aboutsummaryrefslogtreecommitdiff
path: root/rpc_pkey.c
blob: 3d4a3794fbbade5da0d6c7aa269027c7b34e33ce (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
pre { line-height: 125%; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
# -*- Autoconf -*-

# Copyright (c) 2015, SUNET
#
# Redistribution and use in source and binary forms, with or
# without modification, are permitted provided that the following
# conditions are met:
#
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in
#    the documentation and/or other materials provided with the
#    distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
# ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

# Bare-minimum autoconf, with as little of the usual voodoo as
# possible.  This probably ought to be replaced by a ten-line Python
# script, some day when we have time to shave that yak.
#
# We deliberately avoid constructs like AC_PROG_CC because they're
# almost certain to guess wrong about the settings we want.
#
# If you don't understand why there are so many square brackets, put
# the keyboard down and back away slowly before somebody gets hurt.

AC_INIT([libcryptech], [0.1])

AC_ARG_VAR([FPGA_BUS],  [Bus architecture to use (currently must be "EIM" or "I2C")])
AC_ARG_VAR([CC],        [C compiler command])
AC_ARG_VAR([CFLAGS],    [C compiler flags])
AC_ARG_VAR([LDFLAGS],   [Linker flags])
AC_ARG_VAR([TFMDIR],    [Directory containing libtfm.a and tfm.h])

AS_CASE($FPGA_BUS, [""],[FPGA_BUS=EIM], [EIM|I2C],[],
        [AC_MSG_ERROR([Invalid setting of FPGA_BUS, must be "EIM" or "I2C"])])
        
AS_CASE($CC,      [""],[CC='cc'],                                       [])
AS_CASE($CFLAGS,  [""],[CFLAGS='-g3 -Wall -fPIC -std=c99 -I${TFMDIR}'], [])
AS_CASE($LDFLAGS, [""],[LDFLAGS='-g3 -L${TFMDIR} -ltfm'],               [])
AS_CASE($TFMDIR,  [""],[TFMDIR='${abs_top_builddir}/../libtfm'],        [])

AC_MSG_NOTICE([FPGA bus: $FPGA_BUS])
AC_MSG_NOTICE([C compiler: $CC])
AC_MSG_NOTICE([C compiler flags: $CFLAGS])
AC_MSG_NOTICE([Linker flags: $LDFLAGS])
AC_MSG_NOTICE([libtfm directory: $TFMDIR])

AC_CONFIG_FILES([Makefile tests/Makefile])
AC_OUTPUT
f='#n517'>517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
/*
 * rpc_pkey.c
 * ----------
 * Remote procedure call server-side public key implementation.
 *
 * Authors: Rob Austein
 * Copyright (c) 2015, NORDUnet A/S All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * - Redistributions of source code must retain the above copyright notice,
 *   this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 *
 * - Neither the name of the NORDUnet nor the names of its contributors may
 *   be used to endorse or promote products derived from this software
 *   without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <string.h>
#include <assert.h>

#include "hal.h"
#include "hal_internal.h"
#include "asn1_internal.h"

#ifndef HAL_STATIC_PKEY_STATE_BLOCKS
#define HAL_STATIC_PKEY_STATE_BLOCKS 0
#endif

#if HAL_STATIC_PKEY_STATE_BLOCKS > 0
static hal_pkey_slot_t pkey_slot[HAL_STATIC_PKEY_STATE_BLOCKS];
#endif

/*
 * Handle allocation is simple: look for an unused (HAL_HANDLE_NONE)
 * slot in the table, and, assuming we find one, construct a composite
 * handle consisting of the index into the table and a counter whose
 * sole purpose is to keep the same handle from reoccurring anytime
 * soon, to help identify use-after-free bugs in calling code.
 *
 * The high order bit of the pkey handle is left free for
 * HAL_PKEY_HANDLE_TOKEN_FLAG, which is used by the mixed-mode
 * handlers to route calls to the appropriate destination.  In most
 * cases this flag is set here, but pkey_local_open() also sets it
 * directly, so that we can present a unified UUID namespace
 * regardless of which keystore holds a particular key.
 */

static inline hal_pkey_slot_t *alloc_slot(const hal_key_flags_t flags)
{
  hal_pkey_slot_t *slot = NULL;
  hal_critical_section_start();

#if HAL_STATIC_PKEY_STATE_BLOCKS > 0
  static uint16_t next_glop = 0;
  uint32_t glop = ++next_glop << 16;
  next_glop %= 0x7FFF;

  assert((glop & HAL_PKEY_HANDLE_TOKEN_FLAG) == 0);

  if ((flags & HAL_KEY_FLAG_TOKEN) != 0)
    glop |= HAL_PKEY_HANDLE_TOKEN_FLAG;

  for (int i = 0; slot == NULL && i < sizeof(pkey_slot)/sizeof(*pkey_slot); i++) {
    if (pkey_slot[i].pkey.handle != HAL_HANDLE_NONE)
      continue;
    memset(&pkey_slot[i], 0, sizeof(pkey_slot[i]));
    pkey_slot[i].pkey.handle = i | glop;
    pkey_slot[i].hint = -1;
    slot = &pkey_slot[i];
  }
#endif

  hal_critical_section_end();
  return slot;
}

/*
 * Clear a slot.  Probably not necessary to do this in a critical
 * section, but be safe.
 */

static inline void clear_slot(hal_pkey_slot_t *slot)
{
  hal_critical_section_start();

  if (slot != NULL)
    memset(slot, 0, sizeof(*slot));

  hal_critical_section_end();
}

/*
 * Check a caller-supplied handle.  Must be in range, in use, and have
 * the right glop.  Returns slot pointer on success, NULL otherwise.
 */

static inline hal_pkey_slot_t *find_handle(const hal_pkey_handle_t handle)
{
  hal_pkey_slot_t *slot = NULL;
  hal_critical_section_start();

#if HAL_STATIC_PKEY_STATE_BLOCKS > 0
  const int i = (int) (handle.handle & 0xFFFF);

  if (i < sizeof(pkey_slot)/sizeof(*pkey_slot) && pkey_slot[i].pkey.handle == handle.handle)
    slot = &pkey_slot[i];
#endif

  hal_critical_section_end();
  return slot;
}

/*
 * Clean up key state associated with a client when logging out.
 */

hal_error_t hal_pkey_logout(const hal_client_handle_t client)
{
  if (client.handle == HAL_HANDLE_NONE)
    return HAL_OK;

  hal_error_t err;

  if ((err = hal_ks_logout(hal_ks_volatile, client)) != HAL_OK ||
      (err = hal_ks_logout(hal_ks_token,    client)) != HAL_OK)
    return err;

  hal_critical_section_start();

  for (int i = 0; i < sizeof(pkey_slot)/sizeof(*pkey_slot); i++)
    if (pkey_slot[i].pkey.handle == client.handle)
      memset(&pkey_slot[i], 0, sizeof(pkey_slot[i]));

  hal_critical_section_end();

  return HAL_OK;
}

/*
 * Access rules are a bit complicated, mostly due to PKCS #11.
 *
 * The simple, obvious rule would be that one must be logged in as
 * HAL_USER_NORMAL to create, see, use, or delete a key, full stop.
 *
 * That's almost the rule that PKCS #11 follows for so-called
 * "private" objects (CKA_PRIVATE = CK_TRUE), but PKCS #11 has a more
 * complex model which not only allows wider visibility to "public"
 * objects (CKA_PRIVATE = CK_FALSE) but also allows write access to
 * "public session" (CKA_PRIVATE = CK_FALSE, CKA_TOKEN = CK_FALSE)
 * objects regardless of login state.
 *
 * PKCS #11 also has a concept of read-only sessions, which we don't
 * bother to implement at all on the HSM, since the PIN is required to
 * be the same as for the corresponding read-write session, so this
 * would just be additional compexity without adding any security on
 * the HSM; the PKCS #11 library still has to support read-only
 * sessions, but that's not our problem here.
 *
 * In general, non-PKCS #11 users of this API should probably never
 * set HAL_KEY_FLAG_PUBLIC, in which case they'll get the simple rule.
 *
 * Note that keystore drivers may need to implement additional
 * additional checks, eg, ks_volatile needs to enforce the rule that
 * session objects are only visible to the client which created them
 * (not the session, that would be too simple, thanks PKCS #11).  In
 * practice, this should not be a serious problem, since such checks
 * will likely only apply to existing objects.  The thing we really
 * want to avoid is doing all the work to create a large key only to
 * have the keystore driver reject access at the end, but since, by
 * definition, that only occurs when creating new objects, the access
 * decision doesn't depend on preexisting data, so the rules here
 * should suffice.  That's the theory, anyway, if this is wrong we may
 * need to refactor.
 */

static inline hal_error_t check_normal_or_wheel(const hal_client_handle_t client)
{
  const hal_error_t err = hal_rpc_is_logged_in(client, HAL_USER_NORMAL);
  return (err == HAL_ERROR_FORBIDDEN
          ? hal_rpc_is_logged_in(client, HAL_USER_WHEEL)
          : err);
}

static inline hal_error_t check_readable(const hal_client_handle_t client,
                                         const hal_key_flags_t flags)
{
  if ((flags & HAL_KEY_FLAG_PUBLIC) != 0)
    return HAL_OK;

  return check_normal_or_wheel(client);
}

static inline hal_error_t check_writable(const hal_client_handle_t client,
                                         const hal_key_flags_t flags)
{
  if ((flags & (HAL_KEY_FLAG_TOKEN | HAL_KEY_FLAG_PUBLIC)) == HAL_KEY_FLAG_PUBLIC)
    return HAL_OK;

  return check_normal_or_wheel(client);
}

/*
 * PKCS #1.5 encryption requires non-zero random bytes, which is a bit
 * messy if done in place, so make it a separate function for readability.
 */

static inline hal_error_t get_nonzero_random(uint8_t *buffer, size_t n)
{
  assert(buffer != NULL);

  uint32_t word = 0;
  hal_error_t err;

  while (n > 0) {

    while ((word &  0xFF) == 0)
      if  ((word & ~0xFF) != 0)
        word >>= 8;
      else if ((err = hal_get_random(NULL, &word, sizeof(word))) != HAL_OK)
        return err;

    *buffer++ = word & 0xFF;
    word >>= 8;
    n--;
  }

  return HAL_OK;
}

/*
 * Pad an octet string with PKCS #1.5 padding for use with RSA.
 *
 * This handles type 01 and type 02 encryption blocks.  The formats
 * are identical, except that the padding string is constant 0xFF
 * bytes for type 01 and non-zero random bytes for type 02.
 *
 * We use memmove() instead of memcpy() so that the caller can
 * construct the data to be padded in the same buffer.
 */

static hal_error_t pkcs1_5_pad(const uint8_t * const data, const size_t data_len,
                               uint8_t *block, const size_t block_len,
                               const uint8_t type)
{
  assert(data != NULL && block != NULL && (type == 0x01 || type == 0x02));

  hal_error_t err;

  /*
   * Congregation will now please turn to RFC 2313 8.1 as we
   * construct a PKCS #1.5 type 01 or type 02 encryption block.
   */

  if (data_len > block_len - 11)
    return HAL_ERROR_RESULT_TOO_LONG;

  memmove(block + block_len - data_len, data, data_len);

  block[0] = 0x00;
  block[1] = type;

  switch (type) {

  case 0x01:                    /* Signature */
    memset(block + 2, 0xFF, block_len - 3 - data_len);
    break;

  case 0x02:                    /* Encryption */
    if ((err = get_nonzero_random(block + 2, block_len - 3 - data_len)) != HAL_OK)
      return err;
    break;

  }

  block[block_len - data_len - 1] = 0x00;

  return HAL_OK;
}

/*
 * Given key flags, return appropriate keystore.
 */

static inline hal_ks_t *ks_from_flags(const hal_key_flags_t flags)
{
  return (flags & HAL_KEY_FLAG_TOKEN) == 0 ? hal_ks_volatile : hal_ks_token;
}

/*
 * Fetch a key from keystore indicated by key flag in slot object.
 */

static inline hal_error_t ks_fetch_from_flags(hal_pkey_slot_t *slot,
                                              uint8_t *der, size_t *der_len, const size_t der_max)
{
  if (slot == NULL)
    return HAL_ERROR_IMPOSSIBLE;

  return hal_ks_fetch(ks_from_flags(slot->flags), slot, der, der_len, der_max);
}


/*
 * Receive key from application, generate a name (UUID), store it, and
 * return a key handle and the name.
 */

static hal_error_t pkey_local_load(const hal_client_handle_t client,
                                   const hal_session_handle_t session,
                                   hal_pkey_handle_t *pkey,
                                   hal_uuid_t *name,
                                   const uint8_t * const der, const size_t der_len,
                                   const hal_key_flags_t flags)
{
  assert(pkey != NULL && name != NULL && der != NULL);

  hal_curve_name_t curve;
  hal_pkey_slot_t *slot;
  hal_key_type_t type;
  hal_error_t err;

  if ((err = check_writable(client, flags)) != HAL_OK)
    return err;

  if ((err = hal_asn1_guess_key_type(&type, &curve, der, der_len)) != HAL_OK)
    return err;

  if ((slot = alloc_slot(flags)) == NULL)
    return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE;

  if ((err = hal_uuid_gen(&slot->name)) != HAL_OK)
    return err;

  slot->client  = client;
  slot->session = session;
  slot->type    = type;
  slot->curve   = curve;
  slot->flags   = flags;

  if ((err = hal_ks_store(ks_from_flags(flags), slot, der, der_len)) != HAL_OK) {
    slot->type = HAL_KEY_TYPE_NONE;
    return err;
  }

  *pkey = slot->pkey;
  *name = slot->name;
  return HAL_OK;
}

/*
 * Look up a key given its name, return a key handle.
 */

static hal_error_t pkey_local_open(const hal_client_handle_t client,
                                   const hal_session_handle_t session,
                                   hal_pkey_handle_t *pkey,
                                   const hal_uuid_t * const name)
{
  assert(pkey != NULL && name != NULL);

  hal_pkey_slot_t *slot;
  hal_error_t err;

  if ((err = check_readable(client, 0)) != HAL_OK)
    return err;

  if ((slot = alloc_slot(0)) == NULL)
    return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE;

  slot->name    = *name;
  slot->client  = client;
  slot->session = session;

  if ((err = hal_ks_fetch(hal_ks_token, slot, NULL, NULL, 0)) == HAL_OK)
    slot->pkey.handle |= HAL_PKEY_HANDLE_TOKEN_FLAG;

  else if (err == HAL_ERROR_KEY_NOT_FOUND)
    err = hal_ks_fetch(hal_ks_volatile, slot, NULL, NULL, 0);

  if (err != HAL_OK)
    goto fail;

  *pkey = slot->pkey;
  return HAL_OK;

 fail:
  clear_slot(slot);
  return err;
}

/*
 * Generate a new RSA key with supplied name, return a key handle.
 */

static hal_error_t pkey_local_generate_rsa(const hal_client_handle_t client,
                                           const hal_session_handle_t session,
                                           hal_pkey_handle_t *pkey,
                                           hal_uuid_t *name,
                                           const unsigned key_length,
                                           const uint8_t * const public_exponent, const size_t public_exponent_len,
                                           const hal_key_flags_t flags)
{
  assert(pkey != NULL && name != NULL && (key_length & 7) == 0);

  uint8_t keybuf[hal_rsa_key_t_size];
  hal_rsa_key_t *key = NULL;
  hal_pkey_slot_t *slot;
  hal_error_t err;

  if ((err = check_writable(client, flags)) != HAL_OK)
    return err;

  if ((slot = alloc_slot(flags)) == NULL)
    return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE;

  if ((err = hal_uuid_gen(&slot->name)) != HAL_OK)
    return err;

  slot->client  = client;
  slot->session = session;
  slot->type    = HAL_KEY_TYPE_RSA_PRIVATE;
  slot->curve   = HAL_CURVE_NONE;
  slot->flags   = flags;

  if ((err = hal_rsa_key_gen(NULL, &key, keybuf, sizeof(keybuf), key_length / 8,
                             public_exponent, public_exponent_len)) != HAL_OK) {
    slot->type = HAL_KEY_TYPE_NONE;
    return err;
  }

  uint8_t der[hal_rsa_private_key_to_der_len(key)];
  size_t der_len;

  if ((err = hal_rsa_private_key_to_der(key, der, &der_len, sizeof(der))) == HAL_OK)
    err = hal_ks_store(ks_from_flags(flags), slot, der, der_len);

  memset(keybuf, 0, sizeof(keybuf));
  memset(der, 0, sizeof(der));

  if (err != HAL_OK) {
    slot->type = HAL_KEY_TYPE_NONE;
    return err;
  }

  *pkey = slot->pkey;
  *name = slot->name;
  return HAL_OK;
}

/*
 * Generate a new EC key with supplied name, return a key handle.
 * At the moment, EC key == ECDSA key, but this is subject to change.
 */

static hal_error_t pkey_local_generate_ec(const hal_client_handle_t client,
                                          const hal_session_handle_t session,
                                          hal_pkey_handle_t *pkey,
                                          hal_uuid_t *name,
                                          const hal_curve_name_t curve,
                                          const hal_key_flags_t flags)
{
  assert(pkey != NULL && name != NULL);

  uint8_t keybuf[hal_ecdsa_key_t_size];
  hal_ecdsa_key_t *key = NULL;
  hal_pkey_slot_t *slot;
  hal_error_t err;

  if ((err = check_writable(client, flags)) != HAL_OK)
    return err;

  if ((slot = alloc_slot(flags)) == NULL)
    return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE;

  if ((err = hal_uuid_gen(&slot->name)) != HAL_OK)
    return err;

  slot->client  = client;
  slot->session = session;
  slot->type    = HAL_KEY_TYPE_EC_PRIVATE;
  slot->curve   = curve;
  slot->flags   = flags;

  if ((err = hal_ecdsa_key_gen(NULL, &key, keybuf, sizeof(keybuf), curve)) != HAL_OK) {
    slot->type = HAL_KEY_TYPE_NONE;
    return err;
  }

  uint8_t der[hal_ecdsa_private_key_to_der_len(key)];
  size_t der_len;

  if ((err = hal_ecdsa_private_key_to_der(key, der, &der_len, sizeof(der))) == HAL_OK)
    err = hal_ks_store(ks_from_flags(flags), slot, der, der_len);

  memset(keybuf, 0, sizeof(keybuf));
  memset(der, 0, sizeof(der));

  if (err != HAL_OK) {
    slot->type = HAL_KEY_TYPE_NONE;
    return err;
  }

  *pkey = slot->pkey;
  *name = slot->name;
  return HAL_OK;
}

/*
 * Discard key handle, leaving key intact.
 */

static hal_error_t pkey_local_close(const hal_pkey_handle_t pkey)
{
  hal_pkey_slot_t *slot;

  if ((slot = find_handle(pkey)) == NULL)
    return HAL_ERROR_KEY_NOT_FOUND;

  clear_slot(slot);

  return HAL_OK;
}

/*
 * Delete a key from the store, given its key handle.
 */

static hal_error_t pkey_local_delete(const hal_pkey_handle_t pkey)
{
  hal_pkey_slot_t *slot = find_handle(pkey);

  if (slot == NULL)
    return HAL_ERROR_KEY_NOT_FOUND;

  hal_error_t err;

  if ((err = check_writable(slot->client, slot->flags)) != HAL_OK)
    return err;

  err = hal_ks_delete(ks_from_flags(slot->flags), slot);

  if (err == HAL_OK || err == HAL_ERROR_KEY_NOT_FOUND)
    clear_slot(slot);

  return err;
}

/*
 * Get type of key associated with handle.
 */

static hal_error_t pkey_local_get_key_type(const hal_pkey_handle_t pkey,
                                           hal_key_type_t *type)
{
  if (type == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  hal_pkey_slot_t *slot = find_handle(pkey);

  if (slot == NULL)
    return HAL_ERROR_KEY_NOT_FOUND;

  *type = slot->type;

  return HAL_OK;
}

/*
 * Get curve of key associated with handle.
 */

static hal_error_t pkey_local_get_key_curve(const hal_pkey_handle_t pkey,
                                           hal_curve_name_t *curve)
{
  if (curve == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  hal_pkey_slot_t *slot = find_handle(pkey);

  if (slot == NULL)
    return HAL_ERROR_KEY_NOT_FOUND;

  *curve = slot->curve;

  return HAL_OK;
}

/*
 * Get flags of key associated with handle.
 */

static hal_error_t pkey_local_get_key_flags(const hal_pkey_handle_t pkey,
                                            hal_key_flags_t *flags)
{
  if (flags == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  hal_pkey_slot_t *slot = find_handle(pkey);

  if (slot == NULL)
    return HAL_ERROR_KEY_NOT_FOUND;

  *flags = slot->flags;

  return HAL_OK;
}

/*
 * Get length of public key associated with handle.
 */

static size_t pkey_local_get_public_key_len(const hal_pkey_handle_t pkey)
{
  hal_pkey_slot_t *slot = find_handle(pkey);

  if (slot == NULL)
    return 0;

  size_t result = 0;

  uint8_t keybuf[hal_rsa_key_t_size > hal_ecdsa_key_t_size ? hal_rsa_key_t_size : hal_ecdsa_key_t_size];
  hal_rsa_key_t   *rsa_key   = NULL;
  hal_ecdsa_key_t *ecdsa_key = NULL;
  uint8_t der[HAL_KS_WRAPPED_KEYSIZE];
  size_t der_len;
  hal_error_t err;

  if ((err = ks_fetch_from_flags(slot, der, &der_len, sizeof(der))) == HAL_OK) {
    switch (slot->type) {

    case HAL_KEY_TYPE_RSA_PUBLIC:
    case HAL_KEY_TYPE_EC_PUBLIC:
      result = der_len;
      break;

    case HAL_KEY_TYPE_RSA_PRIVATE:
      if (hal_rsa_private_key_from_der(&rsa_key, keybuf, sizeof(keybuf), der, der_len) == HAL_OK)
        result = hal_rsa_public_key_to_der_len(rsa_key);
      break;

    case HAL_KEY_TYPE_EC_PRIVATE:
      if (hal_ecdsa_private_key_from_der(&ecdsa_key, keybuf, sizeof(keybuf), der, der_len) == HAL_OK)
        result = hal_ecdsa_public_key_to_der_len(ecdsa_key);
      break;

    default:
      break;
    }
  }

  memset(keybuf, 0, sizeof(keybuf));
  memset(der,    0, sizeof(der));

  return result;
}

/*
 * Get public key associated with handle.
 */

static hal_error_t pkey_local_get_public_key(const hal_pkey_handle_t pkey,
                                             uint8_t *der, size_t *der_len, const size_t der_max)
{
  hal_pkey_slot_t *slot = find_handle(pkey);

  if (slot == NULL)
    return HAL_ERROR_KEY_NOT_FOUND;

  uint8_t keybuf[hal_rsa_key_t_size > hal_ecdsa_key_t_size
                 ? hal_rsa_key_t_size : hal_ecdsa_key_t_size];
  hal_rsa_key_t   *rsa_key   = NULL;
  hal_ecdsa_key_t *ecdsa_key = NULL;
  uint8_t buf[HAL_KS_WRAPPED_KEYSIZE];
  size_t buf_len;
  hal_error_t err;

  if ((err = ks_fetch_from_flags(slot, buf, &buf_len, sizeof(buf))) == HAL_OK) {
    switch (slot->type) {

    case HAL_KEY_TYPE_RSA_PUBLIC:
    case HAL_KEY_TYPE_EC_PUBLIC:
      if (der_len != NULL)
        *der_len = buf_len;
      if (der != NULL && der_max < buf_len)
        err = HAL_ERROR_RESULT_TOO_LONG;
      else if (der != NULL)
        memcpy(der, buf, buf_len);
      break;

    case HAL_KEY_TYPE_RSA_PRIVATE:
      if ((err = hal_rsa_private_key_from_der(&rsa_key, keybuf, sizeof(keybuf), buf, buf_len)) == HAL_OK)
        err = hal_rsa_public_key_to_der(rsa_key, der, der_len, der_max);
      break;

    case HAL_KEY_TYPE_EC_PRIVATE:
      if ((err = hal_ecdsa_private_key_from_der(&ecdsa_key, keybuf, sizeof(keybuf), buf, buf_len)) == HAL_OK)
        err = hal_ecdsa_public_key_to_der(ecdsa_key, der, der_len, der_max);
      break;

    default:
      err = HAL_ERROR_UNSUPPORTED_KEY;
      break;
    }
  }

  memset(keybuf, 0, sizeof(keybuf));
  memset(buf,    0, sizeof(buf));

  return err;
}

/*
 * Sign something using private key associated with handle.
 *
 * RSA has enough quirks that it's simplest to split this out into
 * algorithm-specific functions.
 */

static hal_error_t pkey_local_sign_rsa(uint8_t *keybuf, const size_t keybuf_len,
                                       const uint8_t * const der, const size_t der_len,
                                       const hal_hash_handle_t hash,
                                       const uint8_t * input, size_t input_len,
                                       uint8_t * signature, size_t *signature_len, const size_t signature_max)
{
  hal_rsa_key_t *key = NULL;
  hal_error_t err;

  assert(signature != NULL && signature_len != NULL);
  assert((hash.handle == HAL_HANDLE_NONE) != (input == NULL || input_len == 0));

  if ((err = hal_rsa_private_key_from_der(&key, keybuf, keybuf_len, der, der_len)) != HAL_OK ||
      (err = hal_rsa_key_get_modulus(key, NULL, signature_len, 0))         != HAL_OK)
    return err;

  if (*signature_len > signature_max)
    return HAL_ERROR_RESULT_TOO_LONG;

  if (input == NULL || input_len == 0) {
    if ((err = hal_rpc_pkcs1_construct_digestinfo(hash, signature, &input_len, *signature_len)) != HAL_OK)
      return err;
    input = signature;
  }

  if ((err = pkcs1_5_pad(input, input_len, signature, *signature_len, 0x01))                   != HAL_OK ||
      (err = hal_rsa_decrypt(NULL, key, signature, *signature_len, signature, *signature_len)) != HAL_OK)
    return err;

  return HAL_OK;
}

static hal_error_t pkey_local_sign_ecdsa(uint8_t *keybuf, const size_t keybuf_len,
                                         const uint8_t * const der, const size_t der_len,
                                         const hal_hash_handle_t hash,
                                         const uint8_t * input, size_t input_len,
                                         uint8_t * signature, size_t *signature_len, const size_t signature_max)
{
  hal_ecdsa_key_t *key = NULL;
  hal_error_t err;

  assert(signature != NULL && signature_len != NULL);
  assert((hash.handle == HAL_HANDLE_NONE) != (input == NULL || input_len == 0));

  if ((err = hal_ecdsa_private_key_from_der(&key, keybuf, keybuf_len, der, der_len)) != HAL_OK)
    return err;

  if (input == NULL || input_len == 0) {
    hal_digest_algorithm_t alg;

    if ((err = hal_rpc_hash_get_algorithm(hash, &alg))          != HAL_OK ||
        (err = hal_rpc_hash_get_digest_length(alg, &input_len)) != HAL_OK)
      return err;

    if (input_len > signature_max)
      return HAL_ERROR_RESULT_TOO_LONG;

    if ((err = hal_rpc_hash_finalize(hash, signature, input_len)) != HAL_OK)
      return err;

    input = signature;
  }

  if ((err = hal_ecdsa_sign(NULL, key, input, input_len, signature, signature_len, signature_max)) != HAL_OK)
    return err;

  return HAL_OK;
}

static hal_error_t pkey_local_sign(const hal_pkey_handle_t pkey,
                                   const hal_hash_handle_t hash,
                                   const uint8_t * const input,  const size_t input_len,
                                   uint8_t * signature, size_t *signature_len, const size_t signature_max)
{
  hal_pkey_slot_t *slot = find_handle(pkey);

  if (slot == NULL)
    return HAL_ERROR_KEY_NOT_FOUND;

  hal_error_t (*signer)(uint8_t *keybuf, const size_t keybuf_len,
                        const uint8_t * const der, const size_t der_len,
                        const hal_hash_handle_t hash,
                        const uint8_t * const input,  const size_t input_len,
                        uint8_t * signature, size_t *signature_len, const size_t signature_max);

  switch (slot->type) {
  case HAL_KEY_TYPE_RSA_PRIVATE:
    signer = pkey_local_sign_rsa;
    break;
  case HAL_KEY_TYPE_EC_PRIVATE:
    signer = pkey_local_sign_ecdsa;
    break;
  default:
    return HAL_ERROR_UNSUPPORTED_KEY;
  }

  if ((slot->flags & HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE) == 0)
    return HAL_ERROR_FORBIDDEN;

  uint8_t keybuf[hal_rsa_key_t_size > hal_ecdsa_key_t_size
                 ? hal_rsa_key_t_size : hal_ecdsa_key_t_size];
  uint8_t der[HAL_KS_WRAPPED_KEYSIZE];
  size_t der_len;
  hal_error_t err;

  if ((err = ks_fetch_from_flags(slot, der, &der_len, sizeof(der))) == HAL_OK)
    err = signer(keybuf, sizeof(keybuf), der, der_len, hash, input, input_len,
                 signature, signature_len, signature_max);

  memset(keybuf, 0, sizeof(keybuf));
  memset(der,    0, sizeof(der));

  return err;
}

/*
 * Verify something using public key associated with handle.
 *
 * RSA has enough quirks that it's simplest to split this out into
 * algorithm-specific functions.
 */

static hal_error_t pkey_local_verify_rsa(uint8_t *keybuf, const size_t keybuf_len, const hal_key_type_t type,
                                         const uint8_t * const der, const size_t der_len,
                                         const hal_hash_handle_t hash,
                                         const uint8_t * input, size_t input_len,
                                         const uint8_t * const signature, const size_t signature_len)
{
  uint8_t expected[signature_len], received[(signature_len + 3) & ~3];
  hal_rsa_key_t *key = NULL;
  hal_error_t err;

  assert(signature != NULL && signature_len > 0);
  assert((hash.handle == HAL_HANDLE_NONE) != (input == NULL || input_len == 0));

  switch (type) {
  case HAL_KEY_TYPE_RSA_PRIVATE:
    err = hal_rsa_private_key_from_der(&key, keybuf, keybuf_len, der, der_len);
    break;
  case HAL_KEY_TYPE_RSA_PUBLIC:
    err = hal_rsa_public_key_from_der(&key, keybuf, keybuf_len, der, der_len);
    break;
  default:
    err = HAL_ERROR_IMPOSSIBLE;
  }

  if (err != HAL_OK)
    return err;

  if (input == NULL || input_len == 0) {
    if ((err = hal_rpc_pkcs1_construct_digestinfo(hash, expected, &input_len, sizeof(expected))) != HAL_OK)
      return err;
    input = expected;
  }

  if ((err = pkcs1_5_pad(input, input_len, expected, sizeof(expected), 0x01))                  != HAL_OK ||
      (err = hal_rsa_encrypt(NULL, key, signature, signature_len, received, sizeof(received))) != HAL_OK)
    return err;

  unsigned diff = 0;
  for (int i = 0; i < signature_len; i++)
    diff |= expected[i] ^ received[i + sizeof(received) - sizeof(expected)];

  if (diff != 0)
    return HAL_ERROR_INVALID_SIGNATURE;

  return HAL_OK;
}

static hal_error_t pkey_local_verify_ecdsa(uint8_t *keybuf, const size_t keybuf_len, const hal_key_type_t type,
                                           const uint8_t * const der, const size_t der_len,
                                           const hal_hash_handle_t hash,
                                           const uint8_t * input, size_t input_len,
                                           const uint8_t * const signature, const size_t signature_len)
{
  uint8_t digest[signature_len];
  hal_ecdsa_key_t *key = NULL;
  hal_error_t err;

  assert(signature != NULL && signature_len > 0);
  assert((hash.handle == HAL_HANDLE_NONE) != (input == NULL || input_len == 0));

  switch (type) {
  case HAL_KEY_TYPE_EC_PRIVATE:
    err = hal_ecdsa_private_key_from_der(&key, keybuf, keybuf_len, der, der_len);
    break;
  case HAL_KEY_TYPE_EC_PUBLIC:
    err = hal_ecdsa_public_key_from_der(&key, keybuf, keybuf_len, der, der_len);
    break;
  default:
    err = HAL_ERROR_IMPOSSIBLE;
  }

  if (err != HAL_OK)
    return err;

  if (input == NULL || input_len == 0) {
    hal_digest_algorithm_t alg;

    if ((err = hal_rpc_hash_get_algorithm(hash, &alg))              != HAL_OK ||
        (err = hal_rpc_hash_get_digest_length(alg, &input_len))     != HAL_OK ||
        (err = hal_rpc_hash_finalize(hash, digest, sizeof(digest))) != HAL_OK)
      return err;

    input = digest;
  }

  if ((err = hal_ecdsa_verify(NULL, key, input, input_len, signature, signature_len)) != HAL_OK)
    return err;

  return HAL_OK;
}

static hal_error_t pkey_local_verify(const hal_pkey_handle_t pkey,
                                     const hal_hash_handle_t hash,
                                     const uint8_t * const input, const size_t input_len,
                                     const uint8_t * const signature, const size_t signature_len)
{
  hal_pkey_slot_t *slot = find_handle(pkey);

  if (slot == NULL)
    return HAL_ERROR_KEY_NOT_FOUND;

  hal_error_t (*verifier)(uint8_t *keybuf, const size_t keybuf_len, const hal_key_type_t type,
                          const uint8_t * const der, const size_t der_len,
                          const hal_hash_handle_t hash,
                          const uint8_t * const input,  const size_t input_len,
                          const uint8_t * const signature, const size_t signature_len);

  switch (slot->type) {
  case HAL_KEY_TYPE_RSA_PRIVATE:
  case HAL_KEY_TYPE_RSA_PUBLIC:
    verifier = pkey_local_verify_rsa;
    break;
  case HAL_KEY_TYPE_EC_PRIVATE:
  case HAL_KEY_TYPE_EC_PUBLIC:
    verifier = pkey_local_verify_ecdsa;
    break;
  default:
    return HAL_ERROR_UNSUPPORTED_KEY;
  }

  if ((slot->flags & HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE) == 0)
    return HAL_ERROR_FORBIDDEN;

  uint8_t keybuf[hal_rsa_key_t_size > hal_ecdsa_key_t_size
                 ? hal_rsa_key_t_size : hal_ecdsa_key_t_size];
  uint8_t der[HAL_KS_WRAPPED_KEYSIZE];
  size_t der_len;
  hal_error_t err;

  if ((err = ks_fetch_from_flags(slot, der, &der_len, sizeof(der))) == HAL_OK)
    err = verifier(keybuf, sizeof(keybuf), slot->type, der, der_len, hash,
                   input, input_len, signature, signature_len);

  memset(keybuf, 0, sizeof(keybuf));
  memset(der,    0, sizeof(der));

  return err;
}

static inline hal_error_t match_one_keystore(hal_ks_t *ks,
                                             const hal_client_handle_t client,
                                             const hal_session_handle_t session,
                                             const hal_key_type_t type,
                                             const hal_curve_name_t curve,
                                             const hal_key_flags_t mask,
                                             const hal_key_flags_t flags,
                                             const hal_pkey_attribute_t *attributes,
                                             const unsigned attributes_len,
                                             hal_uuid_t **result,
                                             unsigned *result_len,
                                             const unsigned result_max,
                                             const hal_uuid_t * const previous_uuid)
{
  hal_error_t err;
  unsigned len;

  if ((err = hal_ks_match(ks, client, session, type, curve,
                          mask, flags, attributes, attributes_len,
                          *result, &len, result_max, previous_uuid)) != HAL_OK)
    return err;

  *result     += len;
  *result_len += len;

  return HAL_OK;
}

typedef enum {
  MATCH_STATE_START,
  MATCH_STATE_TOKEN,
  MATCH_STATE_VOLATILE,
  MATCH_STATE_DONE
} match_state_t;

static hal_error_t pkey_local_match(const hal_client_handle_t client,
                                    const hal_session_handle_t session,
                                    const hal_key_type_t type,
                                    const hal_curve_name_t curve,
                                    const hal_key_flags_t mask,
                                    const hal_key_flags_t flags,
                                    const hal_pkey_attribute_t *attributes,
                                    const unsigned attributes_len,
                                    unsigned *state,
                                    hal_uuid_t *result,
                                    unsigned *result_len,
                                    const unsigned result_max,
                                    const hal_uuid_t * const previous_uuid)
{
  assert(state != NULL && result_len != NULL);

  static const hal_uuid_t uuid_zero[1] = {{{0}}};
  const hal_uuid_t *prev = previous_uuid;
  hal_error_t err;

  *result_len = 0;

  if ((err = check_readable(client, flags)) == HAL_ERROR_FORBIDDEN)
    return HAL_OK;
  else if (err != HAL_OK)
    return err;

  switch ((match_state_t) *state) {

  case MATCH_STATE_START:
    prev = uuid_zero;
    ++*state;

  case MATCH_STATE_TOKEN:
    if (((mask & HAL_KEY_FLAG_TOKEN) == 0 || (mask & flags & HAL_KEY_FLAG_TOKEN) != 0) &&
        (err = match_one_keystore(hal_ks_token, client, session, type, curve,
                                  mask, flags, attributes, attributes_len,
                                  &result, result_len, result_max - *result_len, prev)) != HAL_OK)
      return err;
    if (*result_len == result_max)
      return HAL_OK;
    prev = uuid_zero;
    ++*state;

  case MATCH_STATE_VOLATILE:
    if (((mask & HAL_KEY_FLAG_TOKEN) == 0 || (mask & flags & HAL_KEY_FLAG_TOKEN) == 0) &&
        (err = match_one_keystore(hal_ks_volatile, client, session, type, curve,
                                  mask, flags, attributes, attributes_len,
                                  &result, result_len, result_max - *result_len, prev)) != HAL_OK)
      return err;
    if (*result_len == result_max)
      return HAL_OK;
    ++*state;

  case MATCH_STATE_DONE:
    return HAL_OK;

  default:
    return HAL_ERROR_BAD_ARGUMENTS;
  }
}

static hal_error_t pkey_local_set_attributes(const hal_pkey_handle_t pkey,
                                             const hal_pkey_attribute_t *attributes,
                                             const unsigned attributes_len)
{
  hal_pkey_slot_t *slot = find_handle(pkey);

  if (slot == NULL)
    return HAL_ERROR_KEY_NOT_FOUND;

  hal_error_t err;

  if ((err = check_writable(slot->client, slot->flags)) != HAL_OK)
    return err;

  return hal_ks_set_attributes(ks_from_flags(slot->flags), slot, attributes, attributes_len);
}

static hal_error_t pkey_local_get_attributes(const hal_pkey_handle_t pkey,
                                             hal_pkey_attribute_t *attributes,
                                             const unsigned attributes_len,
                                             uint8_t *attributes_buffer,
                                             const size_t attributes_buffer_len)
{
  hal_pkey_slot_t *slot = find_handle(pkey);

  if (slot == NULL)
    return HAL_ERROR_KEY_NOT_FOUND;

  return hal_ks_get_attributes(ks_from_flags(slot->flags), slot, attributes, attributes_len,
                               attributes_buffer, attributes_buffer_len);
}

static hal_error_t pkey_local_export(const hal_pkey_handle_t pkey_handle,
                                     const hal_pkey_handle_t kekek_handle,
                                     uint8_t *pkcs8, size_t *pkcs8_len, const size_t pkcs8_max,
                                     uint8_t *kek,   size_t *kek_len,   const size_t kek_max)
{
  assert(pkcs8 != NULL && pkcs8_len != NULL && kek != NULL && kek_len != NULL && kek_max > KEK_LENGTH);

  uint8_t rsabuf[hal_rsa_key_t_size];
  hal_rsa_key_t *rsa = NULL;
  hal_error_t err;
  size_t len;

  hal_pkey_slot_t * const pkey  = find_handle(pkey_handle);
  hal_pkey_slot_t * const kekek = find_handle(kekek_handle);

  if (pkey == NULL || kekek == NULL)
    return HAL_ERROR_KEY_NOT_FOUND;

  if ((pkey->flags & HAL_KEY_FLAG_EXPORTABLE) == 0)
    return HAL_ERROR_FORBIDDEN;

  if ((kekek->flags & HAL_KEY_FLAG_USAGE_KEYENCIPHERMENT) == 0)
    return HAL_ERROR_FORBIDDEN;

  if (kekek->type != HAL_KEY_TYPE_RSA_PRIVATE && kekek->type != HAL_KEY_TYPE_RSA_PUBLIC)
    return HAL_ERROR_UNSUPPORTED_KEY;

  if (pkcs8_max < HAL_KS_WRAPPED_KEYSIZE)
    return HAL_ERROR_RESULT_TOO_LONG;

  if ((err = ks_fetch_from_flags(kekek, pkcs8, &len, pkcs8_max)) != HAL_OK)
    goto fail;

  switch (kekek->type) {
  case HAL_KEY_TYPE_RSA_PRIVATE:
    err = hal_rsa_private_key_from_der(&rsa, rsabuf, sizeof(rsabuf), pkcs8, len);
    break;
  case HAL_KEY_TYPE_RSA_PUBLIC:
    err = hal_rsa_public_key_from_der(&rsa, rsabuf, sizeof(rsabuf), pkcs8, len);
    break;
  default:
    err = HAL_ERROR_IMPOSSIBLE;
  }
  if (err != HAL_OK)
    goto fail;

  if ((err = hal_rsa_key_get_modulus(rsa, NULL, kek_len, 0)) != HAL_OK)
    goto fail;

  if (*kek_len > kek_max) {
    err = HAL_ERROR_RESULT_TOO_LONG;
    goto fail;
  }

  if ((err = ks_fetch_from_flags(pkey, pkcs8, &len, pkcs8_max)) != HAL_OK)
    goto fail;

  if ((err = hal_get_random(NULL, kek, KEK_LENGTH)) != HAL_OK)
    goto fail;

  *pkcs8_len = pkcs8_max;
  if ((err = hal_aes_keywrap(NULL, kek, KEK_LENGTH, pkcs8, len, pkcs8, pkcs8_len)) != HAL_OK)
    goto fail;

  if ((err = hal_asn1_encode_pkcs8_encryptedprivatekeyinfo(hal_asn1_oid_aesKeyWrap,
                                                           hal_asn1_oid_aesKeyWrap_len,
                                                           pkcs8, *pkcs8_len,
                                                           pkcs8, pkcs8_len, pkcs8_max)) != HAL_OK)
    goto fail;

  if ((err = pkcs1_5_pad(kek, KEK_LENGTH, kek, *kek_len, 0x02)) != HAL_OK)
    goto fail;

  if ((err = hal_rsa_encrypt(NULL, rsa, kek, *kek_len, kek, *kek_len)) != HAL_OK)
    goto fail;

  if ((err = hal_asn1_encode_pkcs8_encryptedprivatekeyinfo(hal_asn1_oid_rsaEncryption,
                                                           hal_asn1_oid_rsaEncryption_len,
                                                           kek, *kek_len,
                                                           kek, kek_len, kek_max)) != HAL_OK)
    goto fail;

  memset(rsabuf,  0, sizeof(rsabuf));
  return HAL_OK;

 fail:
  memset(pkcs8,   0, pkcs8_max);
  memset(kek, 0, kek_max);
  memset(rsabuf,  0, sizeof(rsabuf));
  *pkcs8_len = *kek_len = 0;
  return err;
}

static hal_error_t pkey_local_import(const hal_client_handle_t client,
                                     const hal_session_handle_t session,
                                     hal_pkey_handle_t *pkey,
                                     hal_uuid_t *name,
                                     const hal_pkey_handle_t kekek_handle,
                                     const uint8_t * const pkcs8, const size_t pkcs8_len,
                                     const uint8_t * const kek_,  const size_t kek_len,
                                     const hal_key_flags_t flags)
{
  assert(pkey != NULL && name != NULL && pkcs8 != NULL && kek_ != NULL && kek_len > 2);

  uint8_t kek[KEK_LENGTH], rsabuf[hal_rsa_key_t_size], der[HAL_KS_WRAPPED_KEYSIZE], *d;
  size_t der_len, oid_len, data_len;
  const uint8_t *oid, *data;
  hal_rsa_key_t *rsa = NULL;
  hal_error_t err;

  hal_pkey_slot_t * const kekek = find_handle(kekek_handle);

  if (kekek == NULL)
    return HAL_ERROR_KEY_NOT_FOUND;

  if ((kekek->flags & HAL_KEY_FLAG_USAGE_KEYENCIPHERMENT) == 0)
    return HAL_ERROR_FORBIDDEN;

  if (kekek->type != HAL_KEY_TYPE_RSA_PRIVATE)
    return HAL_ERROR_UNSUPPORTED_KEY;

  if ((err = ks_fetch_from_flags(kekek, der, &der_len, sizeof(der))) != HAL_OK)
    goto fail;

  if ((err = hal_rsa_private_key_from_der(&rsa, rsabuf, sizeof(rsabuf), der, der_len)) != HAL_OK)
    goto fail;

  if ((err = hal_asn1_decode_pkcs8_encryptedprivatekeyinfo(&oid, &oid_len, &data, &data_len,
                                                           kek_, kek_len)) != HAL_OK)
    goto fail;

  if (oid_len != hal_asn1_oid_rsaEncryption_len ||
      memcmp(oid, hal_asn1_oid_rsaEncryption, oid_len) != 0 ||
      data_len > sizeof(der) ||
      data_len < 2) {
    err = HAL_ERROR_ASN1_PARSE_FAILED;
    goto fail;
  }

  if ((err = hal_rsa_decrypt(NULL, rsa, data, data_len, der, data_len)) != HAL_OK)
    goto fail;

  if ((err = hal_get_random(NULL, kek, sizeof(kek))) != HAL_OK)
    goto fail;

  d = memchr(der + 2, 0x00, data_len - 2);

  if (der[0] == 0x00 && der[1] == 0x02 && d != NULL && d - der > 10 &&
      der + data_len == d + 1 + KEK_LENGTH)
    memcpy(kek, d + 1, sizeof(kek));

  if ((err = hal_asn1_decode_pkcs8_encryptedprivatekeyinfo(&oid, &oid_len, &data, &data_len,
                                                           pkcs8, pkcs8_len)) != HAL_OK)
    goto fail;

  if (oid_len != hal_asn1_oid_aesKeyWrap_len ||
      memcmp(oid, hal_asn1_oid_aesKeyWrap, oid_len) != 0 ||
      data_len > sizeof(der)) {
    err = HAL_ERROR_ASN1_PARSE_FAILED;
    goto fail;
  }

  der_len = sizeof(der);
  if ((err = hal_aes_keyunwrap(NULL, kek, sizeof(kek), data, data_len, der, &der_len)) != HAL_OK)
    goto fail;

  err = hal_rpc_pkey_load(client, session, pkey, name, der, der_len, flags);

 fail:
  memset(rsabuf, 0, sizeof(rsabuf));
  memset(kek, 0, sizeof(kek));
  memset(der, 0, sizeof(der));
  return err;
}

const hal_rpc_pkey_dispatch_t hal_rpc_local_pkey_dispatch = {
  .load                 = pkey_local_load,
  .open                 = pkey_local_open,
  .generate_rsa         = pkey_local_generate_rsa,
  .generate_ec          = pkey_local_generate_ec,
  .close                = pkey_local_close,
  .delete               = pkey_local_delete,
  .get_key_type         = pkey_local_get_key_type,
  .get_key_curve        = pkey_local_get_key_curve,
  .get_key_flags        = pkey_local_get_key_flags,
  .get_public_key_len   = pkey_local_get_public_key_len,
  .get_public_key       = pkey_local_get_public_key,
  .sign                 = pkey_local_sign,
  .verify               = pkey_local_verify,
  .match                = pkey_local_match,
  .set_attributes       = pkey_local_set_attributes,
  .get_attributes       = pkey_local_get_attributes,
  .export               = pkey_local_export,
  .import               = pkey_local_import
};

/*
 * Local variables:
 * indent-tabs-mode: nil
 * End:
 */