1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
#!/usr/bin/env python
"""
Use PyCrypto to generate test data for Cryptech ModExp core.
"""
# Funnily enough, PyCrypto and Cryptlib use exactly the same names for
# RSA key components, see Cryptlib documentation pages 186-187 & 339.
from argparse import ArgumentParser, FileType
from Crypto import __version__ as PyCryptoVersion
from Crypto.PublicKey import RSA
from Crypto.Hash import SHA256
from Crypto.Util.number import long_to_bytes
from Crypto.Signature.PKCS1_v1_5 import EMSA_PKCS1_V1_5_ENCODE, PKCS115_SigScheme
from textwrap import TextWrapper
import sys, os.path
def KeyLengthType(arg):
val = int(arg)
if val % 8 != 0:
raise ValueError
return val
parser = ArgumentParser(description = __doc__)
parser.add_argument("--pad-to-modulus", action = "store_true",
help = "zero-pad to modulus size (bug workaround)")
parser.add_argument("--extra-word", action = "store_true",
help = "add extra word of zero padding (bug workaround)")
parser.add_argument("-k", "--key-lengths", type = KeyLengthType,
nargs = "*", default = [1024, 2048, 4096],
help = "Lengths in bits of keys to generate")
parser.add_argument("--pkcs-encoding", type = int, choices = (1, 8), default = 8,
help = "PKCS encoding to use for PEM commented private key")
parser.add_argument("output", nargs = "?", type = FileType("w"), default = sys.stdout,
help = "output file")
args = parser.parse_args()
plaintext = "You can hack anything you want with TECO and DDT."
scriptname = os.path.basename(sys.argv[0])
wrapper = TextWrapper(width = 78, initial_indent = " " * 2, subsequent_indent = " " * 2)
def printlines(*lines, **kwargs):
for line in lines:
args.output.write(line % kwargs + "\n")
def trailing_comma(item, sequence):
return "" if item == sequence[-1] else ","
def print_hex(name, value, comment):
printlines("static const uint8_t %(name)s[] = { /* %(comment)s, %(length)d bytes */",
wrapper.fill(", ".join("0x%02x" % ord(v) for v in value)),
"};", "",
name = name, comment = comment, length = len(value))
def pad_to_blocksize(value, blocksize):
extra = len(value) % blocksize
return value if extra == 0 else ("\x00" * (blocksize - extra)) + value
h = SHA256.new(plaintext)
printlines("/*",
" * RSA signature test data for Cryptech project, automatically generated by",
" * %(scriptname)s using PyCrypto version %(version)s. Do not edit.",
" *",
" * Plaintext: \"%(plaintext)s\"",
" * SHA-256: %(digest)s",
" */", "",
scriptname = scriptname,
version = PyCryptoVersion,
plaintext = plaintext,
digest = h.hexdigest())
for k_len in args.key_lengths:
k = RSA.generate(k_len) # Cryptlib insists u < p, probably with good reason,
while k.u >= k.p: # and I'm sure not going to argue the math with Peter,
k = RSA.generate(k_len) # so keep trying until we pass this test
m = EMSA_PKCS1_V1_5_ENCODE(h, k_len/8)
s = PKCS115_SigScheme(k).sign(h)
assert len(m) == len(s)
if args.pad_to_modulus:
blocksize = k_len/8
if args.extra_word:
blocksize += 4
else:
blocksize = 4
printlines("/* %(k_len)d-bit RSA private key (PKCS #%(pkcs)d)",
k.exportKey(format = "PEM", pkcs = args.pkcs_encoding),
"*/", "",
k_len = k_len, pkcs = args.pkcs_encoding)
for component in k.keydata:
print_hex("%s_%d" % (component, k_len),
long_to_bytes(getattr(k, component), blocksize = blocksize),
"key component %s" % component)
print_hex("m_%d" % k_len, pad_to_blocksize(m, blocksize), "message to be signed")
print_hex("s_%d" % k_len, pad_to_blocksize(s, blocksize), "signed message")
fields = "nedpqums"
printlines("typedef struct { const uint8_t *val; size_t len; } rsa_tc_bn_t;",
"typedef struct { size_t size; rsa_tc_bn_t %(fields)s; } rsa_tc_t;",
"",
"static const rsa_tc_t rsa_tc[] = {",
fields = ", ".join(fields))
for k_len in args.key_lengths:
printlines(" { %(k_len)d,", k_len = k_len)
for field in fields:
printlines(" { %(field)s_%(k_len)d, sizeof(%(field)s_%(k_len)d) }%(comma)s",
field = field, k_len = k_len, comma = trailing_comma(field, fields))
printlines(" }%(comma)s", comma = trailing_comma(k_len, args.key_lengths))
printlines("};")
|