aboutsummaryrefslogtreecommitdiff
path: root/rpc_misc.c
blob: c3ff44c9cede9edf75da11cedc4224826d1419b2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/*
 * rpc_misc.c
 * ----------
 * RPC interface to TRNG and PIN functions
 *
 * Authors: Rob Austein
 * Copyright (c) 2015, NORDUnet A/S All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * - Redistributions of source code must retain the above copyright notice,
 *   this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 *
 * - Neither the name of the NORDUnet nor the names of its contributors may
 *   be used to endorse or promote products derived from this software
 *   without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <assert.h>

#include "hal.h"
#include "hal_internal.h"

static hal_error_t get_version(uint32_t *version)
{
  *version = RPC_VERSION;
  return HAL_OK;
}

static hal_error_t get_random(void *buffer, const size_t length)
{
  assert(buffer != NULL && length > 0);

  return hal_get_random(NULL, buffer, length);
}

/*
 * PINs, salt, and iteration count live in the keystore.
 *
 * We also need a client table in conventional memory (here, probably)
 * to record login status.
 *
 * The USER and SO PINs correspond to PKCS #11.
 *
 * The WHEEL PIN is the one that's allowed to change the SO PIN.
 *
 * It's a bit unclear how we should manage changes to the WHEEL PIN.
 * Implementing a factory default would be easy enough (just
 * pre-compute and compile in a const hal_ks_pin_t), question is
 * whether doing so provides anything useful.  Certainly adds no real
 * security, question is whether it would help prevent accidently
 * bricking the HSM right out of the shrink wrap.
 *
 * More interesting question is whether we should ever allow the WHEEL
 * PIN to be changed a second time without toasting the keystore.
 */

typedef struct {
  hal_client_handle_t handle;
  hal_user_t logged_in;
} client_slot_t;

#ifndef HAL_PIN_MINIMUM_ITERATIONS
#define HAL_PIN_MINIMUM_ITERATIONS 10000
#endif

#ifndef HAL_PIN_DEFAULT_ITERATIONS
#define HAL_PIN_DEFAULT_ITERATIONS 20000
#endif

static uint32_t hal_pin_default_iterations = HAL_PIN_DEFAULT_ITERATIONS;

#ifndef HAL_STATIC_CLIENT_STATE_BLOCKS
#define HAL_STATIC_CLIENT_STATE_BLOCKS	10
#endif

#if HAL_STATIC_CLIENT_STATE_BLOCKS > 0
static client_slot_t client_handle[HAL_STATIC_CLIENT_STATE_BLOCKS];
#endif

/*
 * Client handles are supplied by the application, we don't get to
 * pick them, we just store them and associate a login state with
 * them.  HAL_USER_NONE indicates an empty slot in the table.
 */

static inline client_slot_t *alloc_slot(void)
{
#if HAL_STATIC_CLIENT_STATE_BLOCKS > 0
  for (int i = 0; i < sizeof(client_handle)/sizeof(*client_handle); i++)
    if (client_handle[i].logged_in == HAL_USER_NONE)
      return &client_handle[i];
#endif

  return NULL;
}

static inline client_slot_t *find_handle(const hal_client_handle_t handle)
{
#if HAL_STATIC_CLIENT_STATE_BLOCKS > 0
  for (int i = 0; i < sizeof(client_handle)/sizeof(*client_handle); i++)
    if (client_handle[i].logged_in != HAL_USER_NONE && client_handle[i].handle.handle == handle.handle)
      return &client_handle[i];
#endif

  return NULL;
}

static hal_error_t login(const hal_client_handle_t client,
                         const hal_user_t user,
                         const char * const pin, const size_t pin_len)
{
  assert(pin != NULL && pin_len != 0);
  assert(user == HAL_USER_NORMAL || user == HAL_USER_SO || user == HAL_USER_WHEEL);

  const hal_ks_pin_t *p;
  hal_error_t err;

  if ((err = hal_get_pin(user, &p)) != HAL_OK)
    return err;

  uint8_t buf[sizeof(p->pin)];
  const uint32_t iterations = p->iterations == 0 ? hal_pin_default_iterations : p->iterations;

  if ((err = hal_pbkdf2(NULL, hal_hash_sha256, (const uint8_t *) pin, pin_len,
                        p->salt, sizeof(p->salt), buf, sizeof(buf), iterations)) != HAL_OK)
    return err;

  unsigned diff = 0;
  for (int i = 0; i < sizeof(buf); i++)
    diff |= buf[i] ^ p->pin[i];

  if (diff != 0)
    return HAL_ERROR_PIN_INCORRECT;

  client_slot_t *slot = find_handle(client);

  if (slot == NULL && (slot = alloc_slot()) == NULL)
    return HAL_ERROR_NO_CLIENT_SLOTS_AVAILABLE;

  slot->handle = client;
  slot->logged_in = user;

  return HAL_OK;
}

static hal_error_t is_logged_in(const hal_client_handle_t client,
                                const hal_user_t user)
{
  assert(user == HAL_USER_NORMAL || user == HAL_USER_SO || user == HAL_USER_WHEEL);

  client_slot_t *slot = find_handle(client);

  if (slot == NULL || slot->logged_in != user)
    return HAL_ERROR_FORBIDDEN;

  return HAL_OK;
}

static hal_error_t logout(const hal_client_handle_t client)
{
  client_slot_t *slot = find_handle(client);

  if (slot != NULL)
    slot->logged_in = HAL_USER_NONE;

  return HAL_OK;
}

static hal_error_t logout_all(void)
{
#if HAL_STATIC_CLIENT_STATE_BLOCKS > 0
  for (int i = 0; i < sizeof(client_handle)/sizeof(*client_handle); i++)
    client_handle[i].logged_in = HAL_USER_NONE;
#endif

  return HAL_OK;
}

static hal_error_t set_pin(const hal_client_handle_t client,
                           const hal_user_t user,
                           const char * const newpin, const size_t newpin_len)
{
  assert(newpin != NULL && newpin_len >= hal_rpc_min_pin_length && newpin_len <= hal_rpc_max_pin_length);

  if ((user != HAL_USER_NORMAL || is_logged_in(client, HAL_USER_SO) != HAL_OK) &&
      is_logged_in(client, HAL_USER_WHEEL) != HAL_OK)
    return HAL_ERROR_FORBIDDEN;

  const hal_ks_pin_t *pp;
  hal_error_t err;

  if ((err = hal_get_pin(user, &pp)) != HAL_OK)
    return err;

  hal_ks_pin_t p = *pp;

  p.iterations = hal_pin_default_iterations;

  if ((err = hal_get_random(NULL, p.salt, sizeof(p.salt)))      != HAL_OK ||
      (err = hal_pbkdf2(NULL, hal_hash_sha256,
                        (const uint8_t *) newpin, newpin_len,
                        p.salt, sizeof(p.salt),
                        p.pin,  sizeof(p.pin), p.iterations))   != HAL_OK ||
      (err = hal_set_pin(user, &p))                             != HAL_OK)
    return err;

  return HAL_OK;
}

hal_error_t hal_set_pin_default_iterations(const hal_client_handle_t client,
                                           const uint32_t iterations)
{
  if ((is_logged_in(client, HAL_USER_WHEEL) != HAL_OK) &&
      (is_logged_in(client, HAL_USER_SO) != HAL_OK))
    return HAL_ERROR_FORBIDDEN;

  /* should probably store this in flash somewhere */
  hal_pin_default_iterations = (iterations == 0) ? HAL_PIN_DEFAULT_ITERATIONS : iterations;
  return HAL_OK;
}

const hal_rpc_misc_dispatch_t hal_rpc_local_misc_dispatch = {
  set_pin,
  login,
  logout,
  logout_all,
  is_logged_in,
  get_random,
  get_version
};

/*
 * Local variables:
 * indent-tabs-mode: nil
 * End:
 */
: #0000DD; font-weight: bold } /* Literal.Number.Integer */ .highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */ .highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */ .highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */ .highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */ .highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */ .highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */ .highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */ .highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */ .highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */ .highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */ .highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */ .highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */ .highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */ .highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */ .highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */ .highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */ .highlight .vc { color: #336699 } /* Name.Variable.Class */ .highlight .vg { color: #dd7700 } /* Name.Variable.Global */ .highlight .vi { color: #3333bb } /* Name.Variable.Instance */ .highlight .vm { color: #336699 } /* Name.Variable.Magic */ .highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
/**
  ******************************************************************************
  * @file    stm32f4xx_hal_smartcard.c
  * @author  MCD Application Team
  * @version V1.3.2
  * @date    26-June-2015
  * @brief   SMARTCARD HAL module driver.
  *          This file provides firmware functions to manage the following
  *          functionalities of the SMARTCARD peripheral:
  *           + Initialization and de-initialization functions
  *           + IO operation functions
  *           + Peripheral State and Errors functions
  *
  @verbatim
  ==============================================================================
                     ##### How to use this driver #####
  ==============================================================================
    [..]
      The SMARTCARD HAL driver can be used as follows:

    (#) Declare a SMARTCARD_HandleTypeDef handle structure.
    (#) Initialize the SMARTCARD low level resources by implementing the HAL_SMARTCARD_MspInit() API:
        (##) Enable the USARTx interface clock.
        (##) SMARTCARD pins configuration:
            (+++) Enable the clock for the SMARTCARD GPIOs.
            (+++) Configure these SMARTCARD pins as alternate function pull-up.
        (##) NVIC configuration if you need to use interrupt process (HAL_SMARTCARD_Transmit_IT()
             and HAL_SMARTCARD_Receive_IT() APIs):
            (+++) Configure the USARTx interrupt priority.
            (+++) Enable the NVIC USART IRQ handle.
        (##) DMA Configuration if you need to use DMA process (HAL_SMARTCARD_Transmit_DMA()
             and HAL_SMARTCARD_Receive_DMA() APIs):
            (+++) Declare a DMA handle structure for the Tx/Rx stream.
            (+++) Enable the DMAx interface clock.
            (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.
            (+++) Configure the DMA Tx/Rx Stream.
            (+++) Associate the initialized DMA handle to the SMARTCARD DMA Tx/Rx handle.
            (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx Stream.

    (#) Program the Baud Rate, Word Length , Stop Bit, Parity, Hardware
        flow control and Mode(Receiver/Transmitter) in the SMARTCARD Init structure.

    (#) Initialize the SMARTCARD registers by calling the HAL_SMARTCARD_Init() API:
        (++) These APIs configure also the low level Hardware GPIO, CLOCK, CORTEX...etc)
             by calling the customized HAL_SMARTCARD_MspInit() API.
    [..]
    (@) The specific SMARTCARD interrupts (Transmission complete interrupt,
        RXNE interrupt and Error Interrupts) will be managed using the macros
        __HAL_SMARTCARD_ENABLE_IT() and __HAL_SMARTCARD_DISABLE_IT() inside the transmit and receive process.

    [..]
    Three operation modes are available within this driver :

    *** Polling mode IO operation ***
    =================================
    [..]
      (+) Send an amount of data in blocking mode using HAL_SMARTCARD_Transmit()
      (+) Receive an amount of data in blocking mode using HAL_SMARTCARD_Receive()

    *** Interrupt mode IO operation ***
    ===================================
    [..]
      (+) Send an amount of data in non blocking mode using HAL_SMARTCARD_Transmit_IT()
      (+) At transmission end of transfer HAL_SMARTCARD_TxCpltCallback is executed and user can
          add his own code by customization of function pointer HAL_SMARTCARD_TxCpltCallback
      (+) Receive an amount of data in non blocking mode using HAL_SMARTCARD_Receive_IT()
      (+) At reception end of transfer HAL_SMARTCARD_RxCpltCallback is executed and user can
          add his own code by customization of function pointer HAL_SMARTCARD_RxCpltCallback
      (+) In case of transfer Error, HAL_SMARTCARD_ErrorCallback() function is executed and user can
          add his own code by customization of function pointer HAL_SMARTCARD_ErrorCallback

    *** DMA mode IO operation ***
    ==============================
    [..]
      (+) Send an amount of data in non blocking mode (DMA) using HAL_SMARTCARD_Transmit_DMA()
      (+) At transmission end of transfer HAL_SMARTCARD_TxCpltCallback is executed and user can
          add his own code by customization of function pointer HAL_SMARTCARD_TxCpltCallback
      (+) Receive an amount of data in non blocking mode (DMA) using HAL_SMARTCARD_Receive_DMA()
      (+) At reception end of transfer HAL_SMARTCARD_RxCpltCallback is executed and user can
          add his own code by customization of function pointer HAL_SMARTCARD_RxCpltCallback
      (+) In case of transfer Error, HAL_SMARTCARD_ErrorCallback() function is executed and user can
          add his own code by customization of function pointer HAL_SMARTCARD_ErrorCallback

    *** SMARTCARD HAL driver macros list ***
    =============================================
    [..]
      Below the list of most used macros in SMARTCARD HAL driver.

      (+) __HAL_SMARTCARD_ENABLE: Enable the SMARTCARD peripheral
      (+) __HAL_SMARTCARD_DISABLE: Disable the SMARTCARD peripheral
      (+) __HAL_SMARTCARD_GET_FLAG : Check whether the specified SMARTCARD flag is set or not
      (+) __HAL_SMARTCARD_CLEAR_FLAG : Clear the specified SMARTCARD pending flag
      (+) __HAL_SMARTCARD_ENABLE_IT: Enable the specified SMARTCARD interrupt
      (+) __HAL_SMARTCARD_DISABLE_IT: Disable the specified SMARTCARD interrupt

    [..]
      (@) You can refer to the SMARTCARD HAL driver header file for more useful macros

  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"

/** @addtogroup STM32F4xx_HAL_Driver
  * @{
  */

/** @defgroup SMARTCARD SMARTCARD
  * @brief HAL USART SMARTCARD module driver
  * @{
  */
#ifdef HAL_SMARTCARD_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup SMARTCARD_Private_Constants
  * @{
  */
#define SMARTCARD_TIMEOUT_VALUE  22000
/**
  * @}
  */
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @addtogroup SMARTCARD_Private_Functions
  * @{
  */
static void SMARTCARD_SetConfig (SMARTCARD_HandleTypeDef *hsc);
static HAL_StatusTypeDef SMARTCARD_Transmit_IT(SMARTCARD_HandleTypeDef *hsc);
static HAL_StatusTypeDef SMARTCARD_EndTransmit_IT(SMARTCARD_HandleTypeDef *hsmartcard);
static HAL_StatusTypeDef SMARTCARD_Receive_IT(SMARTCARD_HandleTypeDef *hsc);
static void SMARTCARD_DMATransmitCplt(DMA_HandleTypeDef *hdma);
static void SMARTCARD_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
static void SMARTCARD_DMAError(DMA_HandleTypeDef *hdma);
static HAL_StatusTypeDef SMARTCARD_WaitOnFlagUntilTimeout(SMARTCARD_HandleTypeDef *hsc, uint32_t Flag, FlagStatus Status, uint32_t Timeout);
/**
  * @}
  */
/* Exported functions --------------------------------------------------------*/
/** @defgroup SMARTCARD_Exported_Functions SMARTCARD Exported Functions
  * @{
  */

/** @defgroup SMARTCARD_Exported_Functions_Group1 SmartCard Initialization and de-initialization functions
  *  @brief    Initialization and Configuration functions
  *
@verbatim
  ==============================================================================
              ##### Initialization and Configuration functions #####
  ==============================================================================
  [..]
  This subsection provides a set of functions allowing to initialize the USART
  in Smartcard mode.
  [..]
  The Smartcard interface is designed to support asynchronous protocol Smartcards as
  defined in the ISO 7816-3 standard.
  [..]
  The USART can provide a clock to the smartcard through the SCLK output.
  In smartcard mode, SCLK is not associated to the communication but is simply derived
  from the internal peripheral input clock through a 5-bit prescaler.
  [..]
  (+) For the Smartcard mode only these parameters can be configured:
      (++) Baud Rate
      (++) Word Length => Should be 9 bits (8 bits + parity)
      (++) Stop Bit
      (++) Parity: => Should be enabled
   +-------------------------------------------------------------+
   |   M bit |  PCE bit  |        SMARTCARD frame                |
   |---------------------|---------------------------------------|
   |    1    |    1      |    | SB | 8 bit data | PB | STB |     |
   +-------------------------------------------------------------+
      (++) USART polarity
      (++) USART phase
      (++) USART LastBit
      (++) Receiver/transmitter modes
      (++) Prescaler
      (++) GuardTime
      (++) NACKState: The Smartcard NACK state

     (+) Recommended SmartCard interface configuration to get the Answer to Reset from the Card:
        (++) Word Length = 9 Bits
        (++) 1.5 Stop Bit
        (++) Even parity
        (++) BaudRate = 12096 baud
        (++) Tx and Rx enabled
  [..]
  Please refer to the ISO 7816-3 specification for more details.

    -@- It is also possible to choose 0.5 stop bit for receiving but it is recommended
        to use 1.5 stop bits for both transmitting and receiving to avoid switching
        between the two configurations.
  [..]
    The HAL_SMARTCARD_Init() function follows the USART  SmartCard configuration
    procedure (details for the procedure are available in reference manual (RM0329)).

@endverbatim
  * @{
  */

/**
  * @brief Initializes the SmartCard mode according to the specified
  *         parameters in the SMARTCARD_InitTypeDef and create the associated handle .
  * @param  hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains
  *                the configuration information for SMARTCARD module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SMARTCARD_Init(SMARTCARD_HandleTypeDef *hsc)
{
  /* Check the SMARTCARD handle allocation */
  if(hsc == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the parameters */
  assert_param(IS_SMARTCARD_INSTANCE(hsc->Instance));
  assert_param(IS_SMARTCARD_NACK_STATE(hsc->Init.NACKState));

  if(hsc->State == HAL_SMARTCARD_STATE_RESET)
  {
    /* Allocate lock resource and initialize it */
    hsc->Lock = HAL_UNLOCKED;
    /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */
    HAL_SMARTCARD_MspInit(hsc);
  }

  hsc->State = HAL_SMARTCARD_STATE_BUSY;

  /* Set the Prescaler */
  MODIFY_REG(hsc->Instance->GTPR, USART_GTPR_PSC, hsc->Init.Prescaler);

  /* Set the Guard Time */
  MODIFY_REG(hsc->Instance->GTPR, USART_GTPR_GT, ((hsc->Init.GuardTime)<<8));

  /* Set the Smartcard Communication parameters */
  SMARTCARD_SetConfig(hsc);

  /* In SmartCard mode, the following bits must be kept cleared:
  - LINEN bit in the USART_CR2 register
  - HDSEL and IREN bits in the USART_CR3 register.*/
  hsc->Instance->CR2 &= ~USART_CR2_LINEN;
  hsc->Instance->CR3 &= ~(USART_CR3_IREN | USART_CR3_HDSEL);

  /* Enable the SMARTCARD Parity Error Interrupt */
  __HAL_SMARTCARD_ENABLE_IT(hsc, SMARTCARD_IT_PE);

  /* Enable the SMARTCARD Framing Error Interrupt */
  __HAL_SMARTCARD_ENABLE_IT(hsc, SMARTCARD_IT_ERR);

  /* Enable the Peripheral */
  __HAL_SMARTCARD_ENABLE(hsc);

  /* Configure the Smartcard NACK state */
  MODIFY_REG(hsc->Instance->CR3, USART_CR3_NACK, hsc->Init.NACKState);

  /* Enable the SC mode by setting the SCEN bit in the CR3 register */
  hsc->Instance->CR3 |= (USART_CR3_SCEN);

  /* Initialize the SMARTCARD state*/
  hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE;
  hsc->State= HAL_SMARTCARD_STATE_READY;

  return HAL_OK;
}

/**
  * @brief DeInitializes the USART SmartCard peripheral
  * @param  hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains
  *                the configuration information for SMARTCARD module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SMARTCARD_DeInit(SMARTCARD_HandleTypeDef *hsc)
{
  /* Check the SMARTCARD handle allocation */
  if(hsc == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the parameters */
  assert_param(IS_SMARTCARD_INSTANCE(hsc->Instance));

  hsc->State = HAL_SMARTCARD_STATE_BUSY;

  /* Disable the Peripheral */
  __HAL_SMARTCARD_DISABLE(hsc);

  /* DeInit the low level hardware */
  HAL_SMARTCARD_MspDeInit(hsc);

  hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE;
  hsc->State = HAL_SMARTCARD_STATE_RESET;

  /* Release Lock */
  __HAL_UNLOCK(hsc);

  return HAL_OK;
}

/**
  * @brief SMARTCARD MSP Init
  * @param  hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains
  *                the configuration information for SMARTCARD module.
  * @retval None
  */
 __weak void HAL_SMARTCARD_MspInit(SMARTCARD_HandleTypeDef *hsc)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_SMARTCARD_MspInit could be implemented in the user file
   */
}

/**
  * @brief SMARTCARD MSP DeInit
  * @param  hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains
  *                the configuration information for SMARTCARD module.
  * @retval None
  */
 __weak void HAL_SMARTCARD_MspDeInit(SMARTCARD_HandleTypeDef *hsc)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_SMARTCARD_MspDeInit could be implemented in the user file
   */
}

/**
  * @}
  */

/** @defgroup SMARTCARD_Exported_Functions_Group2 IO operation functions
  *  @brief   SMARTCARD Transmit and Receive functions
  *
@verbatim
 ===============================================================================
                      ##### IO operation functions #####
 ===============================================================================
    This subsection provides a set of functions allowing to manage the SMARTCARD data transfers.
    [..]
    Smartcard is a single wire half duplex communication protocol.
    The Smartcard interface is designed to support asynchronous protocol Smartcards as
    defined in the ISO 7816-3 standard. The USART should be configured as:
    (+) 8 bits plus parity: where M=1 and PCE=1 in the USART_CR1 register
    (+) 1.5 stop bits when transmitting and receiving: where STOP=11 in the USART_CR2 register.

    (#) There are two modes of transfer:
       (++) Blocking mode: The communication is performed in polling mode.
            The HAL status of all data processing is returned by the same function
            after finishing transfer.
       (++) Non Blocking mode: The communication is performed using Interrupts
           or DMA, These APIs return the HAL status.
           The end of the data processing will be indicated through the
           dedicated SMARTCARD IRQ when using Interrupt mode or the DMA IRQ when
           using DMA mode.
           The HAL_SMARTCARD_TxCpltCallback(), HAL_SMARTCARD_RxCpltCallback() user callbacks
           will be executed respectively at the end of the Transmit or Receive process
           The HAL_SMARTCARD_ErrorCallback() user callback will be executed when a communication error is detected

    (#) Blocking mode APIs are :
        (++) HAL_SMARTCARD_Transmit()
        (++) HAL_SMARTCARD_Receive()

    (#) Non Blocking mode APIs with Interrupt are :
        (++) HAL_SMARTCARD_Transmit_IT()
        (++) HAL_SMARTCARD_Receive_IT()
        (++) HAL_SMARTCARD_IRQHandler()

    (#) Non Blocking mode functions with DMA are :
        (++) HAL_SMARTCARD_Transmit_DMA()
        (++) HAL_SMARTCARD_Receive_DMA()

    (#) A set of Transfer Complete Callbacks are provided in non Blocking mode:
        (++) HAL_SMARTCARD_TxCpltCallback()
        (++) HAL_SMARTCARD_RxCpltCallback()
        (++) HAL_SMARTCARD_ErrorCallback()

@endverbatim
  * @{
  */

/**
  * @brief Send an amount of data in blocking mode
  * @param  hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains
  *                the configuration information for SMARTCARD module.
  * @param pData: pointer to data buffer
  * @param Size: amount of data to be sent
  * @param Timeout: Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SMARTCARD_Transmit(SMARTCARD_HandleTypeDef *hsc, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
  uint16_t* tmp;
  uint32_t tmp1 = 0;

  tmp1 = hsc->State;
  if((tmp1 == HAL_SMARTCARD_STATE_READY) || (tmp1 == HAL_SMARTCARD_STATE_BUSY_RX))
  {
    if((pData == NULL) || (Size == 0))
    {
      return  HAL_ERROR;
    }

    /* Process Locked */
    __HAL_LOCK(hsc);

    hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE;
    /* Check if a non-blocking receive process is ongoing or not */
    if(hsc->State == HAL_SMARTCARD_STATE_BUSY_RX)
    {
      hsc->State = HAL_SMARTCARD_STATE_BUSY_TX_RX;
    }
    else
    {
      hsc->State = HAL_SMARTCARD_STATE_BUSY_TX;
    }

    hsc->TxXferSize = Size;
    hsc->TxXferCount = Size;
    while(hsc->TxXferCount > 0)
    {
      hsc->TxXferCount--;
      if(SMARTCARD_WaitOnFlagUntilTimeout(hsc, SMARTCARD_FLAG_TXE, RESET, Timeout) != HAL_OK)
      {
        return HAL_TIMEOUT;
      }
      tmp = (uint16_t*) pData;
      hsc->Instance->DR = (*tmp & (uint16_t)0x01FF);
      pData +=1;
    }

    if(SMARTCARD_WaitOnFlagUntilTimeout(hsc, SMARTCARD_FLAG_TC, RESET, Timeout) != HAL_OK)
    {
      return HAL_TIMEOUT;
    }

    /* Check if a non-blocking receive process is ongoing or not */
    if(hsc->State == HAL_SMARTCARD_STATE_BUSY_TX_RX)
    {
      hsc->State = HAL_SMARTCARD_STATE_BUSY_RX;
    }
    else
    {
      hsc->State = HAL_SMARTCARD_STATE_READY;
    }
    /* Process Unlocked */
    __HAL_UNLOCK(hsc);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Receive an amount of data in blocking mode
  * @param  hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains
  *                the configuration information for SMARTCARD module.
  * @param pData: pointer to data buffer
  * @param Size: amount of data to be received
  * @param Timeout: Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SMARTCARD_Receive(SMARTCARD_HandleTypeDef *hsc, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
  uint16_t* tmp;
  uint32_t tmp1 = 0;

  tmp1 = hsc->State;
  if((tmp1 == HAL_SMARTCARD_STATE_READY) || (tmp1 == HAL_SMARTCARD_STATE_BUSY_TX))
  {
    if((pData == NULL) || (Size == 0))
    {
      return  HAL_ERROR;
    }

    /* Process Locked */
    __HAL_LOCK(hsc);

    hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE;

    /* Check if a non-blocking transmit process is ongoing or not */
    if(hsc->State == HAL_SMARTCARD_STATE_BUSY_TX)
    {
      hsc->State = HAL_SMARTCARD_STATE_BUSY_TX_RX;
    }
    else
    {
      hsc->State = HAL_SMARTCARD_STATE_BUSY_RX;
    }

    hsc->RxXferSize = Size;
    hsc->RxXferCount = Size;

    /* Check the remain data to be received */
    while(hsc->RxXferCount > 0)
    {
      hsc->RxXferCount--;
      if(SMARTCARD_WaitOnFlagUntilTimeout(hsc, SMARTCARD_FLAG_RXNE, RESET, Timeout) != HAL_OK)
      {
        return HAL_TIMEOUT;
      }
      tmp = (uint16_t*) pData;
      *tmp = (uint16_t)(hsc->Instance->DR & (uint16_t)0x00FF);
      pData +=1;
    }

    /* Check if a non-blocking transmit process is ongoing or not */
    if(hsc->State == HAL_SMARTCARD_STATE_BUSY_TX_RX)
    {
      hsc->State = HAL_SMARTCARD_STATE_BUSY_TX;
    }
    else
    {
      hsc->State = HAL_SMARTCARD_STATE_READY;
    }

    /* Process Unlocked */
    __HAL_UNLOCK(hsc);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Send an amount of data in non blocking mode
  * @param  hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains
  *                the configuration information for SMARTCARD module.
  * @param pData: pointer to data buffer
  * @param Size: amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SMARTCARD_Transmit_IT(SMARTCARD_HandleTypeDef *hsc, uint8_t *pData, uint16_t Size)
{
  uint32_t tmp1 = 0;

  tmp1 = hsc->State;
  if((tmp1 == HAL_SMARTCARD_STATE_READY) || (tmp1 == HAL_SMARTCARD_STATE_BUSY_RX))
  {
    if((pData == NULL) || (Size == 0))
    {
      return HAL_ERROR;
    }

    /* Process Locked */
    __HAL_LOCK(hsc);

    hsc->pTxBuffPtr = pData;
    hsc->TxXferSize = Size;
    hsc->TxXferCount = Size;

    hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE;
    /* Check if a non-blocking receive process is ongoing or not */
    if(hsc->State == HAL_SMARTCARD_STATE_BUSY_RX)
    {
      hsc->State = HAL_SMARTCARD_STATE_BUSY_TX_RX;
    }
    else
    {
      hsc->State = HAL_SMARTCARD_STATE_BUSY_TX;
    }

    /* Process Unlocked */
    __HAL_UNLOCK(hsc);

    /* Enable the SMARTCARD Parity Error Interrupt */
    __HAL_SMARTCARD_ENABLE_IT(hsc, SMARTCARD_IT_PE);

    /* Disable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */
    __HAL_SMARTCARD_DISABLE_IT(hsc, SMARTCARD_IT_ERR);

    /* Enable the SMARTCARD Transmit data register empty Interrupt */
    __HAL_SMARTCARD_ENABLE_IT(hsc, SMARTCARD_IT_TXE);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Receive an amount of data in non blocking mode
  * @param  hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains
  *                the configuration information for SMARTCARD module.
  * @param pData: pointer to data buffer
  * @param Size: amount of data to be received
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SMARTCARD_Receive_IT(SMARTCARD_HandleTypeDef *hsc, uint8_t *pData, uint16_t Size)
{
  uint32_t tmp1 = 0;

  tmp1 = hsc->State;
  if((tmp1 == HAL_SMARTCARD_STATE_READY) || (tmp1 == HAL_SMARTCARD_STATE_BUSY_TX))
  {
    if((pData == NULL) || (Size == 0))
    {
      return HAL_ERROR;
    }

    /* Process Locked */
    __HAL_LOCK(hsc);

    hsc->pRxBuffPtr = pData;
    hsc->RxXferSize = Size;
    hsc->RxXferCount = Size;

    hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE;
    /* Check if a non-blocking transmit process is ongoing or not */
    if(hsc->State == HAL_SMARTCARD_STATE_BUSY_TX)
    {
      hsc->State = HAL_SMARTCARD_STATE_BUSY_TX_RX;
    }
    else
    {
      hsc->State = HAL_SMARTCARD_STATE_BUSY_RX;
    }
    /* Process Unlocked */
    __HAL_UNLOCK(hsc);

    /* Enable the SMARTCARD Data Register not empty Interrupt */
    __HAL_SMARTCARD_ENABLE_IT(hsc, SMARTCARD_IT_RXNE);

    /* Enable the SMARTCARD Parity Error Interrupt */
    __HAL_SMARTCARD_ENABLE_IT(hsc, SMARTCARD_IT_PE);

    /* Enable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */
    __HAL_SMARTCARD_ENABLE_IT(hsc, SMARTCARD_IT_ERR);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Send an amount of data in non blocking mode
  * @param  hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains
  *                the configuration information for SMARTCARD module.
  * @param pData: pointer to data buffer
  * @param Size: amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SMARTCARD_Transmit_DMA(SMARTCARD_HandleTypeDef *hsc, uint8_t *pData, uint16_t Size)
{
  uint32_t *tmp;
  uint32_t tmp1 = 0;

  tmp1 = hsc->State;
  if((tmp1 == HAL_SMARTCARD_STATE_READY) || (tmp1 == HAL_SMARTCARD_STATE_BUSY_RX))
  {
    if((pData == NULL) || (Size == 0))
    {
      return HAL_ERROR;
    }

    /* Process Locked */
    __HAL_LOCK(hsc);

    hsc->pTxBuffPtr = pData;
    hsc->TxXferSize = Size;
    hsc->TxXferCount = Size;

    hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE;
    /* Check if a non-blocking receive process is ongoing or not */
    if(hsc->State == HAL_SMARTCARD_STATE_BUSY_RX)
    {
      hsc->State = HAL_SMARTCARD_STATE_BUSY_TX_RX;
    }
    else
    {
      hsc->State = HAL_SMARTCARD_STATE_BUSY_TX;
    }

    /* Set the SMARTCARD DMA transfer complete callback */
    hsc->hdmatx->XferCpltCallback = SMARTCARD_DMATransmitCplt;

    /* Set the DMA error callback */
    hsc->hdmatx->XferErrorCallback = SMARTCARD_DMAError;

    /* Enable the SMARTCARD transmit DMA Stream */
    tmp = (uint32_t*)&pData;
    HAL_DMA_Start_IT(hsc->hdmatx, *(uint32_t*)tmp, (uint32_t)&hsc->Instance->DR, Size);

     /* Clear the TC flag in the SR register by writing 0 to it */
    __HAL_SMARTCARD_CLEAR_FLAG(hsc, SMARTCARD_FLAG_TC);

    /* Enable the DMA transfer for transmit request by setting the DMAT bit
    in the SMARTCARD CR3 register */
    hsc->Instance->CR3 |= USART_CR3_DMAT;

    /* Process Unlocked */
    __HAL_UNLOCK(hsc);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Receive an amount of data in non blocking mode
  * @param  hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains
  *                the configuration information for SMARTCARD module.
  * @param pData: pointer to data buffer
  * @param Size: amount of data to be received
  * @note   When the SMARTCARD parity is enabled (PCE = 1) the data received contain the parity bit.s
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SMARTCARD_Receive_DMA(SMARTCARD_HandleTypeDef *hsc, uint8_t *pData, uint16_t Size)
{
  uint32_t *tmp;
  uint32_t tmp1 = 0;

  tmp1 = hsc->State;
  if((tmp1 == HAL_SMARTCARD_STATE_READY) || (tmp1 == HAL_SMARTCARD_STATE_BUSY_TX))
  {
    if((pData == NULL) || (Size == 0))
    {
      return HAL_ERROR;
    }

    /* Process Locked */
    __HAL_LOCK(hsc);

    hsc->pRxBuffPtr = pData;
    hsc->RxXferSize = Size;

    hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE;
    /* Check if a non-blocking transmit process is ongoing or not */
    if(hsc->State == HAL_SMARTCARD_STATE_BUSY_TX)
    {
      hsc->State = HAL_SMARTCARD_STATE_BUSY_TX_RX;
    }
    else
    {
      hsc->State = HAL_SMARTCARD_STATE_BUSY_RX;
    }

    /* Set the SMARTCARD DMA transfer complete callback */
    hsc->hdmarx->XferCpltCallback = SMARTCARD_DMAReceiveCplt;

    /* Set the DMA error callback */
    hsc->hdmarx->XferErrorCallback = SMARTCARD_DMAError;

    /* Enable the DMA Stream */
    tmp = (uint32_t*)&pData;
    HAL_DMA_Start_IT(hsc->hdmarx, (uint32_t)&hsc->Instance->DR, *(uint32_t*)tmp, Size);

    /* Enable the DMA transfer for the receiver request by setting the DMAR bit
    in the SMARTCARD CR3 register */
    hsc->Instance->CR3 |= USART_CR3_DMAR;

    /* Process Unlocked */
    __HAL_UNLOCK(hsc);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief This function handles SMARTCARD interrupt request.
  * @param  hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains
  *                the configuration information for SMARTCARD module.
  * @retval None
  */
void HAL_SMARTCARD_IRQHandler(SMARTCARD_HandleTypeDef *hsc)
{
  uint32_t tmp1 = 0, tmp2 = 0;

  tmp1 = hsc->Instance->SR;
  tmp2 = __HAL_SMARTCARD_GET_IT_SOURCE(hsc, SMARTCARD_IT_PE);

  /* SMARTCARD parity error interrupt occurred --------------------------------*/
  if(((tmp1 & SMARTCARD_FLAG_PE) != RESET) && (tmp2 != RESET))
  {
    __HAL_SMARTCARD_CLEAR_PEFLAG(hsc);
    hsc->ErrorCode |= HAL_SMARTCARD_ERROR_PE;
  }

  tmp2 = __HAL_SMARTCARD_GET_IT_SOURCE(hsc, SMARTCARD_IT_ERR);
  /* SMARTCARD frame error interrupt occurred ---------------------------------*/
  if(((tmp1 & SMARTCARD_FLAG_FE) != RESET) && (tmp2 != RESET))
  {
    __HAL_SMARTCARD_CLEAR_FEFLAG(hsc);
    hsc->ErrorCode |= HAL_SMARTCARD_ERROR_FE;
  }

  tmp2 = __HAL_SMARTCARD_GET_IT_SOURCE(hsc, SMARTCARD_IT_ERR);
  /* SMARTCARD noise error interrupt occurred ---------------------------------*/
  if(((tmp1 & SMARTCARD_FLAG_NE) != RESET) && (tmp2 != RESET))
  {
    __HAL_SMARTCARD_CLEAR_NEFLAG(hsc);
    hsc->ErrorCode |= HAL_SMARTCARD_ERROR_NE;
  }

  tmp2 = __HAL_SMARTCARD_GET_IT_SOURCE(hsc, SMARTCARD_IT_ERR);
  /* SMARTCARD Over-Run interrupt occurred ------------------------------------*/
  if(((tmp1 & SMARTCARD_FLAG_ORE) != RESET) && (tmp2 != RESET))
  {
    __HAL_SMARTCARD_CLEAR_OREFLAG(hsc);
    hsc->ErrorCode |= HAL_SMARTCARD_ERROR_ORE;
  }

  tmp2 = __HAL_SMARTCARD_GET_IT_SOURCE(hsc, SMARTCARD_IT_RXNE);
  /* SMARTCARD in mode Receiver ----------------------------------------------*/
  if(((tmp1 & SMARTCARD_FLAG_RXNE) != RESET) && (tmp2 != RESET))
  {
    SMARTCARD_Receive_IT(hsc);
  }

  tmp2 = __HAL_SMARTCARD_GET_IT_SOURCE(hsc, SMARTCARD_IT_TXE);
  /* SMARTCARD in mode Transmitter -------------------------------------------*/
  if(((tmp1 & SMARTCARD_FLAG_TXE) != RESET) && (tmp2 != RESET))
  {
    SMARTCARD_Transmit_IT(hsc);
  }

  tmp2 = __HAL_SMARTCARD_GET_IT_SOURCE(hsc, SMARTCARD_IT_TC);
  /* SMARTCARD in mode Transmitter (transmission end) ------------------------*/
  if(((tmp1 & SMARTCARD_FLAG_TC) != RESET) && (tmp2 != RESET))
  {
    SMARTCARD_EndTransmit_IT(hsc);
  }

  /* Call the Error call Back in case of Errors */
  if(hsc->ErrorCode != HAL_SMARTCARD_ERROR_NONE)
  {
    /* Set the SMARTCARD state ready to be able to start again the process */
    hsc->State= HAL_SMARTCARD_STATE_READY;
    HAL_SMARTCARD_ErrorCallback(hsc);
  }
}

/**
  * @brief Tx Transfer completed callbacks
  * @param  hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains
  *                the configuration information for SMARTCARD module.
  * @retval None
  */
 __weak void HAL_SMARTCARD_TxCpltCallback(SMARTCARD_HandleTypeDef *hsc)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_SMARTCARD_TxCpltCallback could be implemented in the user file
   */
}

/**
  * @brief Rx Transfer completed callbacks
  * @param  hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains
  *                the configuration information for SMARTCARD module.
  * @retval None
  */
__weak void HAL_SMARTCARD_RxCpltCallback(SMARTCARD_HandleTypeDef *hsc)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_SMARTCARD_TxCpltCallback could be implemented in the user file
   */
}

/**
  * @brief SMARTCARD error callbacks
  * @param  hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains
  *                the configuration information for SMARTCARD module.
  * @retval None
  */
 __weak void HAL_SMARTCARD_ErrorCallback(SMARTCARD_HandleTypeDef *hsc)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_SMARTCARD_ErrorCallback could be implemented in the user file
   */
}

/**
  * @}
  */

/** @defgroup SMARTCARD_Exported_Functions_Group3 Peripheral State and Errors functions
  *  @brief   SMARTCARD State and Errors functions
  *
@verbatim
 ===============================================================================
                ##### Peripheral State and Errors functions #####
 ===============================================================================
    [..]
    This subsection provides a set of functions allowing to control the SmartCard.
     (+) HAL_SMARTCARD_GetState() API can be helpful to check in run-time the state of the SmartCard peripheral.
     (+) HAL_SMARTCARD_GetError() check in run-time errors that could be occurred during communication.
@endverbatim
  * @{
  */

/**
  * @brief return the SMARTCARD state
  * @param  hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains
  *                the configuration information for SMARTCARD module.
  * @retval HAL state
  */
HAL_SMARTCARD_StateTypeDef HAL_SMARTCARD_GetState(SMARTCARD_HandleTypeDef *hsc)
{
  return hsc->State;
}

/**
  * @brief  Return the SMARTCARD error code
  * @param  hsc : pointer to a SMARTCARD_HandleTypeDef structure that contains
  *              the configuration information for the specified SMARTCARD.
  * @retval SMARTCARD Error Code
  */
uint32_t HAL_SMARTCARD_GetError(SMARTCARD_HandleTypeDef *hsc)
{
  return hsc->ErrorCode;
}

/**
  * @}
  */

/**
  * @brief DMA SMARTCARD transmit process complete callback
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
static void SMARTCARD_DMATransmitCplt(DMA_HandleTypeDef *hdma)
{
  SMARTCARD_HandleTypeDef* hsc = ( SMARTCARD_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;

  hsc->TxXferCount = 0;

  /* Disable the DMA transfer for transmit request by setting the DMAT bit
  in the USART CR3 register */
  hsc->Instance->CR3 &= (uint32_t)~((uint32_t)USART_CR3_DMAT);

  /* Enable the SMARTCARD Transmit Complete Interrupt */
  __HAL_SMARTCARD_ENABLE_IT(hsc, SMARTCARD_IT_TC);
}

/**
  * @brief DMA SMARTCARD receive process complete callback
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
static void SMARTCARD_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
{
  SMARTCARD_HandleTypeDef* hsc = ( SMARTCARD_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;

  hsc->RxXferCount = 0;

  /* Disable the DMA transfer for the receiver request by setting the DMAR bit
  in the USART CR3 register */
  hsc->Instance->CR3 &= (uint32_t)~((uint32_t)USART_CR3_DMAR);

  /* Check if a non-blocking transmit process is ongoing or not */
  if(hsc->State == HAL_SMARTCARD_STATE_BUSY_TX_RX)
  {
    hsc->State = HAL_SMARTCARD_STATE_BUSY_TX;
  }
  else
  {
    hsc->State = HAL_SMARTCARD_STATE_READY;
  }

  HAL_SMARTCARD_RxCpltCallback(hsc);
}

/**
  * @brief DMA SMARTCARD communication error callback
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
static void SMARTCARD_DMAError(DMA_HandleTypeDef *hdma)
{
  SMARTCARD_HandleTypeDef* hsc = ( SMARTCARD_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;

  hsc->RxXferCount = 0;
  hsc->TxXferCount = 0;
  hsc->ErrorCode = HAL_SMARTCARD_ERROR_DMA;
  hsc->State= HAL_SMARTCARD_STATE_READY;

  HAL_SMARTCARD_ErrorCallback(hsc);
}

/**
  * @brief  This function handles SMARTCARD Communication Timeout.
  * @param  hsc: SMARTCARD handle
  * @param  Flag: specifies the SMARTCARD flag to check.
  * @param  Status: The new Flag status (SET or RESET).
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
static HAL_StatusTypeDef SMARTCARD_WaitOnFlagUntilTimeout(SMARTCARD_HandleTypeDef *hsc, uint32_t Flag, FlagStatus Status, uint32_t Timeout)
{
  uint32_t tickstart = 0;

  /* Get tick */
  tickstart = HAL_GetTick();

  /* Wait until flag is set */
  if(Status == RESET)
  {
    while(__HAL_SMARTCARD_GET_FLAG(hsc, Flag) == RESET)
    {
      /* Check for the Timeout */
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
        {
          /* Disable TXE and RXNE interrupts for the interrupt process */
          __HAL_SMARTCARD_DISABLE_IT(hsc, SMARTCARD_IT_TXE);
          __HAL_SMARTCARD_DISABLE_IT(hsc, SMARTCARD_IT_RXNE);

          hsc->State= HAL_SMARTCARD_STATE_READY;

          /* Process Unlocked */
          __HAL_UNLOCK(hsc);

          return HAL_TIMEOUT;
        }
      }
    }
  }
  else
  {
    while(__HAL_SMARTCARD_GET_FLAG(hsc, Flag) != RESET)
    {
      /* Check for the Timeout */
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
        {
          /* Disable TXE and RXNE interrupts for the interrupt process */
          __HAL_SMARTCARD_DISABLE_IT(hsc, SMARTCARD_IT_TXE);
          __HAL_SMARTCARD_DISABLE_IT(hsc, SMARTCARD_IT_RXNE);

          hsc->State= HAL_SMARTCARD_STATE_READY;

          /* Process Unlocked */
          __HAL_UNLOCK(hsc);

          return HAL_TIMEOUT;
        }
      }
    }
  }
  return HAL_OK;
}

/**
  * @brief Send an amount of data in non blocking mode
  * @param  hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains
  *                the configuration information for SMARTCARD module.
  * @retval HAL status
  */
static HAL_StatusTypeDef SMARTCARD_Transmit_IT(SMARTCARD_HandleTypeDef *hsc)
{
  uint16_t* tmp;
  uint32_t tmp1 = 0;

  tmp1 = hsc->State;
  if((tmp1 == HAL_SMARTCARD_STATE_BUSY_TX) || (tmp1 == HAL_SMARTCARD_STATE_BUSY_TX_RX))
  {
    tmp = (uint16_t*) hsc->pTxBuffPtr;
    hsc->Instance->DR = (uint16_t)(*tmp & (uint16_t)0x01FF);
    hsc->pTxBuffPtr += 1;

    if(--hsc->TxXferCount == 0)
    {
      /* Disable the SMARTCARD Transmit data register empty Interrupt */
      __HAL_SMARTCARD_DISABLE_IT(hsc, SMARTCARD_IT_TXE);

      /* Enable the SMARTCARD Transmit Complete Interrupt */
      __HAL_SMARTCARD_ENABLE_IT(hsc, SMARTCARD_IT_TC);
    }

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Wraps up transmission in non blocking mode.
  * @param  hsmartcard: pointer to a SMARTCARD_HandleTypeDef structure that contains
  *                the configuration information for the specified SMARTCARD module.
  * @retval HAL status
  */
static HAL_StatusTypeDef SMARTCARD_EndTransmit_IT(SMARTCARD_HandleTypeDef *hsmartcard)
{
  /* Disable the SMARTCARD Transmit Complete Interrupt */
  __HAL_SMARTCARD_DISABLE_IT(hsmartcard, SMARTCARD_IT_TC);

  /* Check if a receive process is ongoing or not */
  if(hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_TX_RX)
  {
    hsmartcard->State = HAL_SMARTCARD_STATE_BUSY_RX;
  }
  else
  {
    /* Disable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */
    __HAL_SMARTCARD_DISABLE_IT(hsmartcard, SMARTCARD_IT_ERR);

    hsmartcard->State = HAL_SMARTCARD_STATE_READY;
  }

  HAL_SMARTCARD_TxCpltCallback(hsmartcard);

  return HAL_OK;
}

/**
  * @brief Receive an amount of data in non blocking mode
  * @param  hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains
  *                the configuration information for SMARTCARD module.
  * @retval HAL status
  */
static HAL_StatusTypeDef SMARTCARD_Receive_IT(SMARTCARD_HandleTypeDef *hsc)
{
  uint16_t* tmp;
  uint32_t tmp1 = 0;

  tmp1 = hsc->State;
  if((tmp1 == HAL_SMARTCARD_STATE_BUSY_RX) || (tmp1 == HAL_SMARTCARD_STATE_BUSY_TX_RX))
  {
    tmp = (uint16_t*) hsc->pRxBuffPtr;
    *tmp = (uint16_t)(hsc->Instance->DR & (uint16_t)0x00FF);
    hsc->pRxBuffPtr += 1;

    if(--hsc->RxXferCount == 0)
    {
      __HAL_SMARTCARD_DISABLE_IT(hsc, SMARTCARD_IT_RXNE);

      /* Disable the SMARTCARD Parity Error Interrupt */
      __HAL_SMARTCARD_DISABLE_IT(hsc, SMARTCARD_IT_PE);

      /* Disable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */
      __HAL_SMARTCARD_DISABLE_IT(hsc, SMARTCARD_IT_ERR);

      /* Check if a non-blocking transmit process is ongoing or not */
      if(hsc->State == HAL_SMARTCARD_STATE_BUSY_TX_RX)
      {
        hsc->State = HAL_SMARTCARD_STATE_BUSY_TX;
      }
      else
      {
        hsc->State = HAL_SMARTCARD_STATE_READY;
      }

      HAL_SMARTCARD_RxCpltCallback(hsc);

      return HAL_OK;
    }
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Configure the SMARTCARD peripheral
  * @param  hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains
  *                the configuration information for SMARTCARD module.
  * @retval None
  */
static void SMARTCARD_SetConfig(SMARTCARD_HandleTypeDef *hsc)
{
  uint32_t tmpreg = 0x00;

  /* Check the parameters */
  assert_param(IS_SMARTCARD_INSTANCE(hsc->Instance));
  assert_param(IS_SMARTCARD_POLARITY(hsc->Init.CLKPolarity));
  assert_param(IS_SMARTCARD_PHASE(hsc->Init.CLKPhase));
  assert_param(IS_SMARTCARD_LASTBIT(hsc->Init.CLKLastBit));
  assert_param(IS_SMARTCARD_BAUDRATE(hsc->Init.BaudRate));
  assert_param(IS_SMARTCARD_WORD_LENGTH(hsc->Init.WordLength));
  assert_param(IS_SMARTCARD_STOPBITS(hsc->Init.StopBits));
  assert_param(IS_SMARTCARD_PARITY(hsc->Init.Parity));
  assert_param(IS_SMARTCARD_MODE(hsc->Init.Mode));
  assert_param(IS_SMARTCARD_NACK_STATE(hsc->Init.NACKState));

  /* The LBCL, CPOL and CPHA bits have to be selected when both the transmitter and the
     receiver are disabled (TE=RE=0) to ensure that the clock pulses function correctly. */
  hsc->Instance->CR1 &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE));

  /*---------------------------- USART CR2 Configuration ---------------------*/
  tmpreg = hsc->Instance->CR2;
  /* Clear CLKEN, CPOL, CPHA and LBCL bits */
  tmpreg &= (uint32_t)~((uint32_t)(USART_CR2_CPHA | USART_CR2_CPOL | USART_CR2_CLKEN | USART_CR2_LBCL));
  /* Configure the SMARTCARD Clock, CPOL, CPHA and LastBit -----------------------*/
  /* Set CPOL bit according to hsc->Init.CLKPolarity value */
  /* Set CPHA bit according to hsc->Init.CLKPhase value */
  /* Set LBCL bit according to hsc->Init.CLKLastBit value */
  /* Set Stop Bits: Set STOP[13:12] bits according to hsc->Init.StopBits value */
  tmpreg |= (uint32_t)(USART_CR2_CLKEN | hsc->Init.CLKPolarity |
                      hsc->Init.CLKPhase| hsc->Init.CLKLastBit | hsc->Init.StopBits);
  /* Write to USART CR2 */
  hsc->Instance->CR2 = (uint32_t)tmpreg;

  tmpreg = hsc->Instance->CR2;

  /* Clear STOP[13:12] bits */
  tmpreg &= (uint32_t)~((uint32_t)USART_CR2_STOP);

  /* Set Stop Bits: Set STOP[13:12] bits according to hsc->Init.StopBits value */
  tmpreg |= (uint32_t)(hsc->Init.StopBits);

  /* Write to USART CR2 */
  hsc->Instance->CR2 = (uint32_t)tmpreg;

  /*-------------------------- USART CR1 Configuration -----------------------*/
  tmpreg = hsc->Instance->CR1;

  /* Clear M, PCE, PS, TE and RE bits */
  tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | \
                                   USART_CR1_RE));

  /* Configure the SMARTCARD Word Length, Parity and mode:
     Set the M bits according to hsc->Init.WordLength value
     Set PCE and PS bits according to hsc->Init.Parity value
     Set TE and RE bits according to hsc->Init.Mode value */
  tmpreg |= (uint32_t)hsc->Init.WordLength | hsc->Init.Parity | hsc->Init.Mode;

  /* Write to USART CR1 */
  hsc->Instance->CR1 = (uint32_t)tmpreg;

  /*-------------------------- USART CR3 Configuration -----------------------*/
  /* Clear CTSE and RTSE bits */
  hsc->Instance->CR3 &= (uint32_t)~((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE));

  /*-------------------------- USART BRR Configuration -----------------------*/
  if((hsc->Instance == USART1) || (hsc->Instance == USART6))
  {
    hsc->Instance->BRR = SMARTCARD_BRR(HAL_RCC_GetPCLK2Freq(), hsc->Init.BaudRate);
  }
  else
  {
    hsc->Instance->BRR = SMARTCARD_BRR(HAL_RCC_GetPCLK1Freq(), hsc->Init.BaudRate);
  }
}

/**
  * @}
  */

#endif /* HAL_SMARTCARD_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/