uint32_t Timeout)
{
uint32_t tickstart = 0;
uint32_t i = 0;
uint32_t inputaddr = (uint32_t)Input;
uint32_t outputaddr = (uint32_t)Output;
for(i=0; (i < Ilength); i+=16)
{
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE))
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Read the Output block from the OUT FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Sets the header phase
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Input: Pointer to the Input buffer.
* @param Ilength: Length of the Input buffer, must be a multiple of 16
* @param Timeout: Timeout value
* @retval None
*/
static HAL_StatusTypeDef CRYPEx_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint32_t Timeout)
{
uint32_t tickstart = 0;
uint32_t loopcounter = 0;
uint32_t headeraddr = (uint32_t)Input;
/***************************** Header phase *********************************/
if(hcryp->Init.HeaderSize != 0)
{
/* Select header phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
for(loopcounter = 0; (loopcounter < hcryp->Init.HeaderSize); loopcounter+=16)
{
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
}
/* Wait until the complete message has been processed */
/* Get tick */
tickstart = HAL_GetTick();
while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Sets the DMA configuration and start the DMA transfer.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param inputaddr: Address of the Input buffer
* @param Size: Size of the Input buffer, must be a multiple of 16
* @param outputaddr: Address of the Output buffer
* @retval None
*/
static void CRYPEx_GCMCCM_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
{
/* Set the CRYP DMA transfer complete callback */
hcryp->hdmain->XferCpltCallback = CRYPEx_GCMCCM_DMAInCplt;
/* Set the DMA error callback */
hcryp->hdmain->XferErrorCallback = CRYPEx_GCMCCM_DMAError;
/* Set the CRYP DMA transfer complete callback */
hcryp->hdmaout->XferCpltCallback = CRYPEx_GCMCCM_DMAOutCplt;
/* Set the DMA error callback */
hcryp->hdmaout->XferErrorCallback = CRYPEx_GCMCCM_DMAError;
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Enable the DMA In DMA Stream */
HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DR, Size/4);
/* Enable In DMA request */
hcryp->Instance->DMACR = CRYP_DMACR_DIEN;
/* Enable the DMA Out DMA Stream */
HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUT, outputaddr, Size/4);
/* Enable Out DMA request */
hcryp->Instance->DMACR |= CRYP_DMACR_DOEN;
}
/**
* @}
*/
/* Exported functions---------------------------------------------------------*/
/** @addtogroup CRYPEx_Exported_Functions
* @{
*/
/** @defgroup CRYPEx_Exported_Functions_Group1 Extended AES processing functions
* @brief Extended processing functions.
*
@verbatim
==============================================================================
##### Extended AES processing functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Encrypt plaintext using AES-128/192/256 using GCM and CCM chaining modes
(+) Decrypt cyphertext using AES-128/192/256 using GCM and CCM chaining modes
(+) Finish the processing. This function is available only for GCM and CCM
[..] Three processing methods are available:
(+) Polling mode
(+) Interrupt mode
(+) DMA mode
@endverbatim
* @{
*/
/**
* @brief Initializes the CRYP peripheral in AES CCM encryption mode then
* encrypt pPlainData. The cypher data are available in pCypherData.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData: Pointer to the plaintext buffer
* @param Size: Length of the plaintext buffer, must be a multiple of 16
* @param pCypherData: Pointer to the cyphertext buffer
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
{
uint32_t tickstart = 0;
uint32_t headersize = hcryp->Init.HeaderSize;
uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
uint32_t loopcounter = 0;
uint32_t bufferidx = 0;
uint8_t blockb0[16] = {0};/* Block B0 */
uint8_t ctr[16] = {0}; /* Counter */
uint32_t b0addr = (uint32_t)blockb0;
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/************************ Formatting the header block *********************/
if(headersize != 0)
{
/* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
if(headersize < 65280)
{
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
headersize += 2;
}
else
{
/* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
hcryp->Init.pScratch[bufferidx++] = 0xFF;
hcryp->Init.pScratch[bufferidx++] = 0xFE;
hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
headersize += 6;
}
/* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
for(loopcounter = 0; loopcounter < headersize; loopcounter++)
{
hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
}
/* Check if the header size is modulo 16 */
if ((headersize % 16) != 0)
{
/* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = 0;
}
/* Set the header size to modulo 16 */
headersize = ((headersize/16) + 1) * 16;
}
/* Set the pointer headeraddr to hcryp->Init.pScratch */
headeraddr = (uint32_t)hcryp->Init.pScratch;
}
/*********************** Formatting the block B0 **************************/
if(headersize != 0)
{
blockb0[0] = 0x40;
}
/* Flags byte */
/* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
{
blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
}
for ( ; loopcounter < 13; loopcounter++)
{
blockb0[loopcounter+1] = 0;
}
blockb0[14] = (Size >> 8);
blockb0[15] = (Size & 0xFF);
/************************* Formatting the initial counter *****************/
/* Byte 0:
Bits 7 and 6 are reserved and shall be set to 0
Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter blocks
are distinct from B0
Bits 0, 1, and 2 contain the same encoding of q as in B0
*/
ctr[0] = blockb0[0] & 0x07;
/* byte 1 to NonceSize is the IV (Nonce) */
for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
{
ctr[loopcounter] = blockb0[loopcounter];
}
/* Set the LSB to 1 */
ctr[15] |= 0x01;
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES CCM mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
/* Select init phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
b0addr = (uint32_t)blockb0;
/* Write the blockb0 block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/***************************** Header phase *******************************/
if(headersize != 0)
{
/* Select header phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
{
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
{
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
}
/* Write the header block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
}
/* Get tick */
tickstart = HAL_GetTick();
while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
}
/* Save formatted counter into the scratch buffer pScratch */
for(loopcounter = 0; (loopcounter < 16); loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
}
/* Reset bit 0 */
hcryp->Init.pScratch[15] &= 0xfe;
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Write Plain Data and Get Cypher Data */
if(CRYPEx_GCMCCM_ProcessData(hcryp,pPlainData, Size, pCypherData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES GCM encryption mode then
* encrypt pPlainData. The cypher data are available in pCypherData.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData: Pointer to the plaintext buffer
* @param Size: Length of the plaintext buffer, must be a multiple of 16
* @param pCypherData: Pointer to the cyphertext buffer
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
{
uint32_t tickstart = 0;
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES GCM mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Set the header phase */
if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Disable the CRYP peripheral */
__HAL_CRYP_DISABLE(hcryp);
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Write Plain Data and Get Cypher Data */
if(CRYPEx_GCMCCM_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES GCM decryption mode then
* decrypted pCypherData. The cypher data are available in pPlainData.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData: Pointer to the cyphertext buffer
* @param Size: Length of the cyphertext buffer, must be a multiple of 16
* @param pPlainData: Pointer to the plaintext buffer
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
{
uint32_t tickstart = 0;
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES GCM decryption mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_DECRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Set the header phase */
if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Disable the CRYP peripheral */
__HAL_CRYP_DISABLE(hcryp);
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Write Plain Data and Get Cypher Data */
if(CRYPEx_GCMCCM_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Computes the authentication TAG.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Size: Total length of the plain/cyphertext buffer
* @param AuthTag: Pointer to the authentication buffer
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Finish(CRYP_HandleTypeDef *hcryp, uint32_t Size, uint8_t *AuthTag, uint32_t Timeout)
{
uint32_t tickstart = 0;
uint64_t headerlength = hcryp->Init.HeaderSize * 8; /* Header length in bits */
uint64_t inputlength = Size * 8; /* input length in bits */
uint32_t tagaddr = (uint32_t)AuthTag;
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_PROCESS)
{
/* Change the CRYP phase */
hcryp->Phase = HAL_CRYP_PHASE_FINAL;
/* Disable CRYP to start the final phase */
__HAL_CRYP_DISABLE(hcryp);
/* Select final phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_FINAL);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Write the number of bits in header (64 bits) followed by the number of bits
in the payload */
if(hcryp->Init.DataType == CRYP_DATATYPE_1B)
{
hcryp->Instance->DR = __RBIT(headerlength >> 32);
hcryp->Instance->DR = __RBIT(headerlength);
hcryp->Instance->DR = __RBIT(inputlength >> 32);
hcryp->Instance->DR = __RBIT(inputlength);
}
else if(hcryp->Init.DataType == CRYP_DATATYPE_8B)
{
hcryp->Instance->DR = __REV(headerlength >> 32);
hcryp->Instance->DR = __REV(headerlength);
hcryp->Instance->DR = __REV(inputlength >> 32);
hcryp->Instance->DR = __REV(inputlength);
}
else if(hcryp->Init.DataType == CRYP_DATATYPE_16B)
{
hcryp->Instance->DR = __ROR((uint32_t)(headerlength >> 32), 16);
hcryp->Instance->DR = __ROR((uint32_t)headerlength, 16);
hcryp->Instance->DR = __ROR((uint32_t)(inputlength >> 32), 16);
hcryp->Instance->DR = __ROR((uint32_t)inputlength, 16);
}
else if(hcryp->Init.DataType == CRYP_DATATYPE_32B)
{
hcryp->Instance->DR = (uint32_t)(headerlength >> 32);
hcryp->Instance->DR = (uint32_t)(headerlength);
hcryp->Instance->DR = (uint32_t)(inputlength >> 32);
hcryp->Instance->DR = (uint32_t)(inputlength);
}
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE))
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Read the Auth TAG in the IN FIFO */
*(uint32_t*)(tagaddr) = hcryp->Instance->DOUT;
tagaddr+=4;
*(uint32_t*)(tagaddr) = hcryp->Instance->DOUT;
tagaddr+=4;
*(uint32_t*)(tagaddr) = hcryp->Instance->DOUT;
tagaddr+=4;
*(uint32_t*)(tagaddr) = hcryp->Instance->DOUT;
}
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Computes the authentication TAG for AES CCM mode.
* @note This API is called after HAL_AES_CCM_Encrypt()/HAL_AES_CCM_Decrypt()
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param AuthTag: Pointer to the authentication buffer
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Finish(CRYP_HandleTypeDef *hcryp, uint8_t *AuthTag, uint32_t Timeout)
{
uint32_t tickstart = 0;
uint32_t tagaddr = (uint32_t)AuthTag;
uint32_t ctraddr = (uint32_t)hcryp->Init.pScratch;
uint32_t temptag[4] = {0}; /* Temporary TAG (MAC) */
uint32_t loopcounter;
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_PROCESS)
{
/* Change the CRYP phase */
hcryp->Phase = HAL_CRYP_PHASE_FINAL;
/* Disable CRYP to start the final phase */
__HAL_CRYP_DISABLE(hcryp);
/* Select final phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_FINAL);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Write the counter block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)ctraddr;
ctraddr+=4;
hcryp->Instance->DR = *(uint32_t*)ctraddr;
ctraddr+=4;
hcryp->Instance->DR = *(uint32_t*)ctraddr;
ctraddr+=4;
hcryp->Instance->DR = *(uint32_t*)ctraddr;
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE))
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Read the Auth TAG in the IN FIFO */
temptag[0] = hcryp->Instance->DOUT;
temptag[1] = hcryp->Instance->DOUT;
temptag[2] = hcryp->Instance->DOUT;
temptag[3] = hcryp->Instance->DOUT;
}
/* Copy temporary authentication TAG in user TAG buffer */
for(loopcounter = 0; loopcounter < hcryp->Init.TagSize ; loopcounter++)
{
/* Set the authentication TAG buffer */
*((uint8_t*)tagaddr+loopcounter) = *((uint8_t*)temptag+loopcounter);
}
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES CCM decryption mode then
* decrypted pCypherData. The cypher data are available in pPlainData.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData: Pointer to the plaintext buffer
* @param Size: Length of the plaintext buffer, must be a multiple of 16
* @param pCypherData: Pointer to the cyphertext buffer
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
{
uint32_t tickstart = 0;
uint32_t headersize = hcryp->Init.HeaderSize;
uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
uint32_t loopcounter = 0;
uint32_t bufferidx = 0;
uint8_t blockb0[16] = {0};/* Block B0 */
uint8_t ctr[16] = {0}; /* Counter */
uint32_t b0addr = (uint32_t)blockb0;
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/************************ Formatting the header block *********************/
if(headersize != 0)
{
/* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
if(headersize < 65280)
{
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
headersize += 2;
}
else
{
/* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
hcryp->Init.pScratch[bufferidx++] = 0xFF;
hcryp->Init.pScratch[bufferidx++] = 0xFE;
hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
headersize += 6;
}
/* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
for(loopcounter = 0; loopcounter < headersize; loopcounter++)
{
hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
}
/* Check if the header size is modulo 16 */
if ((headersize % 16) != 0)
{
/* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = 0;
}
/* Set the header size to modulo 16 */
headersize = ((headersize/16) + 1) * 16;
}
/* Set the pointer headeraddr to hcryp->Init.pScratch */
headeraddr = (uint32_t)hcryp->Init.pScratch;
}
/*********************** Formatting the block B0 **************************/
if(headersize != 0)
{
blockb0[0] = 0x40;
}
/* Flags byte */
/* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
{
blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
}
for ( ; loopcounter < 13; loopcounter++)
{
blockb0[loopcounter+1] = 0;
}
blockb0[14] = (Size >> 8);
blockb0[15] = (Size & 0xFF);
/************************* Formatting the initial counter *****************/
/* Byte 0:
Bits 7 and 6 are reserved and shall be set to 0
Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter
blocks are distinct from B0
Bits 0, 1, and 2 contain the same encoding of q as in B0
*/
ctr[0] = blockb0[0] & 0x07;
/* byte 1 to NonceSize is the IV (Nonce) */
for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
{
ctr[loopcounter] = blockb0[loopcounter];
}
/* Set the LSB to 1 */
ctr[15] |= 0x01;
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES CCM mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_DECRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
/* Select init phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
b0addr = (uint32_t)blockb0;
/* Write the blockb0 block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/***************************** Header phase *******************************/
if(headersize != 0)
{
/* Select header phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
/* Enable Crypto processor */
__HAL_CRYP_ENABLE(hcryp);
for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
{
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Write the header block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
}
/* Get tick */
tickstart = HAL_GetTick();
while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
}
/* Save formatted counter into the scratch buffer pScratch */
for(loopcounter = 0; (loopcounter < 16); loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
}
/* Reset bit 0 */
hcryp->Init.pScratch[15] &= 0xfe;
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Write Plain Data and Get Cypher Data */
if(CRYPEx_GCMCCM_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES GCM encryption mode using IT.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData: Pointer to the plaintext buffer
* @param Size: Length of the plaintext buffer, must be a multiple of 16
* @param pCypherData: Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t tickstart = 0;
uint32_t inputaddr;
uint32_t outputaddr;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Get the buffer addresses and sizes */
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pPlainData;
hcryp->pCrypOutBuffPtr = pCypherData;
hcryp->CrypOutCount = Size;
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES GCM mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable CRYP to start the init phase */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/* Set the header phase */
if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Disable the CRYP peripheral */
__HAL_CRYP_DISABLE(hcryp);
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
if(Size != 0)
{
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
}
else
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state and phase */
hcryp->State = HAL_CRYP_STATE_READY;
}
/* Return function status */
return HAL_OK;
}
else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
{
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
hcryp->pCrypInBuffPtr += 16;
hcryp->CrypInCount -= 16;
if(hcryp->CrypInCount == 0)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call the Input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
}
else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
{
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
hcryp->pCrypOutBuffPtr += 16;
hcryp->CrypOutCount -= 16;
if(hcryp->CrypOutCount == 0)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call Input transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES CCM encryption mode using interrupt.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData: Pointer to the plaintext buffer
* @param Size: Length of the plaintext buffer, must be a multiple of 16
* @param pCypherData: Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t tickstart = 0;
uint32_t inputaddr;
uint32_t outputaddr;
uint32_t headersize = hcryp->Init.HeaderSize;
uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
uint32_t loopcounter = 0;
uint32_t bufferidx = 0;
uint8_t blockb0[16] = {0};/* Block B0 */
uint8_t ctr[16] = {0}; /* Counter */
uint32_t b0addr = (uint32_t)blockb0;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hcryp);
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pPlainData;
hcryp->pCrypOutBuffPtr = pCypherData;
hcryp->CrypOutCount = Size;
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/************************ Formatting the header block *******************/
if(headersize != 0)
{
/* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
if(headersize < 65280)
{
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
headersize += 2;
}
else
{
/* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
hcryp->Init.pScratch[bufferidx++] = 0xFF;
hcryp->Init.pScratch[bufferidx++] = 0xFE;
hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
headersize += 6;
}
/* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
for(loopcounter = 0; loopcounter < headersize; loopcounter++)
{
hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
}
/* Check if the header size is modulo 16 */
if ((headersize % 16) != 0)
{
/* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = 0;
}
/* Set the header size to modulo 16 */
headersize = ((headersize/16) + 1) * 16;
}
/* Set the pointer headeraddr to hcryp->Init.pScratch */
headeraddr = (uint32_t)hcryp->Init.pScratch;
}
/*********************** Formatting the block B0 ************************/
if(headersize != 0)
{
blockb0[0] = 0x40;
}
/* Flags byte */
/* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
{
blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
}
for ( ; loopcounter < 13; loopcounter++)
{
blockb0[loopcounter+1] = 0;
}
blockb0[14] = (Size >> 8);
blockb0[15] = (Size & 0xFF);
/************************* Formatting the initial counter ***************/
/* Byte 0:
Bits 7 and 6 are reserved and shall be set to 0
Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter
blocks are distinct from B0
Bits 0, 1, and 2 contain the same encoding of q as in B0
*/
ctr[0] = blockb0[0] & 0x07;
/* byte 1 to NonceSize is the IV (Nonce) */
for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
{
ctr[loopcounter] = blockb0[loopcounter];
}
/* Set the LSB to 1 */
ctr[15] |= 0x01;
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES CCM mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
/* Select init phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
b0addr = (uint32_t)blockb0;
/* Write the blockb0 block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/***************************** Header phase *****************************/
if(headersize != 0)
{
/* Select header phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
/* Enable Crypto processor */
__HAL_CRYP_ENABLE(hcryp);
for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
{
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/* Write the header block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
}
/* Get tick */
tickstart = HAL_GetTick();
while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Save formatted counter into the scratch buffer pScratch */
for(loopcounter = 0; (loopcounter < 16); loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
}
/* Reset bit 0 */
hcryp->Init.pScratch[15] &= 0xfe;
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
if(Size != 0)
{
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
}
else
{
/* Change the CRYP state and phase */
hcryp->State = HAL_CRYP_STATE_READY;
}
/* Return function status */
return HAL_OK;
}
else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
{
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
hcryp->pCrypInBuffPtr += 16;
hcryp->CrypInCount -= 16;
if(hcryp->CrypInCount == 0)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call Input transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
}
else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
{
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
hcryp->pCrypOutBuffPtr += 16;
hcryp->CrypOutCount -= 16;
if(hcryp->CrypOutCount == 0)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call Input transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES GCM decryption mode using IT.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData: Pointer to the cyphertext buffer
* @param Size: Length of the cyphertext buffer, must be a multiple of 16
* @param pPlainData: Pointer to the plaintext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t tickstart = 0;
uint32_t inputaddr;
uint32_t outputaddr;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Get the buffer addresses and sizes */
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pCypherData;
hcryp->pCrypOutBuffPtr = pPlainData;
hcryp->CrypOutCount = Size;
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES GCM decryption mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_DECRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable CRYP to start the init phase */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/* Set the header phase */
if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Disable the CRYP peripheral */
__HAL_CRYP_DISABLE(hcryp);
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
if(Size != 0)
{
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
}
else
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state and phase */
hcryp->State = HAL_CRYP_STATE_READY;
}
/* Return function status */
return HAL_OK;
}
else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
{
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
hcryp->pCrypInBuffPtr += 16;
hcryp->CrypInCount -= 16;
if(hcryp->CrypInCount == 0)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call the Input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
}
else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
{
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
hcryp->pCrypOutBuffPtr += 16;
hcryp->CrypOutCount -= 16;
if(hcryp->CrypOutCount == 0)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call Input transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES CCM decryption mode using interrupt
* then decrypted pCypherData. The cypher data are available in pPlainData.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData: Pointer to the cyphertext buffer
* @param Size: Length of the plaintext buffer, must be a multiple of 16
* @param pPlainData: Pointer to the plaintext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t inputaddr;
uint32_t outputaddr;
uint32_t tickstart = 0;
uint32_t headersize = hcryp->Init.HeaderSize;
uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
uint32_t loopcounter = 0;
uint32_t bufferidx = 0;
uint8_t blockb0[16] = {0};/* Block B0 */
uint8_t ctr[16] = {0}; /* Counter */
uint32_t b0addr = (uint32_t)blockb0;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hcryp);
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pCypherData;
hcryp->pCrypOutBuffPtr = pPlainData;
hcryp->CrypOutCount = Size;
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/************************ Formatting the header block *******************/
if(headersize != 0)
{
/* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
if(headersize < 65280)
{
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
headersize += 2;
}
else
{
/* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
hcryp->Init.pScratch[bufferidx++] = 0xFF;
hcryp->Init.pScratch[bufferidx++] = 0xFE;
hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
headersize += 6;
}
/* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
for(loopcounter = 0; loopcounter < headersize; loopcounter++)
{
hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
}
/* Check if the header size is modulo 16 */
if ((headersize % 16) != 0)
{
/* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = 0;
}
/* Set the header size to modulo 16 */
headersize = ((headersize/16) + 1) * 16;
}
/* Set the pointer headeraddr to hcryp->Init.pScratch */
headeraddr = (uint32_t)hcryp->Init.pScratch;
}
/*********************** Formatting the block B0 ************************/
if(headersize != 0)
{
blockb0[0] = 0x40;
}
/* Flags byte */
/* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
{
blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
}
for ( ; loopcounter < 13; loopcounter++)
{
blockb0[loopcounter+1] = 0;
}
blockb0[14] = (Size >> 8);
blockb0[15] = (Size & 0xFF);
/************************* Formatting the initial counter ***************/
/* Byte 0:
Bits 7 and 6 are reserved and shall be set to 0
Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter
blocks are distinct from B0
Bits 0, 1, and 2 contain the same encoding of q as in B0
*/
ctr[0] = blockb0[0] & 0x07;
/* byte 1 to NonceSize is the IV (Nonce) */
for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
{
ctr[loopcounter] = blockb0[loopcounter];
}
/* Set the LSB to 1 */
ctr[15] |= 0x01;
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES CCM mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_DECRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
/* Select init phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
b0addr = (uint32_t)blockb0;
/* Write the blockb0 block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/***************************** Header phase *****************************/
if(headersize != 0)
{
/* Select header phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
/* Enable Crypto processor */
__HAL_CRYP_ENABLE(hcryp);
for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
{
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/* Write the header block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
}
/* Get tick */
tickstart = HAL_GetTick();
while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Save formatted counter into the scratch buffer pScratch */
for(loopcounter = 0; (loopcounter < 16); loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
}
/* Reset bit 0 */
hcryp->Init.pScratch[15] &= 0xfe;
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Return function status */
return HAL_OK;
}
else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
{
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
hcryp->pCrypInBuffPtr += 16;
hcryp->CrypInCount -= 16;
if(hcryp->CrypInCount == 0)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call the Input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
}
else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
{
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
hcryp->pCrypOutBuffPtr += 16;
hcryp->CrypOutCount -= 16;
if(hcryp->CrypOutCount == 0)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call Input transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES GCM encryption mode using DMA.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData: Pointer to the plaintext buffer
* @param Size: Length of the plaintext buffer, must be a multiple of 16
* @param pCypherData: Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t tickstart = 0;
uint32_t inputaddr;
uint32_t outputaddr;
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pPlainData;
outputaddr = (uint32_t)pCypherData;
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES GCM mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable CRYP to start the init phase */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the header phase */
if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Disable the CRYP peripheral */
__HAL_CRYP_DISABLE(hcryp);
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Set the input and output addresses and start DMA transfer */
CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Unlock process */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES CCM encryption mode using interrupt.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData: Pointer to the plaintext buffer
* @param Size: Length of the plaintext buffer, must be a multiple of 16
* @param pCypherData: Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t tickstart = 0;
uint32_t inputaddr;
uint32_t outputaddr;
uint32_t headersize;
uint32_t headeraddr;
uint32_t loopcounter = 0;
uint32_t bufferidx = 0;
uint8_t blockb0[16] = {0};/* Block B0 */
uint8_t ctr[16] = {0}; /* Counter */
uint32_t b0addr = (uint32_t)blockb0;
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pPlainData;
outputaddr = (uint32_t)pCypherData;
headersize = hcryp->Init.HeaderSize;
headeraddr = (uint32_t)hcryp->Init.Header;
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pPlainData;
hcryp->pCrypOutBuffPtr = pCypherData;
hcryp->CrypOutCount = Size;
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/************************ Formatting the header block *******************/
if(headersize != 0)
{
/* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
if(headersize < 65280)
{
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
headersize += 2;
}
else
{
/* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
hcryp->Init.pScratch[bufferidx++] = 0xFF;
hcryp->Init.pScratch[bufferidx++] = 0xFE;
hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
headersize += 6;
}
/* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
for(loopcounter = 0; loopcounter < headersize; loopcounter++)
{
hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
}
/* Check if the header size is modulo 16 */
if ((headersize % 16) != 0)
{
/* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = 0;
}
/* Set the header size to modulo 16 */
headersize = ((headersize/16) + 1) * 16;
}
/* Set the pointer headeraddr to hcryp->Init.pScratch */
headeraddr = (uint32_t)hcryp->Init.pScratch;
}
/*********************** Formatting the block B0 ************************/
if(headersize != 0)
{
blockb0[0] = 0x40;
}
/* Flags byte */
/* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
{
blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
}
for ( ; loopcounter < 13; loopcounter++)
{
blockb0[loopcounter+1] = 0;
}
blockb0[14] = (Size >> 8);
blockb0[15] = (Size & 0xFF);
/************************* Formatting the initial counter ***************/
/* Byte 0:
Bits 7 and 6 are reserved and shall be set to 0
Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter
blocks are distinct from B0
Bits 0, 1, and 2 contain the same encoding of q as in B0
*/
ctr[0] = blockb0[0] & 0x07;
/* byte 1 to NonceSize is the IV (Nonce) */
for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
{
ctr[loopcounter] = blockb0[loopcounter];
}
/* Set the LSB to 1 */
ctr[15] |= 0x01;
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES CCM mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
/* Select init phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
b0addr = (uint32_t)blockb0;
/* Write the blockb0 block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/***************************** Header phase *****************************/
if(headersize != 0)
{
/* Select header phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
/* Enable Crypto processor */
__HAL_CRYP_ENABLE(hcryp);
for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
{
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/* Write the header block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
}
/* Get tick */
tickstart = HAL_GetTick();
while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Save formatted counter into the scratch buffer pScratch */
for(loopcounter = 0; (loopcounter < 16); loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
}
/* Reset bit 0 */
hcryp->Init.pScratch[15] &= 0xfe;
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Set the input and output addresses and start DMA transfer */
CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Unlock process */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES GCM decryption mode using DMA.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData: Pointer to the cyphertext buffer.
* @param Size: Length of the cyphertext buffer, must be a multiple of 16
* @param pPlainData: Pointer to the plaintext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t tickstart = 0;
uint32_t inputaddr;
uint32_t outputaddr;
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pCypherData;
outputaddr = (uint32_t)pPlainData;
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES GCM decryption mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_DECRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Enable CRYP to start the init phase */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/* Set the header phase */
if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Disable the CRYP peripheral */
__HAL_CRYP_DISABLE(hcryp);
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Set the input and output addresses and start DMA transfer */
CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Unlock process */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES CCM decryption mode using DMA
* then decrypted pCypherData. The cypher data are available in pPlainData.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData: Pointer to the cyphertext buffer
* @param Size: Length of the plaintext buffer, must be a multiple of 16
* @param pPlainData: Pointer to the plaintext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t tickstart = 0;
uint32_t inputaddr;
uint32_t outputaddr;
uint32_t headersize;
uint32_t headeraddr;
uint32_t loopcounter = 0;
uint32_t bufferidx = 0;
uint8_t blockb0[16] = {0};/* Block B0 */
uint8_t ctr[16] = {0}; /* Counter */
uint32_t b0addr = (uint32_t)blockb0;
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pCypherData;
outputaddr = (uint32_t)pPlainData;
headersize = hcryp->Init.HeaderSize;
headeraddr = (uint32_t)hcryp->Init.Header;
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pCypherData;
hcryp->pCrypOutBuffPtr = pPlainData;
hcryp->CrypOutCount = Size;
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/************************ Formatting the header block *******************/
if(headersize != 0)
{
/* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
if(headersize < 65280)
{
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
headersize += 2;
}
else
{
/* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
hcryp->Init.pScratch[bufferidx++] = 0xFF;
hcryp->Init.pScratch[bufferidx++] = 0xFE;
hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
headersize += 6;
}
/* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
for(loopcounter = 0; loopcounter < headersize; loopcounter++)
{
hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
}
/* Check if the header size is modulo 16 */
if ((headersize % 16) != 0)
{
/* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = 0;
}
/* Set the header size to modulo 16 */
headersize = ((headersize/16) + 1) * 16;
}
/* Set the pointer headeraddr to hcryp->Init.pScratch */
headeraddr = (uint32_t)hcryp->Init.pScratch;
}
/*********************** Formatting the block B0 ************************/
if(headersize != 0)
{
blockb0[0] = 0x40;
}
/* Flags byte */
/* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
{
blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
}
for ( ; loopcounter < 13; loopcounter++)
{
blockb0[loopcounter+1] = 0;
}
blockb0[14] = (Size >> 8);
blockb0[15] = (Size & 0xFF);
/************************* Formatting the initial counter ***************/
/* Byte 0:
Bits 7 and 6 are reserved and shall be set to 0
Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter
blocks are distinct from B0
Bits 0, 1, and 2 contain the same encoding of q as in B0
*/
ctr[0] = blockb0[0] & 0x07;
/* byte 1 to NonceSize is the IV (Nonce) */
for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
{
ctr[loopcounter] = blockb0[loopcounter];
}
/* Set the LSB to 1 */
ctr[15] |= 0x01;
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES CCM mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_DECRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
/* Select init phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
b0addr = (uint32_t)blockb0;
/* Write the blockb0 block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/***************************** Header phase *****************************/
if(headersize != 0)
{
/* Select header phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
/* Enable Crypto processor */
__HAL_CRYP_ENABLE(hcryp);
for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
{
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/* Write the header block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
}
/* Get tick */
tickstart = HAL_GetTick();
while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Save formatted counter into the scratch buffer pScratch */
for(loopcounter = 0; (loopcounter < 16); loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
}
/* Reset bit 0 */
hcryp->Init.pScratch[15] &= 0xfe;
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Set the input and output addresses and start DMA transfer */
CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Unlock process */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @}
*/
/** @defgroup CRYPEx_Exported_Functions_Group2 CRYPEx IRQ handler management
* @brief CRYPEx IRQ handler.
*
@verbatim
==============================================================================
##### CRYPEx IRQ handler management #####
==============================================================================
[..] This section provides CRYPEx IRQ handler function.
@endverbatim
* @{
*/
/**
* @brief This function handles CRYPEx interrupt request.
* @param hcryp: pointer to a CRYPEx_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
void HAL_CRYPEx_GCMCCM_IRQHandler(CRYP_HandleTypeDef *hcryp)
{
switch(CRYP->CR & CRYP_CR_ALGOMODE_DIRECTION)
{
case CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT:
HAL_CRYPEx_AESGCM_Encrypt_IT(hcryp, NULL, 0, NULL);
break;
case CRYP_CR_ALGOMODE_AES_GCM_DECRYPT:
HAL_CRYPEx_AESGCM_Decrypt_IT(hcryp, NULL, 0, NULL);
break;
case CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT:
HAL_CRYPEx_AESCCM_Encrypt_IT(hcryp, NULL, 0, NULL);
break;
case CRYP_CR_ALGOMODE_AES_CCM_DECRYPT:
HAL_CRYPEx_AESCCM_Decrypt_IT(hcryp, NULL, 0, NULL);
break;
default:
break;
}
}
/**
* @}
*/
/**
* @}
*/
#endif /* STM32F437xx || STM32F439xx */
#endif /* HAL_CRYP_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|