aboutsummaryrefslogtreecommitdiff
path: root/rpc_pkey.c
blob: d6efbe7bf4bab363896a7add82c541dfac0fb7d4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
/*
 * rpc_pkey.c
 * ----------
 * Remote procedure call server-side public key implementation.
 *
 * Authors: Rob Austein
 * Copyright (c) 2015, NORDUnet A/S All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * - Redistributions of source code must retain the above copyright notice,
 *   this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 *
 * - Neither the name of the NORDUnet nor the names of its contributors may
 *   be used to endorse or promote products derived from this software
 *   without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <string.h>
#include <assert.h>

#include "hal.h"
#include "hal_internal.h"

typedef struct {
  hal_client_handle_t client_handle;
  hal_session_handle_t session_handle;
  hal_pkey_handle_t pkey_handle;
  hal_key_type_t type;
  hal_curve_name_t curve;
  hal_key_flags_t flags;
  uint8_t name[HAL_RPC_PKEY_NAME_MAX];
  size_t name_len;
  int ks_hint;
  /*
   * This might be where we'd stash a (hal_core_t *) pointing to a
   * core which has already been loaded with the key, if we were
   * trying to be clever about using multiple signing cores.  Moot
   * point (ie, no way we could possibly test such a thing) as long as
   * the FPGA is too small to hold more than one modexp core and ECDSA
   * is entirely software, so skip it for now, but the implied
   * semantics are interesting: a pkey handle starts to resemble an
   * initialized signing core, and once all the cores are in use, one
   * can't load another key without closing an existing pkey handle.
   */
} pkey_slot_t;

#ifndef HAL_STATIC_PKEY_STATE_BLOCKS
#define HAL_STATIC_PKEY_STATE_BLOCKS 0
#endif

#if HAL_STATIC_PKEY_STATE_BLOCKS > 0
static pkey_slot_t pkey_handle[HAL_STATIC_PKEY_STATE_BLOCKS];
#endif

/*
 * Handle allocation is simple: look for an unused (HAL_KEY_TYPE_NONE)
 * slot in the table, and, assuming we find one, construct a composite
 * handle consisting of the index into the table and a counter whose
 * sole purpose is to keep the same handle from reoccurring anytime
 * soon, to help identify use-after-free bugs in calling code.
 *
 * The high order bit of the pkey handle is left free for
 * HAL_PKEY_HANDLE_PROXIMATE_FLAG, which is used by the mixed-mode
 * handlers to route calls to the appropriate destination.
 */

static inline pkey_slot_t *alloc_slot(const hal_key_flags_t flags)
{
#if HAL_STATIC_PKEY_STATE_BLOCKS > 0
  static uint16_t next_glop = 0;
  uint32_t glop = ++next_glop << 16;
  next_glop %= 0x7FFF;

  assert((glop & HAL_PKEY_HANDLE_PROXIMATE_FLAG) == 0);

  if ((flags & HAL_KEY_FLAG_PROXIMATE) != 0)
    glop |= HAL_PKEY_HANDLE_PROXIMATE_FLAG;

  for (int i = 0; i < sizeof(pkey_handle)/sizeof(*pkey_handle); i++) {
    if (pkey_handle[i].type != HAL_KEY_TYPE_NONE)
      continue;
    pkey_handle[i].pkey_handle.handle = i | glop;
    pkey_handle[i].ks_hint = -1;
    return &pkey_handle[i];
  }
#endif

  return NULL;
}

/*
 * Check a caller-supplied handle.  Must be in range, in use, and have
 * the right glop.  Returns slot pointer on success, NULL otherwise.
 */

static inline pkey_slot_t *find_handle(const hal_pkey_handle_t handle)
{
#if HAL_STATIC_PKEY_STATE_BLOCKS > 0
  const int i = (int) (handle.handle & 0xFFFF);

  if (i < sizeof(pkey_handle)/sizeof(*pkey_handle) && pkey_handle[i].pkey_handle.handle == handle.handle)
    return &pkey_handle[i];
#endif

  return NULL;
}

#warning Still need access control on pkey objects based on current login state
/*
 * This would be simple, except for PKCS #11 non-token objects (CKA_TOKEN = CK_FALSE).
 * Need to check detailed PKCS #11 rules, but, from memory, we may be supposed to allow
 * access to non-token objects even when not logged in.  Maybe.  Rules are complex.
 *
 * I think the libhal translation of this resolves around what we've
 * been calling the PROXIMATE flags (which probably ought to be
 * renamed to *_NONTOKEN_*, slightly less confusing name).  For token
 * objects, we insist on being logged in properly; for non-token
 * objects, we do whatever silly thing PKCS #11 wants us to do,
 * probably defaulting to requiring login if PKCS #11 gives us a choice.
 */

/*
 * Construct a PKCS #1 DigestInfo object.  This requires some (very
 * basic) ASN.1 encoding, which we perform inline.
 */

hal_error_t hal_rpc_pkey_pkcs1_construct_digestinfo(const hal_hash_handle_t handle,
                                                    uint8_t *digest_info, size_t *digest_info_len, const size_t digest_info_max)
{
  assert(digest_info != NULL && digest_info_len != NULL);

  hal_digest_algorithm_t alg;
  size_t len, alg_len;
  hal_error_t err;

  if ((err = hal_rpc_hash_get_algorithm(handle, &alg))                     != HAL_OK ||
      (err = hal_rpc_hash_get_digest_length(alg, &len))                    != HAL_OK ||
      (err = hal_rpc_hash_get_digest_algorithm_id(alg, NULL, &alg_len, 0)) != HAL_OK)
    return err;

  *digest_info_len = len + alg_len + 4;

  if (*digest_info_len >= digest_info_max)
    return HAL_ERROR_RESULT_TOO_LONG;

  assert(*digest_info_len < 130);

  uint8_t *d = digest_info;

  *d++ = 0x30;                /* SEQUENCE */
  *d++ = (uint8_t) (*digest_info_len - 2);

  if ((err = hal_rpc_hash_get_digest_algorithm_id(alg, d, NULL, alg_len)) != HAL_OK)
    return err;
  d += alg_len;

  *d++ = 0x04;                /* OCTET STRING */
  *d++ = (uint8_t) len;

  assert(digest_info + *digest_info_len == d + len);

  return hal_rpc_hash_finalize(handle, d, len);
}

/*
 * Pad an octet string with PKCS #1.5 padding for use with RSA.
 *
 * For the moment, this only handles type 01 encryption blocks, thus
 * is only suitable for use with signature and verification.  If and
 * when we add support for encryption and decryption, this function
 * should be extended to take an argument specifying the block type
 * and include support for generating type 02 encryption blocks.
 * Other than the block type code, the only difference is the padding
 * value: for type 01 it's constant (0xFF), for type 02 it should be
 * non-zero random bytes from the CSPRNG.
 *
 * We use memmove() instead of memcpy() so that the caller can
 * construct the data to be padded in the same buffer.
 */

static hal_error_t pkcs1_5_pad(const uint8_t * const data, const size_t data_len,
                               uint8_t *block, const size_t block_len)
{
  assert(data != NULL && block != NULL);

  /*
   * Congregation will now please turn to RFC 2313 8.1 as we
   * construct a PKCS #1.5 type 01 encryption block.
   */

  if (data_len > block_len - 11)
    return HAL_ERROR_RESULT_TOO_LONG;

  memmove(block + block_len - data_len, data, data_len);

  block[0] = 0x00;
  block[1] = 0x01;

  /* This is where we'd use non-zero random bytes if constructing a type 02 block. */
  memset(block + 2, 0xFF, block_len - 3 - data_len);

  block[block_len - data_len - 1] = 0x00;

  return HAL_OK;
}

/*
 * Receive key from application, store it with supplied name, return a key handle.
 */

static hal_error_t pkey_local_load(const hal_client_handle_t client,
                                   const hal_session_handle_t session,
                                   hal_pkey_handle_t *pkey,
                                   const hal_key_type_t type,
                                   const hal_curve_name_t curve,
                                   const uint8_t * const name, const size_t name_len,
                                   const uint8_t * const der, const size_t der_len,
                                   const hal_key_flags_t flags)
{
  pkey_slot_t *slot;
  hal_error_t err;

  assert(sizeof(slot->name) >= name_len && pkey != NULL);

  if ((slot = alloc_slot(flags)) == NULL)
    return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE;

  if ((err = hal_ks_store(type, curve, flags, name, name_len, der, der_len, &slot->ks_hint)) != HAL_OK)
    return err;

  memcpy(slot->name, name, name_len);
  slot->client_handle = client;
  slot->session_handle = session;
  slot->type = type;
  slot->curve = curve;
  slot->flags = flags;
  slot->name_len = name_len;

  *pkey = slot->pkey_handle;
  return HAL_OK;
}

/*
 * Look up a key given its name, return a key handle.
 */

static hal_error_t pkey_local_find(const hal_client_handle_t client,
                                   const hal_session_handle_t session,
                                   hal_pkey_handle_t *pkey,
                                   const hal_key_type_t type,
                                   const uint8_t * const name, const size_t name_len,
                                   const hal_key_flags_t flags)
{
  pkey_slot_t *slot;
  hal_error_t err;

  assert(sizeof(slot->name) >= name_len && pkey != NULL);

  if ((slot = alloc_slot(flags)) == NULL)
    return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE;

  if ((err = hal_ks_fetch(type, name, name_len, &slot->curve, &slot->flags, NULL, NULL, 0, &slot->ks_hint)) != HAL_OK)
    return err;

  memcpy(slot->name, name, name_len);
  slot->client_handle = client;
  slot->session_handle = session;
  slot->type = type;
  slot->name_len = name_len;

  *pkey = slot->pkey_handle;
  return HAL_OK;
}

/*
 * Generate a new RSA key with supplied name, return a key handle.
 */

static hal_error_t pkey_local_generate_rsa(const hal_client_handle_t client,
                                           const hal_session_handle_t session,
                                           hal_pkey_handle_t *pkey,
                                           const uint8_t * const name, const size_t name_len,
                                           const unsigned key_length,
                                           const uint8_t * const public_exponent, const size_t public_exponent_len,
                                           const hal_key_flags_t flags)
{
  pkey_slot_t *slot;
  hal_error_t err;

  assert(sizeof(slot->name) >= name_len && pkey != NULL && (key_length & 7) == 0);

  if ((slot = alloc_slot(flags)) == NULL)
    return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE;

  uint8_t keybuf[hal_rsa_key_t_size];
  hal_rsa_key_t *key = NULL;

  if ((err = hal_rsa_key_gen(NULL, &key, keybuf, sizeof(keybuf), key_length / 8,
                             public_exponent, public_exponent_len)) != HAL_OK)
    return err;

  uint8_t der[hal_rsa_private_key_to_der_len(key)];
  size_t der_len;

  if ((err = hal_rsa_private_key_to_der(key, der, &der_len, sizeof(der))) == HAL_OK)
    err = hal_ks_store(HAL_KEY_TYPE_RSA_PRIVATE, HAL_CURVE_NONE, flags,
                       name, name_len, der, der_len, &slot->ks_hint);

  memset(keybuf, 0, sizeof(keybuf));
  memset(der, 0, sizeof(der));

  if (err != HAL_OK)
    return err;

  memcpy(slot->name, name, name_len);
  slot->client_handle = client;
  slot->session_handle = session;
  slot->type = HAL_KEY_TYPE_RSA_PRIVATE;
  slot->curve = HAL_CURVE_NONE;
  slot->flags = flags;
  slot->name_len = name_len;

  *pkey = slot->pkey_handle;
  return HAL_OK;
}

/*
 * Generate a new EC key with supplied name, return a key handle.
 * At the moment, EC key == ECDSA key, but this is subject to change.
 */

static hal_error_t pkey_local_generate_ec(const hal_client_handle_t client,
                                          const hal_session_handle_t session,
                                          hal_pkey_handle_t *pkey,
                                          const uint8_t * const name, const size_t name_len,
                                          const hal_curve_name_t curve,
                                          const hal_key_flags_t flags)
{
  pkey_slot_t *slot;
  hal_error_t err;

  assert(sizeof(slot->name) >= name_len && pkey != NULL);

  if ((slot = alloc_slot(flags)) == NULL)
    return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE;

  uint8_t keybuf[hal_ecdsa_key_t_size];
  hal_ecdsa_key_t *key = NULL;

  if ((err = hal_ecdsa_key_gen(NULL, &key, keybuf, sizeof(keybuf), curve)) != HAL_OK)
    return err;

  uint8_t der[hal_ecdsa_private_key_to_der_len(key)];
  size_t der_len;

  if ((err = hal_ecdsa_private_key_to_der(key, der, &der_len, sizeof(der))) == HAL_OK)
    err = hal_ks_store(HAL_KEY_TYPE_EC_PRIVATE, curve, flags,
                       name, name_len, der, der_len, &slot->ks_hint);

  memset(keybuf, 0, sizeof(keybuf));
  memset(der, 0, sizeof(der));

  if (err != HAL_OK)
    return err;

  memcpy(slot->name, name, name_len);
  slot->client_handle = client;
  slot->session_handle = session;
  slot->type = HAL_KEY_TYPE_EC_PRIVATE;
  slot->curve = curve;
  slot->flags = flags;
  slot->name_len = name_len;

  *pkey = slot->pkey_handle;
  return HAL_OK;
}

/*
 * Discard key handle, leaving key intact.
 */

static hal_error_t pkey_local_close(const hal_pkey_handle_t pkey)
{
  pkey_slot_t *slot;

  if ((slot = find_handle(pkey)) == NULL)
    return HAL_ERROR_KEY_NOT_FOUND;

  memset(slot, 0, sizeof(*slot));

  return HAL_OK;
}

/*
 * Delete a key from the store, given its key handle.
 */

static hal_error_t pkey_local_delete(const hal_pkey_handle_t pkey)
{
  pkey_slot_t *slot = find_handle(pkey);

  if (slot == NULL)
    return HAL_ERROR_KEY_NOT_FOUND;

  hal_error_t err = hal_ks_delete(slot->type, slot->name, slot->name_len, &slot->ks_hint);

  if (err == HAL_OK || err == HAL_ERROR_KEY_NOT_FOUND)
    memset(slot, 0, sizeof(*slot));

  return err;
}

/*
 * Rename a key in the key store, given its key handle and a new name.
 */

static hal_error_t pkey_local_rename(const hal_pkey_handle_t pkey,
                                     const uint8_t * const name, const size_t name_len)
{
  pkey_slot_t *slot = find_handle(pkey);

  if (slot == NULL)
    return HAL_ERROR_KEY_NOT_FOUND;

  hal_error_t err = hal_ks_rename(slot->type, slot->name, slot->name_len, name, name_len, &slot->ks_hint);

  if (err == HAL_OK) {
    assert(name_len <= sizeof(slot->name));
    memcpy(slot->name, name, name_len);
    memset(slot->name + name_len, 0, sizeof(slot->name) - name_len);
    slot->name_len = name_len;
  }

  return err;
}

/*
 * Get type of key associated with handle.
 */

static hal_error_t pkey_local_get_key_type(const hal_pkey_handle_t pkey,
                                           hal_key_type_t *type)
{
  if (type == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  pkey_slot_t *slot = find_handle(pkey);

  if (slot == NULL)
    return HAL_ERROR_KEY_NOT_FOUND;

  *type = slot->type;

  return HAL_OK;
}

/*
 * Get flags of key associated with handle.
 */

static hal_error_t pkey_local_get_key_flags(const hal_pkey_handle_t pkey,
                                            hal_key_flags_t *flags)
{
  if (flags == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  pkey_slot_t *slot = find_handle(pkey);

  if (slot == NULL)
    return HAL_ERROR_KEY_NOT_FOUND;

  *flags = slot->flags;

  return HAL_OK;
}

/*
 * Get length of public key associated with handle.
 */

static size_t pkey_local_get_public_key_len(const hal_pkey_handle_t pkey)
{
  pkey_slot_t *slot = find_handle(pkey);

  if (slot == NULL)
    return 0;

  size_t result = 0;

  uint8_t keybuf[hal_rsa_key_t_size > hal_ecdsa_key_t_size ? hal_rsa_key_t_size : hal_ecdsa_key_t_size];
  hal_rsa_key_t   *rsa_key   = NULL;
  hal_ecdsa_key_t *ecdsa_key = NULL;
  uint8_t der[HAL_KS_WRAPPED_KEYSIZE];
  size_t der_len;

  if (hal_ks_fetch(slot->type, slot->name, slot->name_len, NULL, NULL,
                   der, &der_len, sizeof(der), &slot->ks_hint) == HAL_OK) {
    switch (slot->type) {

    case HAL_KEY_TYPE_RSA_PUBLIC:
    case HAL_KEY_TYPE_EC_PUBLIC:
      result = der_len;
      break;

    case HAL_KEY_TYPE_RSA_PRIVATE:
      if (hal_rsa_private_key_from_der(&rsa_key, keybuf, sizeof(keybuf), der, der_len) == HAL_OK)
        result = hal_rsa_public_key_to_der_len(rsa_key);
      break;

    case HAL_KEY_TYPE_EC_PRIVATE:
      if (hal_ecdsa_private_key_from_der(&ecdsa_key, keybuf, sizeof(keybuf), der, der_len) == HAL_OK)
        result = hal_ecdsa_public_key_to_der_len(ecdsa_key);
      break;

    default:
      break;
    }
  }

  memset(keybuf, 0, sizeof(keybuf));
  memset(der,    0, sizeof(der));

  return result;
}

/*
 * Get public key associated with handle.
 */

static hal_error_t pkey_local_get_public_key(const hal_pkey_handle_t pkey,
                                             uint8_t *der, size_t *der_len, const size_t der_max)
{
  pkey_slot_t *slot = find_handle(pkey);

  if (slot == NULL)
    return HAL_ERROR_KEY_NOT_FOUND;

  uint8_t keybuf[hal_rsa_key_t_size > hal_ecdsa_key_t_size ? hal_rsa_key_t_size : hal_ecdsa_key_t_size];
  hal_rsa_key_t   *rsa_key   = NULL;
  hal_ecdsa_key_t *ecdsa_key = NULL;
  uint8_t buf[HAL_KS_WRAPPED_KEYSIZE];
  size_t buf_len;
  hal_error_t err;

  if ((err = hal_ks_fetch(slot->type, slot->name, slot->name_len, NULL, NULL,
                          buf, &buf_len, sizeof(buf), &slot->ks_hint)) == HAL_OK) {
    switch (slot->type) {

    case HAL_KEY_TYPE_RSA_PUBLIC:
    case HAL_KEY_TYPE_EC_PUBLIC:
      if (der_len != NULL)
        *der_len = buf_len;
      if (der != NULL && der_max < buf_len)
        err = HAL_ERROR_RESULT_TOO_LONG;
      else if (der != NULL)
        memcpy(der, buf, buf_len);
      break;

    case HAL_KEY_TYPE_RSA_PRIVATE:
      if ((err = hal_rsa_private_key_from_der(&rsa_key, keybuf, sizeof(keybuf), buf, buf_len)) == HAL_OK)
        err = hal_rsa_public_key_to_der(rsa_key, der, der_len, der_max);
      break;

    case HAL_KEY_TYPE_EC_PRIVATE:
      if ((err = hal_ecdsa_private_key_from_der(&ecdsa_key, keybuf, sizeof(keybuf), buf, buf_len)) == HAL_OK)
        err = hal_ecdsa_public_key_to_der(ecdsa_key, der, der_len, der_max);
      break;

    default:
      err = HAL_ERROR_UNSUPPORTED_KEY;
      break;
    }
  }

  memset(keybuf, 0, sizeof(keybuf));
  memset(buf,    0, sizeof(buf));

  return err;
}

/*
 * Sign something using private key associated with handle.
 *
 * RSA has enough quirks that it's simplest to split this out into
 * algorithm-specific functions.
 */

static hal_error_t pkey_local_sign_rsa(uint8_t *keybuf, const size_t keybuf_len,
                                       const uint8_t * const der, const size_t der_len,
                                       const hal_hash_handle_t hash,
                                       const uint8_t * input, size_t input_len,
                                       uint8_t * signature, size_t *signature_len, const size_t signature_max)
{
  hal_rsa_key_t *key = NULL;
  hal_error_t err;

  assert(signature != NULL && signature_len != NULL);
  assert((hash.handle == HAL_HANDLE_NONE) != (input == NULL || input_len == 0));

  if ((err = hal_rsa_private_key_from_der(&key, keybuf, keybuf_len, der, der_len)) != HAL_OK ||
      (err = hal_rsa_key_get_modulus(key, NULL, signature_len, 0))         != HAL_OK)
    return err;

  if (*signature_len > signature_max)
    return HAL_ERROR_RESULT_TOO_LONG;

  if (input == NULL) {
    if ((err = hal_rpc_pkey_pkcs1_construct_digestinfo(hash, signature, &input_len, *signature_len)) != HAL_OK)
      return err;
    input = signature;
  }

  if ((err = pkcs1_5_pad(input, input_len, signature, *signature_len))                         != HAL_OK ||
      (err = hal_rsa_decrypt(NULL, key, signature, *signature_len, signature, *signature_len)) != HAL_OK)
    return err;

  return HAL_OK;
}

static hal_error_t pkey_local_sign_ecdsa(uint8_t *keybuf, const size_t keybuf_len,
                                         const uint8_t * const der, const size_t der_len,
                                         const hal_hash_handle_t hash,
                                         const uint8_t * input, size_t input_len,
                                         uint8_t * signature, size_t *signature_len, const size_t signature_max)
{
  hal_ecdsa_key_t *key = NULL;
  hal_error_t err;

  assert(signature != NULL && signature_len != NULL);
  assert((hash.handle == HAL_HANDLE_NONE) != (input == NULL || input_len == 0));

  if ((err = hal_ecdsa_private_key_from_der(&key, keybuf, keybuf_len, der, der_len)) != HAL_OK)
    return err;

  if (input == NULL) {
    hal_digest_algorithm_t alg;

    if ((err = hal_rpc_hash_get_algorithm(hash, &alg))          != HAL_OK ||
        (err = hal_rpc_hash_get_digest_length(alg, &input_len)) != HAL_OK)
      return err;

    if (input_len > signature_max)
      return HAL_ERROR_RESULT_TOO_LONG;

    if ((err = hal_rpc_hash_finalize(hash, signature, input_len)) != HAL_OK)
      return err;

    input = signature;
  }

  if ((err = hal_ecdsa_sign(NULL, key, input, input_len, signature, signature_len, signature_max)) != HAL_OK)
    return err;

  return HAL_OK;
}

static hal_error_t pkey_local_sign(const hal_session_handle_t session,
                                   const hal_pkey_handle_t pkey,
                                   const hal_hash_handle_t hash,
                                   const uint8_t * const input,  const size_t input_len,
                                   uint8_t * signature, size_t *signature_len, const size_t signature_max)
{
  pkey_slot_t *slot = find_handle(pkey);

  if (slot == NULL)
    return HAL_ERROR_KEY_NOT_FOUND;

  hal_error_t (*signer)(uint8_t *keybuf, const size_t keybuf_len,
                        const uint8_t * const der, const size_t der_len,
                        const hal_hash_handle_t hash,
                        const uint8_t * const input,  const size_t input_len,
                        uint8_t * signature, size_t *signature_len, const size_t signature_max);

  switch (slot->type) {
  case HAL_KEY_TYPE_RSA_PRIVATE:
    signer = pkey_local_sign_rsa;
    break;
  case HAL_KEY_TYPE_EC_PRIVATE:
    signer = pkey_local_sign_ecdsa;
    break;
  default:
    return HAL_ERROR_UNSUPPORTED_KEY;
  }

  uint8_t keybuf[hal_rsa_key_t_size > hal_ecdsa_key_t_size ? hal_rsa_key_t_size : hal_ecdsa_key_t_size];
  uint8_t der[HAL_KS_WRAPPED_KEYSIZE];
  size_t der_len;
  hal_error_t err;

  err = hal_ks_fetch(slot->type, slot->name, slot->name_len, NULL, NULL, der, &der_len, sizeof(der), &slot->ks_hint);

  if (err == HAL_OK)
    err = signer(keybuf, sizeof(keybuf), der, der_len, hash, input, input_len, signature, signature_len, signature_max);

  memset(keybuf, 0, sizeof(keybuf));
  memset(der,    0, sizeof(der));

  return err;
}

/*
 * Verify something using public key associated with handle.
 *
 * RSA has enough quirks that it's simplest to split this out into
 * algorithm-specific functions.
 */

static hal_error_t pkey_local_verify_rsa(uint8_t *keybuf, const size_t keybuf_len, const hal_key_type_t type,
                                         const uint8_t * const der, const size_t der_len,
                                         const hal_hash_handle_t hash,
                                         const uint8_t * input, size_t input_len,
                                         const uint8_t * const signature, const size_t signature_len)
{
  uint8_t expected[signature_len], received[(signature_len + 3) & ~3];
  hal_rsa_key_t *key = NULL;
  hal_error_t err;

  assert(signature != NULL && signature_len > 0);
  assert((hash.handle == HAL_HANDLE_NONE) != (input == NULL || input_len == 0));

  switch (type) {
  case HAL_KEY_TYPE_RSA_PRIVATE:
    err = hal_rsa_private_key_from_der(&key, keybuf, keybuf_len, der, der_len);
    break;
  case HAL_KEY_TYPE_RSA_PUBLIC:
    err = hal_rsa_public_key_from_der(&key, keybuf, keybuf_len, der, der_len);
    break;
  default:
    err = HAL_ERROR_IMPOSSIBLE;
  }

  if (err != HAL_OK)
    return err;

  if (input == NULL) {
    if ((err = hal_rpc_pkey_pkcs1_construct_digestinfo(hash, expected, &input_len, sizeof(expected))) != HAL_OK)
      return err;
    input = expected;
  }

  if ((err = pkcs1_5_pad(input, input_len, expected, sizeof(expected)))                        != HAL_OK ||
      (err = hal_rsa_encrypt(NULL, key, signature, signature_len, received, sizeof(received))) != HAL_OK)
    return err;

  unsigned diff = 0;
  for (int i = 0; i < signature_len; i++)
    diff |= expected[i] ^ received[i + sizeof(received) - sizeof(expected)];

  if (diff != 0)
    return HAL_ERROR_INVALID_SIGNATURE;

  return HAL_OK;
}

static hal_error_t pkey_local_verify_ecdsa(uint8_t *keybuf, const size_t keybuf_len, const hal_key_type_t type,
                                           const uint8_t * const der, const size_t der_len,
                                           const hal_hash_handle_t hash,
                                           const uint8_t * input, size_t input_len,
                                           const uint8_t * const signature, const size_t signature_len)
{
  uint8_t digest[signature_len];
  hal_ecdsa_key_t *key = NULL;
  hal_error_t err;

  assert(signature != NULL && signature_len > 0);
  assert((hash.handle == HAL_HANDLE_NONE) != (input == NULL || input_len == 0));

  switch (type) {
  case HAL_KEY_TYPE_EC_PRIVATE:
    err = hal_ecdsa_private_key_from_der(&key, keybuf, keybuf_len, der, der_len);
    break;
  case HAL_KEY_TYPE_EC_PUBLIC:
    err = hal_ecdsa_public_key_from_der(&key, keybuf, keybuf_len, der, der_len);
    break;
  default:
    err = HAL_ERROR_IMPOSSIBLE;
  }

  if (err != HAL_OK)
    return err;

  if (input == NULL) {
    hal_digest_algorithm_t alg;

    if ((err = hal_rpc_hash_get_algorithm(hash, &alg))              != HAL_OK ||
        (err = hal_rpc_hash_get_digest_length(alg, &input_len))     != HAL_OK ||
        (err = hal_rpc_hash_finalize(hash, digest, sizeof(digest))) != HAL_OK)
      return err;

    input = digest;
  }

  if ((err = hal_ecdsa_verify(NULL, key, input, input_len, signature, signature_len)) != HAL_OK)
    return err;

  return HAL_OK;
}

static hal_error_t pkey_local_verify(const hal_session_handle_t session,
                                     const hal_pkey_handle_t pkey,
                                     const hal_hash_handle_t hash,
                                     const uint8_t * const input, const size_t input_len,
                                     const uint8_t * const signature, const size_t signature_len)
{
  pkey_slot_t *slot = find_handle(pkey);

  if (slot == NULL)
    return HAL_ERROR_KEY_NOT_FOUND;

  hal_error_t (*verifier)(uint8_t *keybuf, const size_t keybuf_len, const hal_key_type_t type,
                          const uint8_t * const der, const size_t der_len,
                          const hal_hash_handle_t hash,
                          const uint8_t * const input,  const size_t input_len,
                          const uint8_t * const signature, const size_t signature_len);

  switch (slot->type) {
  case HAL_KEY_TYPE_RSA_PRIVATE:
  case HAL_KEY_TYPE_RSA_PUBLIC:
    verifier = pkey_local_verify_rsa;
    break;
  case HAL_KEY_TYPE_EC_PRIVATE:
  case HAL_KEY_TYPE_EC_PUBLIC:
    verifier = pkey_local_verify_ecdsa;
    break;
  default:
    return HAL_ERROR_UNSUPPORTED_KEY;
  }

  uint8_t keybuf[hal_rsa_key_t_size > hal_ecdsa_key_t_size ? hal_rsa_key_t_size : hal_ecdsa_key_t_size];
  uint8_t der[HAL_KS_WRAPPED_KEYSIZE];
  size_t der_len;
  hal_error_t err;

  err = hal_ks_fetch(slot->type, slot->name, slot->name_len, NULL, NULL, der, &der_len, sizeof(der), &slot->ks_hint);

  if (err == HAL_OK)
    err = verifier(keybuf, sizeof(keybuf), slot->type, der, der_len, hash, input, input_len, signature, signature_len);

  memset(keybuf, 0, sizeof(keybuf));
  memset(der,    0, sizeof(der));

  return err;
}


/*
 * List keys in the key store.
 */

static hal_error_t pkey_local_list(hal_pkey_info_t *result,
                                   unsigned *result_len,
                                   const unsigned result_max,
                                   hal_key_flags_t flags)
{
  return hal_ks_list(result, result_len, result_max);
}

const hal_rpc_pkey_dispatch_t hal_rpc_local_pkey_dispatch = {
  pkey_local_load,
  pkey_local_find,
  pkey_local_generate_rsa,
  pkey_local_generate_ec,
  pkey_local_close,
  pkey_local_delete,
  pkey_local_rename,
  pkey_local_get_key_type,
  pkey_local_get_key_flags,
  pkey_local_get_public_key_len,
  pkey_local_get_public_key,
  pkey_local_sign,
  pkey_local_verify,
  pkey_local_list
};

/*
 * Local variables:
 * indent-tabs-mode: nil
 * End:
 */