/* * cli-test.c * --------- * Test code with a small CLI on the management interface * * Copyright (c) 2016, NORDUnet A/S All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the NORDUnet nor the names of its contributors may * be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "stm32f4xx_hal.h" #include "stm-init.h" #include "stm-led.h" #include "stm-uart.h" #include "stm-fpgacfg.h" #include "stm-keystore.h" #include "stm-sdram.h" #include "mgmt-cli.h" #include "mgmt-dfu.h" #include "mgmt-fpga.h" #include "test_sdram.h" #include #include extern uint32_t update_crc(uint32_t crc, uint8_t *buf, int len); /* MGMT UART interrupt receive buffer (data will be put in a larger ring buffer) */ volatile uint8_t uart_rx; int cmd_show_cpuspeed(struct cli_def *cli, const char *command, char *argv[], int argc) { volatile uint32_t hclk; hclk = HAL_RCC_GetHCLKFreq(); cli_print(cli, "HSE_VALUE: %li", HSE_VALUE); cli_print(cli, "HCLK: %li (%i MHz)", hclk, (int) hclk / 1000 / 1000); cli_print(cli, "SystemCoreClock: %li (%i MHz)", SystemCoreClock, (int) SystemCoreClock / 1000 / 1000); return CLI_OK; } int cmd_filetransfer(struct cli_def *cli, const char *command, char *argv[], int argc) { uint32_t filesize = 0, crc = 0, my_crc = 0, n = 256, counter = 0; uint8_t buf[256]; cli_print(cli, "OK, write file size (4 bytes), data in %li byte chunks, CRC-32 (4 bytes)", n); uart_receive_bytes(STM_UART_MGMT, (void *) &filesize, 4, 1000); cli_print(cli, "File size %li", filesize); while (filesize) { if (filesize < n) { n = filesize; } if (uart_receive_bytes(STM_UART_MGMT, (void *) &buf, n, 1000) != HAL_OK) { cli_print(cli, "Receive timed out"); return CLI_ERROR; } filesize -= n; my_crc = update_crc(my_crc, buf, n); counter++; uart_send_bytes(STM_UART_MGMT, (void *) &counter, 4); } cli_print(cli, "Send CRC-32"); uart_receive_bytes(STM_UART_MGMT, (void *) &crc, 4, 1000); cli_print(cli, "CRC-32 %li", crc); if (crc == my_crc) { cli_print(cli, "CRC checksum MATCHED"); } else { cli_print(cli, "CRC checksum did NOT match"); } return CLI_OK; } int cmd_show_fpga_status(struct cli_def *cli, const char *command, char *argv[], int argc) { cli_print(cli, "FPGA has %sloaded a bitstream", fpgacfg_check_done() ? "":"NOT "); return CLI_OK; } int cmd_show_keystore_status(struct cli_def *cli, const char *command, char *argv[], int argc) { cli_print(cli, "Keystore memory is %sonline", (keystore_check_id() != 1) ? "NOT ":""); return CLI_OK; } int cmd_show_keystore_data(struct cli_def *cli, const char *command, char *argv[], int argc) { uint8_t buf[KEYSTORE_PAGE_SIZE]; uint32_t i; if (keystore_check_id() != 1) { cli_print(cli, "ERROR: The keystore memory is not accessible."); } memset(buf, 0, sizeof(buf)); if ((i = keystore_read_data(0, buf, sizeof(buf))) != 1) { cli_print(cli, "Failed reading first page from keystore memory: %li", i); return CLI_ERROR; } cli_print(cli, "First page from keystore memory:\r\n"); uart_send_hexdump(STM_UART_MGMT, buf, 0, sizeof(buf) - 1); uart_send_string2(STM_UART_MGMT, (char *) "\r\n\r\n"); for (i = 0; i < 8; i++) { if (buf[i] == 0xff) break; /* never written */ if (buf[i] != 0x55) break; /* something other than a tombstone */ } /* As a demo, tombstone byte after byte of the first 8 bytes in the keystore memory * (as long as they do not appear to contain real data). * If all of them are tombstones, erase the first sector to start over. */ if (i < 8) { if (buf[i] == 0xff) { cli_print(cli, "Tombstoning byte %li", i); buf[i] = 0x55; if ((i = keystore_write_data(0, buf, sizeof(buf))) != 1) { cli_print(cli, "Failed writing data at offset 0: %li", i); return CLI_ERROR; } } } else { cli_print(cli, "Erasing first sector since all the first 8 bytes are tombstones"); if ((i = keystore_erase_sectors(1)) != 1) { cli_print(cli, "Failed erasing the first sector: %li", i); return CLI_ERROR; } cli_print(cli, "Erase result: %li", i); } return CLI_OK; } int cmd_reboot(struct cli_def *cli, const char *command, char *argv[], int argc) { cli_print(cli, "\n\n\nRebooting\n\n\n"); HAL_NVIC_SystemReset(); while (1) {}; } int cmd_test_sdram(struct cli_def *cli, const char *command, char *argv[], int argc) { // run external memory initialization sequence HAL_StatusTypeDef status; int ok, num_cycles = 1, i, test_completed; if (argc == 1) { num_cycles = strtol(argv[0], NULL, 0); if (num_cycles > 100) num_cycles = 100; if (num_cycles < 1) num_cycles = 1; } cli_print(cli, "Initializing SDRAM"); status = sdram_init(); if (status != HAL_OK) { cli_print(cli, "Failed initializing SDRAM: %i", (int) status); return CLI_OK; } for (i = 1; i <= num_cycles; i++) { cli_print(cli, "Starting SDRAM test (%i/%i)", i, num_cycles); test_completed = 0; // set LFSRs to some initial value, LFSRs will produce // pseudo-random 32-bit patterns to test our memories lfsr1 = 0xCCAA5533; lfsr2 = 0xCCAA5533; cli_print(cli, "Run sequential write-then-read test for the first chip"); ok = test_sdram_sequential(SDRAM_BASEADDR_CHIP1); if (!ok) break; cli_print(cli, "Run random write-then-read test for the first chip"); ok = test_sdram_random(SDRAM_BASEADDR_CHIP1); if (!ok) break; cli_print(cli, "Run sequential write-then-read test for the second chip"); ok = test_sdram_sequential(SDRAM_BASEADDR_CHIP2); if (!ok) break; cli_print(cli, "Run random write-then-read test for the second chip"); ok = test_sdram_random(SDRAM_BASEADDR_CHIP2); if (!ok) break; // turn blue led on (testing two chips at the same time) led_on(LED_BLUE); cli_print(cli, "Run interleaved write-then-read test for both chips at once"); ok = test_sdrams_interleaved(SDRAM_BASEADDR_CHIP1, SDRAM_BASEADDR_CHIP2); led_off(LED_BLUE); test_completed = 1; cli_print(cli, "SDRAM test (%i/%i) completed\r\n", i, num_cycles); } if (! test_completed) { cli_print(cli, "SDRAM test failed (%i/%i)", i, num_cycles); } else { cli_print(cli, "SDRAM test completed successfully"); } return CLI_OK; } int check_auth(const char *username, const char *password) { if (strcasecmp(username, "ct") != 0) return CLI_ERROR; if (strcasecmp(password, "ct") != 0) return CLI_ERROR; return CLI_OK; } void configure_cli_show(struct cli_def *cli) { /* show */ cli_command_root(show); /* show cpuspeed */ cli_command_node(show, cpuspeed, "Show the speed at which the CPU currently operates"); cli_command_branch(show, fpga); /* show fpga status*/ cli_command_node(show_fpga, status, "Show status about the FPGA"); cli_command_branch(show, keystore); /* show keystore status*/ cli_command_node(show_keystore, status, "Show status of the keystore memory"); cli_command_node(show_keystore, data, "Show the first page of the keystore memory"); } void configure_cli_test(struct cli_def *cli) { /* test */ cli_command_root(test); /* test sdram */ cli_command_node(test, sdram, "Run SDRAM tests"); } static void configure_cli_misc(struct cli_def *cli) { /* filetransfer */ cli_command_root_node(filetransfer, "Test file transfering"); /* reboot */ cli_command_root_node(reboot, "Reboot the STM32"); } typedef void (*pFunction)(void); /* This is it's own function to make it more convenient to set a breakpoint at it in gdb */ void do_early_dfu_jump(void) { pFunction loaded_app = (pFunction) *dfu_code_ptr; /* Set the stack pointer to the correct one for the firmware */ __set_MSP(*dfu_msp_ptr); /* Set the Vector Table Offset Register */ SCB->VTOR = (uint32_t) dfu_firmware; loaded_app(); while (1); } /* Callback for HAL_UART_Receive_IT(). */ void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { if (huart->Instance == huart_mgmt.Instance) { mgmt_cli_uart_isr((const uint8_t *) &uart_rx, 1); /* Set things up to receive another byte. */ HAL_UART_Receive_IT(huart, (uint8_t *) &uart_rx, 1); } } void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) { led_on(LED_RED); led_on(LED_YELLOW); } int main() { static struct cli_def cli; /* Check if we've just rebooted in order to jump to the firmware. */ if (*dfu_control == HARDWARE_EARLY_DFU_JUMP) { *dfu_control = 0; do_early_dfu_jump(); } stm_init(); led_on(LED_RED); mgmt_cli_init(&cli); cli_set_auth_callback(&cli, check_auth); configure_cli_show(&cli); configure_cli_fpga(&cli); configure_cli_test(&cli); configure_cli_misc(&cli); configure_cli_dfu(&cli); led_off(LED_RED); led_on(LED_GREEN); embedded_cli_loop(&cli); /* embedded_cli_loop returns when the user enters 'quit' or 'exit' */ cli_print(&cli, "Rebooting in 3 seconds"); HAL_Delay(3000); HAL_NVIC_SystemReset(); /* NOT REACHED */ Error_Handler(); }