1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
|
/*
* rsa.c
* -----
* Basic RSA functions based on Cryptech ModExp core.
*
* The mix of what we're doing in software vs what we're doing on the
* FPGA is a moving target. Goal for now is to have the bits we need
* to do in C be straightforward to review and as simple as possible
* (but no simpler).
*
* Much of the code in this module is based, at least loosely, on Tom
* St Denis's libtomcrypt code.
*
* Authors: Rob Austein
* Copyright (c) 2015, NORDUnet A/S
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* We use "Tom's Fast Math" library for our bignum implementation.
* This particular implementation has a couple of nice features:
*
* - The code is relatively readable, thus reviewable.
*
* - The bignum representation doesn't use dynamic memory, which
* simplifies things for us.
*
* The price tag for not using dynamic memory is that libtfm has to be
* configured to know about the largest bignum one wants it to be able
* to support at compile time. This should not be a serious problem.
*
* We use a lot of one-element arrays (fp_int[1] instead of plain
* fp_int) to avoid having to prefix every use of an fp_int with "&".
* Perhaps we should encapsulate this idiom in a typedef.
*
* Unfortunately, libtfm is bad about const-ification, but we want to
* hide that from our users, so our public API uses const as
* appropriate and we use inline functions to remove const constraints
* in a relatively type-safe manner before calling libtom.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include "hal.h"
#include "hal_internal.h"
#include <tfm.h>
#include "asn1_internal.h"
/*
* Whether to use ModExp core. It works, but it's painfully slow.
*/
#ifndef HAL_RSA_SIGN_USE_MODEXP
#define HAL_RSA_SIGN_USE_MODEXP 1
#endif
#ifndef HAL_RSA_KEYGEN_USE_MODEXP
#define HAL_RSA_KEYGEN_USE_MODEXP 0
#endif
#if defined(RPC_CLIENT) && RPC_CLIENT != RPC_CLIENT_LOCAL
#define hal_get_random(core, buffer, length) hal_rpc_get_random(buffer, length)
#endif
/*
* How big to make the buffers for the modulus coefficient and
* Montgomery factor. This will almost certainly want tuning.
*/
#ifndef HAL_RSA_MAX_OPERAND_LENGTH
#define HAL_RSA_MAX_OPERAND_LENGTH (4096 / 8)
#endif
/*
* Whether we want debug output.
*/
static int debug = 0;
void hal_rsa_set_debug(const int onoff)
{
debug = onoff;
}
/*
* Whether we want RSA blinding.
*/
static int blinding = 1;
void hal_rsa_set_blinding(const int onoff)
{
blinding = onoff;
}
/*
* RSA key implementation. This structure type is private to this
* module, anything else that needs to touch one of these just gets a
* typed opaque pointer. We do, however, export the size, so that we
* can make memory allocation the caller's problem.
*/
struct hal_rsa_key {
hal_key_type_t type; /* What kind of key this is */
fp_int n[1]; /* The modulus */
fp_int e[1]; /* Public exponent */
fp_int d[1]; /* Private exponent */
fp_int p[1]; /* 1st prime factor */
fp_int q[1]; /* 2nd prime factor */
fp_int u[1]; /* 1/q mod p */
fp_int dP[1]; /* d mod (p - 1) */
fp_int dQ[1]; /* d mod (q - 1) */
unsigned flags; /* Internal key flags */
uint8_t /* ModExpA7 speedup factors */
nC[HAL_RSA_MAX_OPERAND_LENGTH], nF[HAL_RSA_MAX_OPERAND_LENGTH],
pC[HAL_RSA_MAX_OPERAND_LENGTH/2], pF[HAL_RSA_MAX_OPERAND_LENGTH/2],
qC[HAL_RSA_MAX_OPERAND_LENGTH/2], qF[HAL_RSA_MAX_OPERAND_LENGTH/2];
};
#define RSA_FLAG_PRECALC_N_DONE (1 << 0)
#define RSA_FLAG_PRECALC_P_DONE (1 << 1)
#define RSA_FLAG_PRECALC_Q_DONE (1 << 2)
const size_t hal_rsa_key_t_size = sizeof(hal_rsa_key_t);
/*
* Initializers. We want to be able to initialize automatic fp_int
* variables a sane value (less error prone), but picky compilers
* whine about the number of curly braces required. So we define a
* macro which isolates that madness in one place.
*/
#define INIT_FP_INT {{{0}}}
/*
* Error handling.
*/
#define lose(_code_) \
do { err = _code_; goto fail; } while (0)
#define FP_CHECK(_expr_) \
do { \
switch (_expr_) { \
case FP_OKAY: break; \
case FP_VAL: lose(HAL_ERROR_BAD_ARGUMENTS); \
case FP_MEM: lose(HAL_ERROR_ALLOCATION_FAILURE); \
default: lose(HAL_ERROR_IMPOSSIBLE); \
} \
} while (0)
/*
* Unpack a bignum into a byte array, with length check.
*/
static hal_error_t unpack_fp(const fp_int * const bn, uint8_t *buffer, const size_t length)
{
hal_error_t err = HAL_OK;
if (bn == NULL || buffer == NULL)
return HAL_ERROR_IMPOSSIBLE;
const size_t bytes = fp_unsigned_bin_size(unconst_fp_int(bn));
if (bytes > length)
lose(HAL_ERROR_RESULT_TOO_LONG);
memset(buffer, 0, length);
fp_to_unsigned_bin(unconst_fp_int(bn), buffer + length - bytes);
fail:
return err;
}
#if HAL_RSA_SIGN_USE_MODEXP
/*
* Unwrap bignums into byte arrays, feed them into hal_modexp(), and
* wrap result back up as a bignum.
*/
static hal_error_t modexp(hal_core_t *core,
const int precalc_done,
const fp_int * const msg,
const fp_int * const exp,
const fp_int * const mod,
fp_int *res,
uint8_t *coeff, const size_t coeff_len,
uint8_t *mont, const size_t mont_len)
{
hal_error_t err = HAL_OK;
if (msg == NULL || exp == NULL || mod == NULL || res == NULL || coeff == NULL || mont == NULL)
return HAL_ERROR_IMPOSSIBLE;
const size_t msg_len = (fp_unsigned_bin_size(unconst_fp_int(msg)) + 3) & ~3;
const size_t exp_len = (fp_unsigned_bin_size(unconst_fp_int(exp)) + 3) & ~3;
const size_t mod_len = (fp_unsigned_bin_size(unconst_fp_int(mod)) + 3) & ~3;
uint8_t msgbuf[msg_len];
uint8_t expbuf[exp_len];
uint8_t modbuf[mod_len];
uint8_t resbuf[mod_len];
if ((err = unpack_fp(msg, msgbuf, sizeof(msgbuf))) != HAL_OK ||
(err = unpack_fp(exp, expbuf, sizeof(expbuf))) != HAL_OK ||
(err = unpack_fp(mod, modbuf, sizeof(modbuf))) != HAL_OK ||
(err = hal_modexp(core, precalc_done,
msgbuf, sizeof(msgbuf),
expbuf, sizeof(expbuf),
modbuf, sizeof(modbuf),
resbuf, sizeof(resbuf),
coeff, coeff_len,
mont, mont_len)) != HAL_OK)
goto fail;
fp_read_unsigned_bin(res, resbuf, sizeof(resbuf));
fail:
memset(msgbuf, 0, sizeof(msgbuf));
memset(expbuf, 0, sizeof(expbuf));
memset(modbuf, 0, sizeof(modbuf));
memset(resbuf, 0, sizeof(resbuf));
return err;
}
#else /* HAL_RSA_SIGN_USE_MODEXP */
/*
* Use libtfm's software implementation of modular exponentiation.
* Now that the ModExpA7 core performs about as well as the software
* implementation, there's probably no need to use this, but we're
* still tuning things, so leave the hook here for now.
*/
static hal_error_t modexp(const hal_core_t *core, /* ignored */
const int precalc_done, /* ignored */
const fp_int * const msg,
const fp_int * const exp,
const fp_int * const mod,
fp_int *res,
uint8_t *coeff, const size_t coeff_len, /* ignored */
uint8_t *mont, const size_t mont_len) /* ignored */
{
hal_error_t err = HAL_OK;
FP_CHECK(fp_exptmod(unconst_fp_int(msg), unconst_fp_int(exp), unconst_fp_int(mod), res));
fail:
return err;
}
#endif /* HAL_RSA_SIGN_USE_MODEXP */
/*
* Wrapper to let us export our modexp function as a replacement for
* libtfm's when running libtfm's Miller-Rabin test code.
*
* At the moment, the libtfm software implementation performs
* disproportionately better than our core does for the specific case
* of Miller-Rabin tests, for reasons we don't really understand.
* So there's not much point in enabling this, except as a test to
* confirm this behavior.
*
* This code is here rather than in a separate module because of the
* error handling: libtfm's error codes aren't really capable of
* expressing all the things that could go wrong here.
*/
#if HAL_RSA_SIGN_USE_MODEXP && HAL_RSA_KEYGEN_USE_MODEXP
int fp_exptmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d)
{
const size_t len = (fp_unsigned_bin_size(unconst_fp_int(b)) + 3) & ~3;
uint8_t C[len], F[len];
const hal_error_t err = modexp(NULL, 0, a, b, c, d, C, sizeof(C), F, sizeof(F));
memset(C, 0, sizeof(C));
memset(F, 0, sizeof(F));
return err == HAL_OK ? FP_OKAY : FP_VAL;
}
#endif /* HAL_RSA_SIGN_USE_MODEXP && HAL_RSA_KEYGEN_USE_MODEXP */
/*
* Create blinding factors. There are various schemes for amortizing
* the cost of this over multiple RSA operations, at present we don't
* try. Come back to this if it looks like a bottleneck.
*/
static hal_error_t create_blinding_factors(hal_core_t *core, hal_rsa_key_t *key, fp_int *bf, fp_int *ubf)
{
if (key == NULL || bf == NULL || ubf == NULL)
return HAL_ERROR_IMPOSSIBLE;
uint8_t rnd[fp_unsigned_bin_size(unconst_fp_int(key->n))];
hal_error_t err = HAL_OK;
if ((err = hal_get_random(NULL, rnd, sizeof(rnd))) != HAL_OK)
goto fail;
fp_init(bf);
fp_read_unsigned_bin(bf, rnd, sizeof(rnd));
fp_copy(bf, ubf);
if ((err = modexp(core, (key->flags & RSA_FLAG_PRECALC_N_DONE), bf, key->e, key->n, bf,
key->nC, sizeof(key->nC), key->nF, sizeof(key->nF))) != HAL_OK)
goto fail;
key->flags |= RSA_FLAG_PRECALC_N_DONE;
FP_CHECK(fp_invmod(ubf, unconst_fp_int(key->n), ubf));
fail:
memset(rnd, 0, sizeof(rnd));
return err;
}
/*
* RSA decryption via Chinese Remainder Theorem (Garner's formula).
*/
static hal_error_t rsa_crt(hal_core_t *core, hal_rsa_key_t *key, fp_int *msg, fp_int *sig)
{
if (key == NULL || msg == NULL || sig == NULL)
return HAL_ERROR_IMPOSSIBLE;
hal_error_t err = HAL_OK;
fp_int t[1] = INIT_FP_INT;
fp_int m1[1] = INIT_FP_INT;
fp_int m2[1] = INIT_FP_INT;
fp_int bf[1] = INIT_FP_INT;
fp_int ubf[1] = INIT_FP_INT;
/*
* Handle blinding if requested.
*/
if (blinding) {
if ((err = create_blinding_factors(core, key, bf, ubf)) != HAL_OK)
goto fail;
FP_CHECK(fp_mulmod(msg, bf, unconst_fp_int(key->n), msg));
}
/*
* m1 = msg ** dP mod p
* m2 = msg ** dQ mod q
*
* This is just crying out to be done with parallel cores, but get
* the boring version working before jumping off that cliff.
*/
if ((err = modexp(core, (key->flags & RSA_FLAG_PRECALC_P_DONE),
msg, key->dP, key->p, m1, key->pC, sizeof(key->pC), key->pF, sizeof(key->pF))) != HAL_OK ||
(err = modexp(core, (key->flags & RSA_FLAG_PRECALC_Q_DONE),
msg, key->dQ, key->q, m2, key->qC, sizeof(key->qC), key->qF, sizeof(key->qF))) != HAL_OK)
goto fail;
key->flags |= RSA_FLAG_PRECALC_P_DONE | RSA_FLAG_PRECALC_Q_DONE;
/*
* t = m1 - m2.
*/
fp_sub(m1, m2, t);
/*
* Add zero (mod p) if needed to make t positive. If doing this
* once or twice doesn't help, something is very wrong.
*/
if (fp_cmp_d(t, 0) == FP_LT)
fp_add(t, unconst_fp_int(key->p), t);
if (fp_cmp_d(t, 0) == FP_LT)
fp_add(t, unconst_fp_int(key->p), t);
if (fp_cmp_d(t, 0) == FP_LT)
lose(HAL_ERROR_IMPOSSIBLE);
/*
* sig = (t * u mod p) * q + m2
*/
FP_CHECK(fp_mulmod(t, unconst_fp_int(key->u), unconst_fp_int(key->p), t));
fp_mul(t, unconst_fp_int(key->q), t);
fp_add(t, m2, sig);
/*
* Unblind if necessary.
*/
if (blinding)
FP_CHECK(fp_mulmod(sig, ubf, unconst_fp_int(key->n), sig));
fail:
fp_zero(t);
fp_zero(m1);
fp_zero(m2);
return err;
}
/*
* Public API for raw RSA encryption and decryption.
*
* NB: This does not handle PKCS #1.5 padding, at the moment that's up
* to the caller.
*/
hal_error_t hal_rsa_encrypt(hal_core_t *core,
hal_rsa_key_t *key,
const uint8_t * const input, const size_t input_len,
uint8_t * output, const size_t output_len)
{
hal_error_t err = HAL_OK;
if (key == NULL || input == NULL || output == NULL || input_len > output_len)
return HAL_ERROR_BAD_ARGUMENTS;
fp_int i[1] = INIT_FP_INT;
fp_int o[1] = INIT_FP_INT;
fp_read_unsigned_bin(i, unconst_uint8_t(input), input_len);
if ((err = modexp(core, (key->flags & RSA_FLAG_PRECALC_N_DONE), i, key->e, key->n, o,
key->nC, sizeof(key->nC), key->nF, sizeof(key->nF))) == HAL_OK) {
key->flags |= RSA_FLAG_PRECALC_N_DONE;
err = unpack_fp(o, output, output_len);
}
fp_zero(i);
fp_zero(o);
return err;
}
hal_error_t hal_rsa_decrypt(hal_core_t *core,
hal_rsa_key_t *key,
const uint8_t * const input, const size_t input_len,
uint8_t * output, const size_t output_len)
{
hal_error_t err = HAL_OK;
if (key == NULL || input == NULL || output == NULL || input_len > output_len)
return HAL_ERROR_BAD_ARGUMENTS;
fp_int i[1] = INIT_FP_INT;
fp_int o[1] = INIT_FP_INT;
fp_read_unsigned_bin(i, unconst_uint8_t(input), input_len);
/*
* Do CRT if we have all the necessary key components, otherwise
* just do brute force ModExp.
*/
if (!fp_iszero(key->p) && !fp_iszero(key->q) && !fp_iszero(key->u) && !fp_iszero(key->dP) && !fp_iszero(key->dQ))
err = rsa_crt(core, key, i, o);
else if ((err = modexp(core, (key->flags & RSA_FLAG_PRECALC_N_DONE), i, key->d, key->n, o,
key->nC, sizeof(key->nC), key->nF, sizeof(key->nF))) == HAL_OK)
key->flags |= RSA_FLAG_PRECALC_N_DONE;
if (err != HAL_OK || (err = unpack_fp(o, output, output_len)) != HAL_OK)
goto fail;
fail:
fp_zero(i);
fp_zero(o);
return err;
}
/*
* Clear a key. We might want to do something a bit more energetic
* than plain old memset() eventually.
*/
void hal_rsa_key_clear(hal_rsa_key_t *key)
{
if (key != NULL)
memset(key, 0, sizeof(*key));
}
/*
* Load a key from raw components. This is a simplistic version: we
* don't attempt to generate missing private key components, we just
* reject the key if it doesn't have everything we expect.
*
* In theory, the only things we'd really need for the private key if
* we were being nicer about this would be e, p, and q, as we could
* calculate everything else from them.
*/
static hal_error_t load_key(const hal_key_type_t type,
hal_rsa_key_t **key_,
void *keybuf, const size_t keybuf_len,
const uint8_t * const n, const size_t n_len,
const uint8_t * const e, const size_t e_len,
const uint8_t * const d, const size_t d_len,
const uint8_t * const p, const size_t p_len,
const uint8_t * const q, const size_t q_len,
const uint8_t * const u, const size_t u_len,
const uint8_t * const dP, const size_t dP_len,
const uint8_t * const dQ, const size_t dQ_len)
{
if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hal_rsa_key_t))
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
hal_rsa_key_t *key = keybuf;
key->type = type;
#define _(x) do { fp_init(key->x); if (x == NULL) goto fail; fp_read_unsigned_bin(key->x, unconst_uint8_t(x), x##_len); } while (0)
switch (type) {
case HAL_KEY_TYPE_RSA_PRIVATE:
_(d); _(p); _(q); _(u); _(dP); _(dQ);
case HAL_KEY_TYPE_RSA_PUBLIC:
_(n); _(e);
*key_ = key;
return HAL_OK;
default:
goto fail;
}
#undef _
fail:
memset(key, 0, sizeof(*key));
return HAL_ERROR_BAD_ARGUMENTS;
}
/*
* Public API to load_key().
*/
hal_error_t hal_rsa_key_load_private(hal_rsa_key_t **key_,
void *keybuf, const size_t keybuf_len,
const uint8_t * const n, const size_t n_len,
const uint8_t * const e, const size_t e_len,
const uint8_t * const d, const size_t d_len,
const uint8_t * const p, const size_t p_len,
const uint8_t * const q, const size_t q_len,
const uint8_t * const u, const size_t u_len,
const uint8_t * const dP, const size_t dP_len,
const uint8_t * const dQ, const size_t dQ_len)
{
return load_key(HAL_KEY_TYPE_RSA_PRIVATE, key_, keybuf, keybuf_len,
n, n_len, e, e_len,
d, d_len, p, p_len, q, q_len, u, u_len, dP, dP_len, dQ, dQ_len);
}
hal_error_t hal_rsa_key_load_public(hal_rsa_key_t **key_,
void *keybuf, const size_t keybuf_len,
const uint8_t * const n, const size_t n_len,
const uint8_t * const e, const size_t e_len)
{
return load_key(HAL_KEY_TYPE_RSA_PUBLIC, key_, keybuf, keybuf_len,
n, n_len, e, e_len,
NULL, 0, NULL, 0, NULL, 0, NULL, 0, NULL, 0, NULL, 0);
}
/*
* Extract the key type.
*/
hal_error_t hal_rsa_key_get_type(const hal_rsa_key_t * const key,
hal_key_type_t *key_type)
{
if (key == NULL || key_type == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
*key_type = key->type;
return HAL_OK;
}
/*
* Extract public key components.
*/
static hal_error_t extract_component(const hal_rsa_key_t * const key,
const size_t offset,
uint8_t *res, size_t *res_len, const size_t res_max)
{
if (key == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
const fp_int * const bn = (const fp_int *) (((const uint8_t *) key) + offset);
const size_t len = fp_unsigned_bin_size(unconst_fp_int(bn));
if (res_len != NULL)
*res_len = len;
if (res == NULL)
return HAL_OK;
if (len > res_max)
return HAL_ERROR_RESULT_TOO_LONG;
memset(res, 0, res_max);
fp_to_unsigned_bin(unconst_fp_int(bn), res);
return HAL_OK;
}
hal_error_t hal_rsa_key_get_modulus(const hal_rsa_key_t * const key,
uint8_t *res, size_t *res_len, const size_t res_max)
{
return extract_component(key, offsetof(hal_rsa_key_t, n), res, res_len, res_max);
}
hal_error_t hal_rsa_key_get_public_exponent(const hal_rsa_key_t * const key,
uint8_t *res, size_t *res_len, const size_t res_max)
{
return extract_component(key, offsetof(hal_rsa_key_t, e), res, res_len, res_max);
}
/*
* Generate a prime factor for an RSA keypair.
*
* Get random bytes, munge a few bits, and stuff into a bignum to
* construct our initial candidate.
*
* Initialize table of remainders when dividing candidate by each
* entry in corresponding table of small primes. We'd have to perform
* these tests in any case for any succesful candidate, and doing it
* up front lets us amortize the cost over the entire search, so we do
* this unconditionally before entering the search loop.
*
* If all of the remainders were non-zero, run the requisite number of
* Miller-Rabin tests using the first few entries from that same table
* of small primes as the test values. If we get past Miller-Rabin,
* the candidate is (probably) prime, to a confidence level which we
* can tune by adjusting the number of Miller-Rabin tests.
*
* For RSA, we also need (result - 1) to be relatively prime with
* respect to the public exponent. If a (probable) prime passes that
* test, we have a winner.
*
* If any of the above tests failed, we increment the candidate and
* all remainders by two, then loop back to the remainder test. This
* is where the table pays off: incrementing remainders is really
* cheap, and since most composite numbers fail the small primes test,
* making that cheap makes the whole loop run significantly faster.
*
* General approach suggested by HAC note 4.51. Range of small prime
* table and default number of Miller-Rabin tests suggested by Schneier.
*/
#ifndef HAL_RSA_MILLER_RABIN_TESTS
#define HAL_RSA_MILLER_RABIN_TESTS (5)
#endif
static const uint16_t small_prime[] = {
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,
139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277,
281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359,
367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439,
443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521,
523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607,
613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683,
691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773,
787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863,
877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967,
971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039,
1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109,
1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201,
1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283,
1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367,
1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451,
1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523,
1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601,
1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669,
1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759,
1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867,
1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949,
1951, 1973, 1979, 1987, 1993, 1997, 1999
};
static hal_error_t find_prime(const unsigned prime_length,
const fp_int * const e,
fp_int *result)
{
uint16_t remainder[sizeof(small_prime)/sizeof(*small_prime)];
uint8_t buffer[prime_length];
fp_int t[1] = INIT_FP_INT;
hal_error_t err;
if ((err = hal_get_random(NULL, buffer, sizeof(buffer))) != HAL_OK)
return err;
buffer[0] &= ~0x01; /* Headroom for search */
buffer[0] |= 0xc0; /* Result large enough */
buffer[sizeof(buffer) - 1] |= 0x01; /* Candidates are odd */
fp_read_unsigned_bin(result, buffer, sizeof(buffer));
for (int i = 0; i < sizeof(small_prime)/sizeof(*small_prime); i++) {
fp_digit d;
fp_mod_d(result, small_prime[i], &d);
remainder[i] = d;
}
for (;;) {
int possible = 1;
for (int i = 0; i < sizeof(small_prime)/sizeof(*small_prime); i++)
possible &= remainder[i] != 0;
for (int i = 0; possible && i < HAL_RSA_MILLER_RABIN_TESTS; i++) {
fp_set(t, small_prime[i]);
fp_prime_miller_rabin(result, t, &possible);
}
if (possible) {
fp_sub_d(result, 1, t);
fp_gcd(t, unconst_fp_int(e), t);
possible = fp_cmp_d(t, 1) == FP_EQ;
}
if (possible) {
fp_zero(t);
return HAL_OK;
}
fp_add_d(result, 2, result);
for (int i = 0; i < sizeof(small_prime)/sizeof(*small_prime); i++)
if ((remainder[i] += 2) >= small_prime[i])
remainder[i] -= small_prime[i];
}
}
/*
* Generate a new RSA keypair.
*/
hal_error_t hal_rsa_key_gen(hal_core_t *core,
hal_rsa_key_t **key_,
void *keybuf, const size_t keybuf_len,
const unsigned key_length,
const uint8_t * const public_exponent, const size_t public_exponent_len)
{
hal_rsa_key_t *key = keybuf;
hal_error_t err = HAL_OK;
fp_int p_1[1] = INIT_FP_INT;
fp_int q_1[1] = INIT_FP_INT;
if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hal_rsa_key_t))
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
key->type = HAL_KEY_TYPE_RSA_PRIVATE;
fp_read_unsigned_bin(key->e, (uint8_t *) public_exponent, public_exponent_len);
if (key_length < bitsToBytes(1024) || key_length > bitsToBytes(8192))
return HAL_ERROR_UNSUPPORTED_KEY;
if (fp_cmp_d(key->e, 0x010001) != FP_EQ)
return HAL_ERROR_UNSUPPORTED_KEY;
/*
* Find a good pair of prime numbers.
*/
if ((err = find_prime(key_length / 2, key->e, key->p)) != HAL_OK ||
(err = find_prime(key_length / 2, key->e, key->q)) != HAL_OK)
return err;
/*
* Calculate remaining key components.
*/
fp_init(p_1); fp_sub_d(key->p, 1, p_1);
fp_init(q_1); fp_sub_d(key->q, 1, q_1);
fp_mul(key->p, key->q, key->n); /* n = p * q */
fp_lcm(p_1, q_1, key->d);
FP_CHECK(fp_invmod(key->e, key->d, key->d)); /* d = (1/e) % lcm(p-1, q-1) */
FP_CHECK(fp_mod(key->d, p_1, key->dP)); /* dP = d % (p-1) */
FP_CHECK(fp_mod(key->d, q_1, key->dQ)); /* dQ = d % (q-1) */
FP_CHECK(fp_invmod(key->q, key->p, key->u)); /* u = (1/q) % p */
*key_ = key;
/* Fall through to cleanup */
fail:
if (err != HAL_OK)
memset(keybuf, 0, keybuf_len);
fp_zero(p_1);
fp_zero(q_1);
return err;
}
/*
* Just enough ASN.1 to read and write PKCS #1.5 RSAPrivateKey syntax
* (RFC 2313 section 7.2) wrapped in a PKCS #8 PrivateKeyInfo (RFC 5208).
*
* RSAPrivateKey fields in the required order.
*/
#define RSAPrivateKey_fields \
_(version); \
_(key->n); \
_(key->e); \
_(key->d); \
_(key->p); \
_(key->q); \
_(key->dP); \
_(key->dQ); \
_(key->u);
hal_error_t hal_rsa_private_key_to_der(const hal_rsa_key_t * const key,
uint8_t *der, size_t *der_len, const size_t der_max)
{
hal_error_t err = HAL_OK;
if (key == NULL || key->type != HAL_KEY_TYPE_RSA_PRIVATE)
return HAL_ERROR_BAD_ARGUMENTS;
fp_int version[1] = INIT_FP_INT;
/*
* Calculate data length.
*/
size_t hlen = 0, vlen = 0;
#define _(x) { size_t n; if ((err = hal_asn1_encode_integer(x, NULL, &n, der_max - vlen)) != HAL_OK) return err; vlen += n; }
RSAPrivateKey_fields;
#undef _
if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen, 0)) != HAL_OK)
return err;
if ((err = hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_rsaEncryption, hal_asn1_oid_rsaEncryption_len,
NULL, 0, NULL, hlen + vlen, NULL, der_len, der_max)) != HAL_OK)
return err;
if (der == NULL)
return HAL_OK;
/*
* Encode data.
*/
if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max)) != HAL_OK)
return err;
uint8_t *d = der + hlen;
memset(d, 0, vlen);
#define _(x) { size_t n; if ((err = hal_asn1_encode_integer(x, d, &n, vlen)) != HAL_OK) return err; d += n; vlen -= n; }
RSAPrivateKey_fields;
#undef _
return hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_rsaEncryption, hal_asn1_oid_rsaEncryption_len,
NULL, 0, der, d - der, der, der_len, der_max);
}
size_t hal_rsa_private_key_to_der_len(const hal_rsa_key_t * const key)
{
size_t len = 0;
return hal_rsa_private_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0;
}
hal_error_t hal_rsa_private_key_from_der(hal_rsa_key_t **key_,
void *keybuf, const size_t keybuf_len,
const uint8_t *der, const size_t der_len)
{
if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hal_rsa_key_t) || der == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
hal_rsa_key_t *key = keybuf;
key->type = HAL_KEY_TYPE_RSA_PRIVATE;
size_t hlen, vlen, alg_oid_len, curve_oid_len, privkey_len;
const uint8_t *alg_oid, *curve_oid, *privkey;
hal_error_t err;
if ((err = hal_asn1_decode_pkcs8_privatekeyinfo(&alg_oid, &alg_oid_len,
&curve_oid, &curve_oid_len,
&privkey, &privkey_len,
der, der_len)) != HAL_OK)
return err;
if (alg_oid_len != hal_asn1_oid_rsaEncryption_len ||
memcmp(alg_oid, hal_asn1_oid_rsaEncryption, alg_oid_len) != 0 ||
curve_oid_len != 0)
return HAL_ERROR_ASN1_PARSE_FAILED;
if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, privkey, privkey_len, &hlen, &vlen)) != HAL_OK)
return err;
const uint8_t *d = privkey + hlen;
fp_int version[1] = INIT_FP_INT;
#define _(x) { size_t n; if ((err = hal_asn1_decode_integer(x, d, &n, vlen)) != HAL_OK) return err; d += n; vlen -= n; }
RSAPrivateKey_fields;
#undef _
if (d != privkey + privkey_len || !fp_iszero(version))
return HAL_ERROR_ASN1_PARSE_FAILED;
*key_ = key;
return HAL_OK;
}
/*
* ASN.1 public keys in SubjectPublicKeyInfo form, see RFCs 2313, 4055, and 5280.
*/
hal_error_t hal_rsa_public_key_to_der(const hal_rsa_key_t * const key,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (key == NULL || (key->type != HAL_KEY_TYPE_RSA_PRIVATE &&
key->type != HAL_KEY_TYPE_RSA_PUBLIC))
return HAL_ERROR_BAD_ARGUMENTS;
size_t hlen, n_len, e_len;
hal_error_t err;
if ((err = hal_asn1_encode_integer(key->n, NULL, &n_len, 0)) != HAL_OK ||
(err = hal_asn1_encode_integer(key->e, NULL, &e_len, 0)) != HAL_OK)
return err;
const size_t vlen = n_len + e_len;
if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max)) != HAL_OK)
return err;
if (der != NULL) {
uint8_t * const n_out = der + hlen;
uint8_t * const e_out = n_out + n_len;
if ((err = hal_asn1_encode_integer(key->n, n_out, NULL, der + der_max - n_out)) != HAL_OK ||
(err = hal_asn1_encode_integer(key->e, e_out, NULL, der + der_max - e_out)) != HAL_OK)
return err;
}
return hal_asn1_encode_spki(hal_asn1_oid_rsaEncryption, hal_asn1_oid_rsaEncryption_len,
NULL, 0, der, hlen + vlen,
der, der_len, der_max);
}
size_t hal_rsa_public_key_to_der_len(const hal_rsa_key_t * const key)
{
size_t len = 0;
return hal_rsa_public_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0;
}
hal_error_t hal_rsa_public_key_from_der(hal_rsa_key_t **key_,
void *keybuf, const size_t keybuf_len,
const uint8_t * const der, const size_t der_len)
{
hal_rsa_key_t *key = keybuf;
if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key) || der == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
key->type = HAL_KEY_TYPE_RSA_PUBLIC;
const uint8_t *alg_oid = NULL, *null = NULL, *pubkey = NULL;
size_t alg_oid_len, null_len, pubkey_len;
hal_error_t err;
if ((err = hal_asn1_decode_spki(&alg_oid, &alg_oid_len, &null, &null_len, &pubkey, &pubkey_len, der, der_len)) != HAL_OK)
return err;
if (null != NULL || null_len != 0 || alg_oid == NULL ||
alg_oid_len != hal_asn1_oid_rsaEncryption_len || memcmp(alg_oid, hal_asn1_oid_rsaEncryption, alg_oid_len) != 0)
return HAL_ERROR_ASN1_PARSE_FAILED;
size_t len, hlen, vlen;
if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, pubkey, pubkey_len, &hlen, &vlen)) != HAL_OK)
return err;
const uint8_t * const pubkey_end = pubkey + hlen + vlen;
const uint8_t *d = pubkey + hlen;
if ((err = hal_asn1_decode_integer(key->n, d, &len, pubkey_end - d)) != HAL_OK)
return err;
d += len;
if ((err = hal_asn1_decode_integer(key->e, d, &len, pubkey_end - d)) != HAL_OK)
return err;
d += len;
if (d != pubkey_end)
return HAL_ERROR_ASN1_PARSE_FAILED;
*key_ = key;
return HAL_OK;
}
/*
* Local variables:
* indent-tabs-mode: nil
* End:
*/
|