/* * stm-uart.c * ---------- * Functions for sending strings and numbers over the uart. * * Copyright (c) 2015, NORDUnet A/S All rights reserved. * Copyright: 2020, The Commons Conservancy Cryptech Project * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "stm-init.h" #include "stm-uart.h" #include UART_HandleTypeDef huart_mgmt; /* USART1 */ UART_HandleTypeDef huart_user; /* USART2 */ DMA_HandleTypeDef hdma_usart_mgmt_rx; DMA_HandleTypeDef hdma_usart_user_rx; UART_HandleTypeDef* default_uart = STM_UART_MGMT; #ifdef HAL_DMA_MODULE_ENABLED /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA2_CLK_ENABLE(); __HAL_RCC_DMA1_CLK_ENABLE(); /* DMA interrupt init */ /* USER UART RX */ HAL_NVIC_SetPriority(DMA1_Stream5_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Stream5_IRQn); /* MGMT UART RX */ HAL_NVIC_SetPriority(DMA2_Stream2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA2_Stream2_IRQn); } #endif /* HAL_DMA_MODULE_ENABLED */ /* USART1 init function */ static void MX_USART1_UART_Init(void) { huart_mgmt.Instance = USART1; huart_mgmt.Init.BaudRate = USART_MGMT_BAUD_RATE; huart_mgmt.Init.WordLength = UART_WORDLENGTH_8B; huart_mgmt.Init.StopBits = UART_STOPBITS_1; huart_mgmt.Init.Parity = UART_PARITY_NONE; huart_mgmt.Init.Mode = UART_MODE_TX_RX; huart_mgmt.Init.HwFlowCtl = UART_HWCONTROL_RTS_CTS; huart_mgmt.Init.OverSampling = UART_OVERSAMPLING_16; #ifdef HAL_DMA_MODULE_ENABLED __HAL_LINKDMA(&huart_mgmt, hdmarx, hdma_usart_mgmt_rx); #endif if (HAL_UART_Init(&huart_mgmt) != HAL_OK) { /* Initialization Error */ Error_Handler(); } } /* USART2 init function */ static void MX_USART2_UART_Init(void) { huart_user.Instance = USART2; huart_user.Init.BaudRate = USART_USER_BAUD_RATE; huart_user.Init.WordLength = UART_WORDLENGTH_8B; huart_user.Init.StopBits = UART_STOPBITS_1; huart_user.Init.Parity = UART_PARITY_NONE; huart_user.Init.Mode = UART_MODE_TX_RX; huart_user.Init.HwFlowCtl = UART_HWCONTROL_RTS_CTS; huart_user.Init.OverSampling = UART_OVERSAMPLING_16; #ifdef HAL_DMA_MODULE_ENABLED __HAL_LINKDMA(&huart_user, hdmarx, hdma_usart_user_rx); #endif if (HAL_UART_Init(&huart_user) != HAL_OK) { /* Initialization Error */ Error_Handler(); } } void uart_init(void) { #ifdef HAL_DMA_MODULE_ENABLED MX_DMA_Init(); #endif MX_USART1_UART_Init(); MX_USART2_UART_Init(); } void uart_set_default(UART_HandleTypeDef *uart) { default_uart = uart; } /* send a single character */ HAL_StatusTypeDef uart_send_char2(UART_HandleTypeDef *uart, uint8_t ch) { return uart_send_bytes2(uart, &ch, 1); } /* receive a single character */ HAL_StatusTypeDef uart_recv_char2(UART_HandleTypeDef *uart, uint8_t *cp, uint32_t timeout) { return HAL_UART_Receive(uart, cp, 1, timeout); } /* send a string */ HAL_StatusTypeDef uart_send_string2(UART_HandleTypeDef *uart, const char *s) { return uart_send_bytes2(uart, (uint8_t *) s, strlen(s)); } /* send raw bytes */ HAL_StatusTypeDef uart_send_bytes2(UART_HandleTypeDef *uart, uint8_t *buf, size_t len) { for (int timeout = 0; timeout < 100; ++timeout) { HAL_UART_StateTypeDef status = HAL_UART_GetState(uart); if (status == HAL_UART_STATE_READY || status == HAL_UART_STATE_BUSY_RX) return HAL_UART_Transmit(uart, (uint8_t *) buf, (uint32_t) len, 0x1); } return HAL_TIMEOUT; } /* receive raw bytes */ HAL_StatusTypeDef uart_receive_bytes2(UART_HandleTypeDef *uart, uint8_t *buf, size_t len, uint32_t timeout) { return HAL_UART_Receive(uart, (uint8_t *) buf, (uint32_t) len, timeout); } /* Generalized routine to send binary, decimal, and hex integers. * This code is adapted from Chris Giese's printf.c */ HAL_StatusTypeDef uart_send_number2(UART_HandleTypeDef *uart, uint32_t num, uint8_t digits, uint8_t radix) { #define BUFSIZE 32 char buf[BUFSIZE]; char *where = buf + BUFSIZE; /* initialize buf so we can add leading 0 by adjusting the pointer */ memset(buf, '0', BUFSIZE); /* build the string backwards, starting with the least significant digit */ do { uint32_t temp; temp = num % radix; where--; if (temp < 10) *where = temp + '0'; else *where = temp - 10 + 'A'; num = num / radix; } while (num != 0); if (where > buf + BUFSIZE - digits) /* pad with leading 0 */ where = buf + BUFSIZE - digits; else /* number is larger than the specified number of digits */ digits = buf + BUFSIZE - where; return uart_send_bytes2(uart, (uint8_t *) where, digits); } HAL_StatusTypeDef uart_send_hexdump2(UART_HandleTypeDef *uart, const uint8_t *buf, const uint8_t start_offset, const uint8_t end_offset) { uint32_t i; uart_send_number2(uart, start_offset, 2, 16); uart_send_string2(uart, " -- "); for (i = start_offset; i <= end_offset; i++) { if (i && (! (i % 16))) { uart_send_string2(uart, "\r\n"); if (i != end_offset) { /* Output new offset unless the last byte is reached */ uart_send_number2(uart, i, 2, 16); uart_send_string2(uart, " -- "); } } uart_send_number2(uart, *(buf + i), 2, 16); uart_send_string2(uart, " "); } return HAL_OK; }