1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
/*
* modexp.c
* ----------
* Wrapper around Cryptech ModExp core.
*
* This doesn't do full RSA, that's another module. This module's job
* is just the I/O to get bits in and out of the ModExp core, including
* compensating for a few known bugs that haven't been resolved yet.
*
* If at some point the interface to the ModExp core becomes simple
* enough that this module is no longer needed, it will go away.
*
* Authors: Rob Austein
* Copyright (c) 2015, NORDUnet A/S
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdint.h>
#include "hal.h"
#include "hal_internal.h"
/*
* Whether we want debug output.
*/
static int debug = 0;
void hal_modexp_set_debug(const int onoff)
{
debug = onoff;
}
/*
* Get value of an ordinary register.
*/
static hal_error_t inline get_register(const hal_core_t *core,
const hal_addr_t addr,
uint32_t *value)
{
hal_error_t err;
uint8_t w[4];
if (value == NULL)
return HAL_ERROR_IMPOSSIBLE;
if ((err = hal_io_read(core, addr, w, sizeof(w))) != HAL_OK)
return err;
*value = (w[0] << 0) | (w[1] << 8) | (w[2] << 16) | (w[3] << 24);
return HAL_OK;
}
/*
* Set value of an ordinary register.
*/
static hal_error_t inline set_register(const hal_core_t *core,
const hal_addr_t addr,
const uint32_t value)
{
const uint8_t w[4] = {
((value >> 24) & 0xFF),
((value >> 16) & 0xFF),
((value >> 8) & 0xFF),
((value >> 0) & 0xFF)
};
return hal_io_write(core, addr, w, sizeof(w));
}
/*
* Get value of a data buffer. We reverse the order of 32-bit words
* in the buffer during the transfer to match what the modexpa7 core
* expects.
*/
static inline hal_error_t get_buffer(const hal_core_t *core,
const hal_addr_t data_addr,
uint8_t *value,
const size_t length)
{
hal_error_t err;
size_t i;
if (value == NULL || length % 4 != 0)
return HAL_ERROR_IMPOSSIBLE;
for (i = 0; i < length; i += 4)
if ((err = hal_io_read(core, data_addr + i/4, &value[length - 4 - i], 4)) != HAL_OK)
return err;
return HAL_OK;
}
/*
* Set value of a data buffer. We reverse the order of 32-bit words
* in the buffer during the transfer to match what the modexpa7 core
* expects.
*
* Do we need to zero the portion of the buffer we're not using
* explictly (that is, the portion between `length` and the value of
* the core's MODEXPA7_ADDR_BUFFER_BITS register)? We've gotten away
* without doing this so far, but the core doesn't take an explicit
* length parameter for the message itself, instead it assumes that
* the message is either as long as or twice as long as the exponent,
* depending on the setting of the CRT mode bit. Maybe initializing
* the core clears the excess bits so there's no issue? Dunno. Have
* never seen a problem with this yet, just dont' know why not.
*/
static inline hal_error_t set_buffer(const hal_core_t *core,
const hal_addr_t data_addr,
const uint8_t * const value,
const size_t length)
{
hal_error_t err;
size_t i;
if (value == NULL || length % 4 != 0)
return HAL_ERROR_IMPOSSIBLE;
for (i = 0; i < length; i += 4)
if ((err = hal_io_write(core, data_addr + i/4, &value[length - 4 - i], 4)) != HAL_OK)
return err;
return HAL_OK;
}
/*
* Check a result, report on failure if debugging, pass failures up
* the chain.
*/
#define check(_expr_) \
do { \
hal_error_t _err = (_expr_); \
if (_err != HAL_OK && debug) \
hal_log(HAL_LOG_WARN, "%s failed: %s\n", #_expr_, hal_error_string(_err)); \
if (_err != HAL_OK) { \
hal_core_free(core); \
return _err; \
} \
} while (0)
/*
* Run one modexp operation.
*/
hal_error_t hal_modexp(hal_core_t *core,
const int precalc_done,
const uint8_t * const msg, const size_t msg_len, /* Message */
const uint8_t * const exp, const size_t exp_len, /* Exponent */
const uint8_t * const mod, const size_t mod_len, /* Modulus */
uint8_t *result, const size_t result_len, /* Result of exponentiation */
uint8_t *coeff, const size_t coeff_len, /* Modulus coefficient (r/w) */
uint8_t *mont, const size_t mont_len) /* Montgomery factor (r/w)*/
{
hal_error_t err;
/*
* All pointers must be set, exponent may not be longer than
* modulus, message may not be longer than twice the modulus (CRT
* mode), result buffer must not be shorter than modulus, and all
* input lengths must be a multiple of four bytes (the core is all
* about 32-bit words).
*/
if (msg == NULL || msg_len > MODEXPA7_OPERAND_BYTES || msg_len > mod_len * 2 ||
exp == NULL || exp_len > MODEXPA7_OPERAND_BYTES || exp_len > mod_len ||
mod == NULL || mod_len > MODEXPA7_OPERAND_BYTES ||
result == NULL || result_len > MODEXPA7_OPERAND_BYTES || result_len < mod_len ||
coeff == NULL || coeff_len > MODEXPA7_OPERAND_BYTES ||
mont == NULL || mont_len > MODEXPA7_OPERAND_BYTES ||
((msg_len | exp_len | mod_len) & 3) != 0)
return HAL_ERROR_BAD_ARGUMENTS;
/*
* Gonna need to think about running two modexpa7 cores in parallel
* in CRT mode for full speed signature.
*/
if (((err = hal_core_alloc(MODEXPA7_NAME, &core)) != HAL_OK))
return err;
/*
* Now that we have the core, check operand length against what it
* says it can handle.
*/
uint32_t operand_max = 0;
check(get_register(core, MODEXPA7_ADDR_BUFFER_BITS, &operand_max));
operand_max /= 8;
if (msg_len > operand_max ||
exp_len > operand_max ||
mod_len > operand_max ||
coeff_len > operand_max ||
mont_len > operand_max) {
hal_core_free(core);
return HAL_ERROR_BAD_ARGUMENTS;
}
/* Set modulus */
check(set_register(core, MODEXPA7_ADDR_MODULUS_BITS, mod_len * 8));
check(set_buffer(core, MODEXPA7_ADDR_MODULUS, mod, mod_len));
/*
* Calculate modulus-dependent speedup factors if needed. Buffer
* space is always caller's problem (because caller almost certainly
* wants to stash these values in the keystore anyway). Calculation
* is edge-triggered by "init" bit going from zero to one.
*/
if (!precalc_done) {
check(hal_io_zero(core));
check(hal_io_init(core));
check(hal_io_wait_ready(core));
check(get_buffer(core, MODEXPA7_ADDR_MODULUS_COEFF_OUT, coeff, coeff_len));
check(get_buffer(core, MODEXPA7_ADDR_MONTGOMERY_FACTOR_OUT, mont, mont_len));
}
/* Load modulus-dependent speedup factors (even if we just calculated them) */
check(set_buffer(core, MODEXPA7_ADDR_MODULUS_COEFF_IN, coeff, coeff_len));
check(set_buffer(core, MODEXPA7_ADDR_MONTGOMERY_FACTOR_IN, mont, mont_len));
/* Select CRT mode if and only if message is longer than exponent */
check(set_register(core, MODEXPA7_ADDR_MODE,
(msg_len > mod_len
? MODEXPA7_MODE_CRT
: MODEXPA7_MODE_PLAIN)));
/* Set message and exponent */
check(set_buffer(core, MODEXPA7_ADDR_MESSAGE, msg, msg_len));
check(set_buffer(core, MODEXPA7_ADDR_EXPONENT, exp, exp_len));
check(set_register(core, MODEXPA7_ADDR_EXPONENT_BITS, exp_len * 8));
/* Edge-trigger the "next" bit to start calculation, then wait for the result */
check(hal_io_zero(core));
check(hal_io_next(core));
check(hal_io_wait_valid(core));
/* Extract result, clean up, then done */
check(get_buffer(core, MODEXPA7_ADDR_RESULT, result, mod_len));
hal_core_free(core);
return HAL_OK;
}
/*
* Local variables:
* indent-tabs-mode: nil
* End:
*/
|