aboutsummaryrefslogtreecommitdiff
path: root/mkmif.c
blob: 06a2c4b4cf398aae584f1c42d68ba43d7e70abad (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/*
 * mkmif.c
 * -------
 * HAL interface to Cryptech Master Key Memory Interface.
 *
 * Copyright (c) 2016, NORDUnet A/S
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * - Redistributions of source code must retain the above copyright notice,
 *   this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 *
 * - Neither the name of the NORDUnet nor the names of its contributors may
 *   be used to endorse or promote products derived from this software
 *   without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdlib.h>

#include "hal.h"
#include "hal_internal.h"

typedef union {
    uint8_t byte[4];
    uint32_t word;
} byteword_t;

hal_error_t hal_mkmif_init(hal_core_t *core)
{
    byteword_t cmd;
    hal_error_t err;

    cmd.word = htonl(MKMIF_CTRL_CMD_INIT);

    err = hal_core_alloc(MKMIF_NAME, &core) ||
        hal_io_write(core, MKMIF_ADDR_CTRL, cmd.byte, 4) ||
        hal_io_wait_ready(core);

    hal_core_free(core);
    return err;
}

hal_error_t hal_mkmif_set_clockspeed(hal_core_t *core, const uint32_t divisor)
{
    byteword_t data;
    hal_error_t err;

    data.word = htonl(divisor);

    err = hal_core_alloc(MKMIF_NAME, &core) ||
        hal_io_write(core, MKMIF_ADDR_SCLK_DIV, data.byte, 4);

    hal_core_free(core);
    return err;
}

hal_error_t hal_mkmif_get_clockspeed(hal_core_t *core, uint32_t *divisor)
{
    byteword_t data;
    hal_error_t err;

    err = hal_core_alloc(MKMIF_NAME, &core) ||
        hal_io_read(core, MKMIF_ADDR_SCLK_DIV, data.byte, 4);

    if (err == HAL_OK)
        *divisor = htonl(data.word);

    hal_core_free(core);
    return err;
}

hal_error_t hal_mkmif_write(hal_core_t *core, uint32_t addr, const uint8_t *buf, size_t len)
{
    byteword_t cmd;
    hal_error_t err;

    if (len % 4 != 0)
        return HAL_ERROR_IO_BAD_COUNT;

    cmd.word = htonl(MKMIF_CTRL_CMD_WRITE);

    if ((err = hal_core_alloc(MKMIF_NAME, &core)) == HAL_OK) {
        for (; len > 0; addr += 4, buf += 4, len -= 4) {
            byteword_t write_addr;
            write_addr.word = htonl((uint32_t)addr);
            if ((err = hal_io_write(core, MKMIF_ADDR_EMEM_ADDR, write_addr.byte, 4)) ||
                (err = hal_io_write(core, MKMIF_ADDR_EMEM_DATA, buf, 4)) ||
                (err = hal_io_write(core, MKMIF_ADDR_CTRL, cmd.byte, 4)) ||
                (err = hal_io_wait_ready(core)))
                return err;
        }
    }

    hal_core_free(core);
    return err;
}

hal_error_t hal_mkmif_write_word(hal_core_t *core, uint32_t addr, const uint32_t data)
{
    byteword_t d;

    d.word = htonl(data);

    return hal_mkmif_write(core, addr, d.byte, 4);
}

hal_error_t hal_mkmif_read(hal_core_t *core, uint32_t addr, uint8_t *buf, size_t len)
{
    byteword_t cmd;
    hal_error_t err;

    if (len % 4 != 0)
        return HAL_ERROR_IO_BAD_COUNT;

    cmd.word = htonl(MKMIF_CTRL_CMD_READ);

    if ((err = hal_core_alloc(MKMIF_NAME, &core)) == HAL_OK) {
        for (; len > 0; addr += 4, buf += 4, len -= 4) {
            byteword_t read_addr;
            read_addr.word = htonl((uint32_t)addr);
            if ((err = hal_io_write(core, MKMIF_ADDR_EMEM_ADDR, read_addr.byte, 4)) ||
                (err = hal_io_write(core, MKMIF_ADDR_CTRL, cmd.byte, 4)) ||
                (err = hal_io_wait_valid(core)) ||
                (err = hal_io_read(core, MKMIF_ADDR_EMEM_DATA, buf, 4)))
                goto out;
        }
    }

out:
    hal_core_free(core);
    return err;
}

hal_error_t hal_mkmif_read_word(hal_core_t *core, uint32_t addr, uint32_t *data)
{
    byteword_t d;
    hal_error_t err;

    if ((err = hal_mkmif_read(core, addr, d.byte, 4)) != HAL_OK)
        return err;

    *data = htonl(d.word);

    return HAL_OK;
}
ndex != NULL && ksi->names != NULL && parent >= 0 && end >= parent); for (;;) { const int left_child = parent * 2 + 1; const int right_child = parent * 2 + 2; int biggest = parent; if (left_child <= end && ks_name_cmp(&ksi->names[ksi->index[biggest]], &ksi->names[ksi->index[left_child]]) < 0) biggest = left_child; if (right_child <= end && ks_name_cmp(&ksi->names[ksi->index[biggest]], &ksi->names[ksi->index[right_child]]) < 0) biggest = right_child; if (biggest == parent) return; const uint16_t tmp = ksi->index[biggest]; ksi->index[biggest] = ksi->index[parent]; ksi->index[parent] = tmp; parent = biggest; } } static inline void ks_heapsort(hal_ks_index_t *ksi) { assert(ksi != NULL && ksi->index != NULL && ksi->names != NULL); if (ksi->used < 2) return; for (int i = (ksi->used - 2) / 2; i >= 0; i--) ks_heapsift(ksi, i, ksi->used - 1); for (int i = ksi->used - 1; i > 0; i--) { const uint16_t tmp = ksi->index[i]; ksi->index[i] = ksi->index[0]; ksi->index[0] = tmp; ks_heapsift(ksi, 0, i - 1); } } #define fsck(_ksi) \ do { hal_error_t _err = hal_ks_index_fsck(_ksi); if (_err != HAL_OK) return _err; } while (0) hal_error_t hal_ks_index_fsck(hal_ks_index_t *ksi) { if (ksi == NULL || ksi->index == NULL || ksi->names == NULL || ksi->size == 0 || ksi->used > ksi->size) return HAL_ERROR_BAD_ARGUMENTS; for (int i = 0; i < ksi->used; i++) { const int cmp = i == 0 ? -1 : hal_uuid_cmp(&ksi->names[ksi->index[i - 1]].name, &ksi->names[ksi->index[i ]].name); const uint8_t prev_chunk = i == 0 ? 0 : ksi->names[ksi->index[i - 1]].chunk; const uint8_t cur_chunk = ksi->names[ksi->index[i ]].chunk; if (cmp > 0) return HAL_ERROR_KSI_INDEX_UUID_MISORDERED; if (cur_chunk > 0 && cmp != 0) return HAL_ERROR_KSI_INDEX_CHUNK_ORPHANED; if (cur_chunk > 0 && prev_chunk + 1 < cur_chunk) return HAL_ERROR_KSI_INDEX_CHUNK_MISSING; if (cur_chunk > 0 && prev_chunk + 1 > cur_chunk) return HAL_ERROR_KSI_INDEX_CHUNK_OVERLAPS; } return HAL_OK; } hal_error_t hal_ks_index_setup(hal_ks_index_t *ksi) { if (ksi == NULL || ksi->index == NULL || ksi->names == NULL || ksi->size == 0 || ksi->used > ksi->size) return HAL_ERROR_BAD_ARGUMENTS; /* * Only setup task we have at the moment is sorting the index. */ ks_heapsort(ksi); /* * One might think we should fsck here, but errors in the index * at this point probably relate to errors in the supplied data, * which only the driver knows how to clean up. */ return HAL_OK; } hal_error_t hal_ks_index_find(hal_ks_index_t *ksi, const hal_uuid_t * const name, const unsigned chunk, unsigned *blockno, int *hint) { if (ksi == NULL || ksi->index == NULL || ksi->names == NULL || ksi->size == 0 || ksi->used > ksi->size || name == NULL) return HAL_ERROR_BAD_ARGUMENTS; int where; fsck(ksi); int ok = ks_find(ksi, name, chunk, hint, &where); if (blockno != NULL) *blockno = ksi->index[where]; if (hint != NULL) *hint = where; return ok ? HAL_OK : HAL_ERROR_KEY_NOT_FOUND; } hal_error_t hal_ks_index_find_range(hal_ks_index_t *ksi, const hal_uuid_t * const name, const unsigned max_blocks, unsigned *n_blocks, unsigned *blocknos, int *hint, const int strict) { if (ksi == NULL || ksi->index == NULL || ksi->names == NULL || ksi->size == 0 || ksi->used > ksi->size || name == NULL) return HAL_ERROR_BAD_ARGUMENTS; int where; fsck(ksi); if (!ks_find(ksi, name, 0, hint, &where)) return HAL_ERROR_KEY_NOT_FOUND; int n = 0; for (int i = where; i < ksi->used && !hal_uuid_cmp(name, &ksi->names[ksi->index[i]].name); i++) { if (strict && n != ksi->names[ksi->index[i]].chunk) return HAL_ERROR_IMPOSSIBLE; if (blocknos != NULL && n < max_blocks) blocknos[n] = ksi->index[i]; n++; } if (n_blocks != NULL) *n_blocks = n; if (hint != NULL) *hint = where; if (blocknos != NULL && n > max_blocks) return HAL_ERROR_RESULT_TOO_LONG; return HAL_OK; } hal_error_t hal_ks_index_add(hal_ks_index_t *ksi, const hal_uuid_t * const name, const unsigned chunk, unsigned *blockno, int *hint) { if (ksi == NULL || ksi->index == NULL || ksi->names == NULL || ksi->size == 0 || ksi->used > ksi->size || name == NULL) return HAL_ERROR_BAD_ARGUMENTS; if (ksi->used == ksi->size) return HAL_ERROR_NO_KEY_INDEX_SLOTS; int where; fsck(ksi); if (ks_find(ksi, name, chunk, hint, &where)) return HAL_ERROR_KEY_NAME_IN_USE; /* * Grab first block on free list, which makes room to slide the * index up by one slot so we can insert the new block number. */ const size_t len = (ksi->used - where) * sizeof(*ksi->index); const uint16_t b = ksi->index[ksi->used++]; memmove(&ksi->index[where + 1], &ksi->index[where], len); ksi->index[where] = b; ksi->names[b].name = *name; ksi->names[b].chunk = chunk; if (blockno != NULL) *blockno = b; if (hint != NULL) *hint = where; fsck(ksi); return HAL_OK; } hal_error_t hal_ks_index_delete(hal_ks_index_t *ksi, const hal_uuid_t * const name, const unsigned chunk, unsigned *blockno, int *hint) { if (ksi == NULL || ksi->index == NULL || ksi->names == NULL || ksi->size == 0 || ksi->used > ksi->size || name == NULL) return HAL_ERROR_BAD_ARGUMENTS; int where; fsck(ksi); if (ksi->used == 0 || !ks_find(ksi, name, chunk, hint, &where)) return HAL_ERROR_KEY_NOT_FOUND; /* * Free the block and stuff it at the end of the free list. */ const size_t len = (ksi->size - where - 1) * sizeof(*ksi->index); const uint16_t b = ksi->index[where]; memmove(&ksi->index[where], &ksi->index[where + 1], len); ksi->index[ksi->size - 1] = b; ksi->used--; memset(&ksi->names[b], 0, sizeof(ksi->names[b])); if (blockno != NULL) *blockno = b; if (hint != NULL) *hint = where; fsck(ksi); return HAL_OK; } hal_error_t hal_ks_index_delete_range(hal_ks_index_t *ksi, const hal_uuid_t * const name, const unsigned max_blocks, unsigned *n_blocks, unsigned *blocknos, int *hint) { if (ksi == NULL || ksi->index == NULL || ksi->names == NULL || ksi->size == 0 || ksi->used > ksi->size || name == NULL) return HAL_ERROR_BAD_ARGUMENTS; int where; fsck(ksi); if (ksi->used == 0 || !ks_find(ksi, name, 0, hint, &where)) return HAL_ERROR_KEY_NOT_FOUND; int n = 0; for (int i = where; i < ksi->used && !hal_uuid_cmp(name, &ksi->names[ksi->index[i]].name); i++) { if (n != ksi->names[ksi->index[i]].chunk) return HAL_ERROR_IMPOSSIBLE; if (blocknos != NULL && n < max_blocks) blocknos[n] = ksi->index[i]; n++; } if (n_blocks != NULL) *n_blocks = n; /* * Free the blocks and stuff them at the end of the free list. */ if (blocknos != NULL) { if (n > max_blocks) return HAL_ERROR_RESULT_TOO_LONG; const size_t len = (ksi->size - where - n) * sizeof(*ksi->index); memmove(&ksi->index[where], &ksi->index[where + n], len); ksi->used -= n; for (int i = 0; i < n; i++) { ksi->index[ksi->size - n + i] = blocknos[i]; memset(&ksi->names[blocknos[i]], 0, sizeof(ksi->names[blocknos[i]])); } where = -1; } if (hint != NULL) *hint = where; fsck(ksi); return HAL_OK; } hal_error_t hal_ks_index_replace(hal_ks_index_t *ksi, const hal_uuid_t * const name, const unsigned chunk, unsigned *blockno, int *hint) { if (ksi == NULL || ksi->index == NULL || ksi->names == NULL || ksi->size == 0 || ksi->used > ksi->size || name == NULL) return HAL_ERROR_BAD_ARGUMENTS; if (ksi->used == ksi->size) return HAL_ERROR_NO_KEY_INDEX_SLOTS; int where; fsck(ksi); if (ksi->used == 0 || !ks_find(ksi, name, chunk, hint, &where)) return HAL_ERROR_KEY_NOT_FOUND; /* * Grab first block from free list, slide free list down, put old * block at end of free list and replace old block with new block. */ const size_t len = (ksi->size - ksi->used - 1) * sizeof(*ksi->index); const uint16_t b1 = ksi->index[where]; const uint16_t b2 = ksi->index[ksi->used]; memmove(&ksi->index[ksi->used], &ksi->index[ksi->used + 1], len); ksi->index[ksi->size - 1] = b1; ksi->index[where] = b2; ksi->names[b2].name = *name; ksi->names[b2].chunk = chunk; memset(&ksi->names[b1], 0, sizeof(ksi->names[b1])); if (blockno != NULL) *blockno = b2; if (hint != NULL) *hint = where; fsck(ksi); return HAL_OK; } /* * Local variables: * indent-tabs-mode: nil * End: */