diff options
Diffstat (limited to 'stm-fmc.c')
-rw-r--r-- | stm-fmc.c | 25 |
1 files changed, 22 insertions, 3 deletions
@@ -115,7 +115,7 @@ void fmc_init(void) _fmc_fpga_inst.Init.WrapMode = FMC_WRAP_MODE_DISABLE; // don't care in fixed latency mode - _fmc_fpga_inst.Init.WaitSignalActive = FMC_WAIT_TIMING_DURING_WS; + _fmc_fpga_inst.Init.WaitSignalActive = FMC_WAIT_TIMING_BEFORE_WS; // allow write access to fpga _fmc_fpga_inst.Init.WriteOperation = FMC_WRITE_OPERATION_ENABLE; @@ -155,12 +155,31 @@ void fmc_init(void) // use smallest allowed divisor for best performance fmc_timing.CLKDivision = 2; - // stm is too slow to work with min allowed 2-cycle latency - fmc_timing.DataLatency = 3; + // use min suitable for fastest transfer + fmc_timing.DataLatency = 4; // don't care in sync mode fmc_timing.AccessMode = FMC_ACCESS_MODE_A; // initialize fmc HAL_SRAM_Init(&_fmc_fpga_inst, &fmc_timing, NULL); + + // STM32 only enables FMC clock right before the very first read/write + // access. FPGA takes certain time (<= 100 us) to lock its PLL to this frequency, + // so a certain number of initial FMC transactions may be missed. One read transaction + // takes ~0.1 us (9 ticks @ 90 MHz), so doing 1000 dummy reads will make sure, that FPGA + // has already locked its PLL and is ready. Another way around is to repeatedly read + // some register that is guaranteed to have known value until reading starts returning + // correct data. + + // to prevent compiler from optimizing this away, we pretent we're calculating sum + int cyc; + uint32_t sum; + volatile uint32_t part; + + for (cyc=0; cyc<1000; cyc++) + { + part = *(__IO uint32_t *)FMC_FPGA_BASE_ADDR; + sum += part; + } } |