/* * spiflash_n25q128.c * ------------------ * Functions and defines for accessing SPI flash with part number n25q128. * * The Alpha board has two of these SPI flash memorys, the FPGA config memory * and the keystore memory. * * Copyright (c) 2016-2017, NORDUnet A/S All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the NORDUnet nor the names of its contributors may * be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spiflash_n25q128.h" #define N25Q128_NUM_BYTES (N25Q128_PAGE_SIZE * N25Q128_NUM_PAGES) #if N25Q128_SECTOR_SIZE * N25Q128_NUM_SECTORS != N25Q128_NUM_BYTES || \ N25Q128_SUBSECTOR_SIZE * N25Q128_NUM_SUBSECTORS != N25Q128_NUM_BYTES #error Inconsistent definitions for pages / sectors / subsectors #endif static inline void _n25q128_select(struct spiflash_ctx *ctx) { HAL_GPIO_WritePin(ctx->cs_n_port, ctx->cs_n_pin, GPIO_PIN_RESET); } static inline void _n25q128_deselect(struct spiflash_ctx *ctx) { HAL_GPIO_WritePin(ctx->cs_n_port, ctx->cs_n_pin, GPIO_PIN_SET); } /* Read a bit from the status register. */ static inline int _n25q128_get_status_bit(struct spiflash_ctx *ctx, unsigned bitnum) { // tx, rx buffers uint8_t spi_tx[2]; uint8_t spi_rx[2]; //assert(bitnum < sizeof(uint8_t)); // send READ STATUS command spi_tx[0] = N25Q128_COMMAND_READ_STATUS; // send command, read response, deselect _n25q128_select(ctx); int ok = HAL_SPI_TransmitReceive(ctx->hspi, spi_tx, spi_rx, 2, N25Q128_SPI_TIMEOUT) == HAL_OK; _n25q128_deselect(ctx); // check if (!ok) return -1; // done return ((spi_rx[1] >> bitnum) & 1); } /* Read the Write Enable Latch bit in the status register. */ static inline int _n25q128_get_wel_flag(struct spiflash_ctx *ctx) { return _n25q128_get_status_bit(ctx, 1); } /* Read the Write In Progress bit in the status register. */ static inline int _n25q128_get_wip_flag(struct spiflash_ctx *ctx) { return _n25q128_get_status_bit(ctx, 0); } /* Wait until the flash memory is done writing */ static HAL_StatusTypeDef _n25q128_wait_while_wip(struct spiflash_ctx *ctx, uint32_t timeout) { uint32_t tick_end = HAL_GetTick() + timeout; do { switch (_n25q128_get_wip_flag(ctx)) { case 0: return HAL_OK; case -1: return HAL_ERROR; default: /* try again */ continue; } } while (HAL_GetTick() < tick_end); return HAL_TIMEOUT; } /* Send the Write Enable command */ static HAL_StatusTypeDef _n25q128_write_enable(struct spiflash_ctx *ctx) { // tx buffer uint8_t spi_tx[1]; // enable writing spi_tx[0] = N25Q128_COMMAND_WRITE_ENABLE; // activate, send command, deselect _n25q128_select(ctx); int ok = HAL_SPI_Transmit(ctx->hspi, spi_tx, 1, N25Q128_SPI_TIMEOUT) == HAL_OK; _n25q128_deselect(ctx); // check if (!ok) return HAL_ERROR; // make sure, that write enable did the job return _n25q128_get_wel_flag(ctx) ? HAL_OK : HAL_ERROR; } HAL_StatusTypeDef n25q128_check_id(struct spiflash_ctx *ctx) { // tx, rx buffers uint8_t spi_tx[4]; uint8_t spi_rx[4]; // send READ ID command spi_tx[0] = N25Q128_COMMAND_READ_ID; // select, send command & read response, deselect _n25q128_select(ctx); int ok = HAL_SPI_TransmitReceive(ctx->hspi, spi_tx, spi_rx, 4, N25Q128_SPI_TIMEOUT) == HAL_OK; _n25q128_deselect(ctx); // check if (!ok) return HAL_ERROR; // parse response (note, that the very first byte was received during the // transfer of the command byte, so it contains garbage and should // be ignored here) return (spi_rx[1] == N25Q128_ID_MANUFACTURER && spi_rx[2] == N25Q128_ID_DEVICE_TYPE && spi_rx[3] == N25Q128_ID_DEVICE_CAPACITY) ? HAL_OK : HAL_ERROR; } HAL_StatusTypeDef n25q128_write_page(struct spiflash_ctx *ctx, uint32_t page_offset, const uint8_t *page_buffer) { // tx buffer uint8_t spi_tx[4]; // check offset if (page_offset >= N25Q128_NUM_PAGES) return HAL_ERROR; // enable writing if (_n25q128_write_enable(ctx) != 0) return HAL_ERROR; // calculate byte address uint32_t byte_offset = page_offset * N25Q128_PAGE_SIZE; // prepare PROGRAM PAGE command spi_tx[0] = N25Q128_COMMAND_PAGE_PROGRAM; spi_tx[1] = (uint8_t)(byte_offset >> 16); spi_tx[2] = (uint8_t)(byte_offset >> 8); spi_tx[3] = (uint8_t)(byte_offset >> 0); // activate, send command, send data, deselect _n25q128_select(ctx); int ok = HAL_SPI_Transmit(ctx->hspi, spi_tx, 4, N25Q128_SPI_TIMEOUT) == HAL_OK && HAL_SPI_Transmit(ctx->hspi, (uint8_t *) page_buffer, N25Q128_PAGE_SIZE, N25Q128_SPI_TIMEOUT) == HAL_OK; _n25q128_deselect(ctx); // check if (!ok) return HAL_ERROR; // wait until write finishes return _n25q128_wait_while_wip(ctx, 1000); } static HAL_StatusTypeDef n25q128_erase_something(struct spiflash_ctx *ctx, uint8_t command, uint32_t byte_offset) { // check offset if (byte_offset >= N25Q128_NUM_BYTES) return HAL_ERROR; // tx buffer uint8_t spi_tx[4]; // enable writing if (_n25q128_write_enable(ctx) != 0) return HAL_ERROR; // send command (ERASE SECTOR or ERASE SUBSECTOR) spi_tx[0] = command; spi_tx[1] = (uint8_t)(byte_offset >> 16); spi_tx[2] = (uint8_t)(byte_offset >> 8); spi_tx[3] = (uint8_t)(byte_offset >> 0); // activate, send command, deselect _n25q128_select(ctx); int ok = HAL_SPI_Transmit(ctx->hspi, spi_tx, 4, N25Q128_SPI_TIMEOUT) == HAL_OK; _n25q128_deselect(ctx); // check if (!ok) return HAL_ERROR; // wait for erase to finish return _n25q128_wait_while_wip(ctx, 1000); } HAL_StatusTypeDef n25q128_erase_sector(struct spiflash_ctx *ctx, uint32_t sector_offset) { return n25q128_erase_something(ctx, N25Q128_COMMAND_ERASE_SECTOR, sector_offset * N25Q128_SECTOR_SIZE); } HAL_StatusTypeDef n25q128_erase_subsector(struct spiflash_ctx *ctx, uint32_t subsector_offset) { return n25q128_erase_something(ctx, N25Q128_COMMAND_ERASE_SUBSECTOR, subsector_offset * N25Q128_SUBSECTOR_SIZE); } HAL_StatusTypeDef n25q128_erase_bulk(struct spiflash_ctx *ctx) { // tx buffer uint8_t spi_tx[1]; // enable writing if (_n25q128_write_enable(ctx) != 0) return HAL_ERROR; // send command spi_tx[0] = N25Q128_COMMAND_ERASE_BULK; // activate, send command, deselect _n25q128_select(ctx); int ok = HAL_SPI_Transmit(ctx->hspi, spi_tx, 1, N25Q128_SPI_TIMEOUT) == HAL_OK; _n25q128_deselect(ctx); // check if (!ok) return HAL_ERROR; // wait for erase to finish return _n25q128_wait_while_wip(ctx, 60000); } /* This function writes of a number of pages to the flash memory. * The caller is responsible for ensuring that the pages have been erased. */ HAL_StatusTypeDef n25q128_write_data(struct spiflash_ctx *ctx, uint32_t offset, const uint8_t *buf, const uint32_t len) { uint32_t page; /* * The data sheet says: * If the bits of the least significant address, which is the starting * address, are not all zero, all data transmitted beyond the end of the * current page is programmed from the starting address of the same page. * If the number of bytes sent to the device exceed the maximum page size, * previously latched data is discarded and only the last maximum * page-size number of data bytes are guaranteed to be programmed * correctly within the same page. If the number of bytes sent to the * device is less than the maximum page size, they are correctly * programmed at the specified addresses without any effect on the other * bytes of the same page. * * This is sufficiently confusing that it makes sense to constrain the API * to page alignment in address and length, because that's how we're using * it anyway. */ if (offset % N25Q128_PAGE_SIZE != 0 || len % N25Q128_PAGE_SIZE != 0) return HAL_ERROR; for (page = 0; page < len / N25Q128_PAGE_SIZE; page++) { if (n25q128_write_page(ctx, offset / N25Q128_PAGE_SIZE, buf) != 0) { return HAL_ERROR; } buf += N25Q128_PAGE_SIZE; offset += N25Q128_PAGE_SIZE; } return HAL_OK; } /* This function reads zero or more pages from the SPI flash. */ HAL_StatusTypeDef n25q128_read_data(struct spiflash_ctx *ctx, uint32_t offset, uint8_t *buf, const uint32_t len) { // tx buffer uint8_t spi_tx[4]; /* * The data sheet says: * The addressed byte can be at any location, and the address * automatically increments to the next address after each byte of data is * shifted out; therefore, the entire memory can be read with a single * command. The operation is terminated by driving S# [chip select] HIGH * at any time during data output. * * We're only going to call this with page-aligned address and length, but * we're not going to enforce it here. */ // avoid overflow if (offset + len > N25Q128_NUM_BYTES) return HAL_ERROR; // prepare READ command spi_tx[0] = N25Q128_COMMAND_READ; spi_tx[1] = (uint8_t)(offset >> 16); spi_tx[2] = (uint8_t)(offset >> 8); spi_tx[3] = (uint8_t)(offset >> 0); // activate, send command, read response, deselect _n25q128_select(ctx); int ok = HAL_SPI_Transmit(ctx->hspi, spi_tx, 4, N25Q128_SPI_TIMEOUT) == HAL_OK && HAL_SPI_Receive(ctx->hspi, buf, len, N25Q128_SPI_TIMEOUT) == HAL_OK; _n25q128_deselect(ctx); // check return ok ? HAL_OK : HAL_ERROR; }