aboutsummaryrefslogtreecommitdiff
path: root/mkmif.c
blob: ffa93194ad64aeda26042ee0fc9b9d841f66a936 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/*
 * mkmif.c
 * -------
 * HAL interface to Cryptech Master Key Memory Interface.
 *
 * Copyright (c) 2016, NORDUnet A/S
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * - Redistributions of source code must retain the above copyright notice,
 *   this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 *
 * - Neither the name of the NORDUnet nor the names of its contributors may
 *   be used to endorse or promote products derived from this software
 *   without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdlib.h>

#include "hal.h"
#include "hal_internal.h"

typedef union {
    uint8_t byte[4];
    uint32_t word;
} byteword_t;

hal_error_t hal_mkmif_init(const hal_core_t *core)
{
    byteword_t cmd;
    hal_error_t err;

    if (core == NULL)
        return HAL_ERROR_CORE_NOT_FOUND;

    cmd.word = htonl(MKMIF_CTRL_CMD_INIT);

    if ((err = hal_io_write(core, MKMIF_ADDR_CTRL, cmd.byte, 4)) ||
        (err = hal_io_wait_ready(core)))
        return err;

    return HAL_OK;
}

hal_error_t hal_mkmif_set_clockspeed(const hal_core_t *core, const uint32_t divisor)
{
    byteword_t data;

    if (core == NULL)
        return HAL_ERROR_CORE_NOT_FOUND;

    data.word = htonl(divisor);

    return hal_io_write(core, MKMIF_ADDR_SCLK_DIV, data.byte, 4);
}

hal_error_t hal_mkmif_get_clockspeed(const hal_core_t *core, uint32_t *divisor)
{
    byteword_t data;
    hal_error_t err;

    if (core == NULL)
        return HAL_ERROR_CORE_NOT_FOUND;

    if ((err = hal_io_read(core, MKMIF_ADDR_SCLK_DIV, data.byte, 4)))
        return err;

    *divisor = htonl(data.word);
    return HAL_OK;
}

hal_error_t hal_mkmif_write(const hal_core_t *core, uint32_t addr, const uint8_t *buf, size_t len)
{
    byteword_t cmd;
    hal_error_t err;

    if (core == NULL)
        return HAL_ERROR_CORE_NOT_FOUND;

    if (len % 4 != 0)
        return HAL_ERROR_IO_BAD_COUNT;

    cmd.word = htonl(MKMIF_CTRL_CMD_WRITE);

    for (; len > 0; addr += 4, buf += 4, len -= 4) {
        byteword_t write_addr;
        write_addr.word = htonl((uint32_t)addr);
        if ((err = hal_io_write(core, MKMIF_ADDR_EMEM_ADDR, write_addr.byte, 4)) ||
            (err = hal_io_write(core, MKMIF_ADDR_EMEM_DATA, buf, 4)) ||
            (err = hal_io_write(core, MKMIF_ADDR_CTRL, cmd.byte, 4)) ||
            (err = hal_io_wait_ready(core)))
            return err;
    }

    return HAL_OK;
}

hal_error_t hal_mkmif_write_word(const hal_core_t *core, uint32_t addr, const uint32_t data)
{
    byteword_t d;

    d.word = htonl(data);

    return hal_mkmif_write(core, addr, d.byte, 4);
}

hal_error_t hal_mkmif_read(const hal_core_t *core, uint32_t addr, uint8_t *buf, size_t len)
{
    byteword_t cmd;
    hal_error_t err;

    if (core == NULL)
        return HAL_ERROR_CORE_NOT_FOUND;

    if (len % 4 != 0)
        return HAL_ERROR_IO_BAD_COUNT;

    cmd.word = htonl(MKMIF_CTRL_CMD_READ);

    for (; len > 0; addr += 4, buf += 4, len -= 4) {
        byteword_t read_addr;
        read_addr.word = htonl((uint32_t)addr);
        if ((err = hal_io_write(core, MKMIF_ADDR_EMEM_ADDR, read_addr.byte, 4)) ||
            (err = hal_io_write(core, MKMIF_ADDR_CTRL, cmd.byte, 4)) ||
            (err = hal_io_wait_valid(core)) ||
            (err = hal_io_read(core, MKMIF_ADDR_EMEM_DATA, buf, 4)))
            return err;
    }

    return HAL_OK;
}

hal_error_t hal_mkmif_read_word(const hal_core_t *core, uint32_t addr, uint32_t *data)
{
    byteword_t d;
    hal_error_t err;

    if ((err = hal_mkmif_read(core, addr, d.byte, 4)) != HAL_OK)
        return err;

    *data = htonl(d.word);

    return HAL_OK;
}
s="n">HALError.define(HAL_ERROR_KEYWRAP_BAD_MAGIC = "Bad magic number while unwrapping key") HALError.define(HAL_ERROR_KEYWRAP_BAD_LENGTH = "Length out of range while unwrapping key") HALError.define(HAL_ERROR_KEYWRAP_BAD_PADDING = "Non-zero padding detected unwrapping key") HALError.define(HAL_ERROR_IMPOSSIBLE = "\"Impossible\" error") HALError.define(HAL_ERROR_ALLOCATION_FAILURE = "Memory allocation failed") HALError.define(HAL_ERROR_RESULT_TOO_LONG = "Result too long for buffer") HALError.define(HAL_ERROR_ASN1_PARSE_FAILED = "ASN.1 parse failed") HALError.define(HAL_ERROR_KEY_NOT_ON_CURVE = "EC key is not on its purported curve") HALError.define(HAL_ERROR_INVALID_SIGNATURE = "Invalid signature") HALError.define(HAL_ERROR_CORE_NOT_FOUND = "Requested core not found") HALError.define(HAL_ERROR_CORE_BUSY = "Requested core busy") HALError.define(HAL_ERROR_KEYSTORE_ACCESS = "Could not access keystore") HALError.define(HAL_ERROR_KEY_NOT_FOUND = "Key not found") HALError.define(HAL_ERROR_KEY_NAME_IN_USE = "Key name in use") HALError.define(HAL_ERROR_NO_KEY_SLOTS_AVAILABLE = "No key slots available") HALError.define(HAL_ERROR_PIN_INCORRECT = "PIN incorrect") HALError.define(HAL_ERROR_NO_CLIENT_SLOTS_AVAILABLE = "No client slots available") HALError.define(HAL_ERROR_FORBIDDEN = "Forbidden") HALError.define(HAL_ERROR_XDR_BUFFER_OVERFLOW = "XDR buffer overflow") HALError.define(HAL_ERROR_RPC_TRANSPORT = "RPC transport error") HALError.define(HAL_ERROR_RPC_PACKET_OVERFLOW = "RPC packet overflow") HALError.define(HAL_ERROR_RPC_BAD_FUNCTION = "Bad RPC function number") HALError.define(HAL_ERROR_KEY_NAME_TOO_LONG = "Key name too long") HALError.define(HAL_ERROR_MASTERKEY_NOT_SET = "Master key (Key Encryption Key) not set") HALError.define(HAL_ERROR_MASTERKEY_FAIL = "Master key generic failure") HALError.define(HAL_ERROR_MASTERKEY_BAD_LENGTH = "Master key of unacceptable length") HALError.define(HAL_ERROR_KS_DRIVER_NOT_FOUND = "Keystore driver not found") HALError.define(HAL_ERROR_KEYSTORE_BAD_CRC = "Bad CRC in keystore") HALError.define(HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE = "Unsupported keystore block type") HALError.define(HAL_ERROR_KEYSTORE_LOST_DATA = "Keystore appears to have lost data") HALError.define(HAL_ERROR_BAD_ATTRIBUTE_LENGTH = "Bad attribute length") HALError.define(HAL_ERROR_ATTRIBUTE_NOT_FOUND = "Attribute not found") HALError.define(HAL_ERROR_NO_KEY_INDEX_SLOTS = "No key index slots available") HALError.define(HAL_ERROR_KSI_INDEX_UUID_MISORDERED = "Key index UUID misordered") HALError.define(HAL_ERROR_KSI_INDEX_CHUNK_ORPHANED = "Key index chunk orphaned") HALError.define(HAL_ERROR_KSI_INDEX_CHUNK_MISSING = "Key index chunk missing") HALError.define(HAL_ERROR_KSI_INDEX_CHUNK_OVERLAPS = "Key index chunk overlaps") HALError.define(HAL_ERROR_KEYSTORE_WRONG_BLOCK_TYPE = "Wrong block type in keystore") HALError.define(HAL_ERROR_RPC_PROTOCOL_ERROR = "RPC protocol error") HALError.define(HAL_ERROR_NOT_IMPLEMENTED = "Not implemented") class Enum(int): def __new__(cls, name, value): self = int.__new__(cls, value) self._name = name setattr(self.__class__, name, self) return self def __str__(self): return self._name def __repr__(self): return "<Enum:{0.__class__.__name__} {0._name}:{0:d}>".format(self) _counter = 0 @classmethod def define(cls, names): symbols = [] for name in names.translate(None, "{}").split(","): if "=" in name: name, sep, expr = name.partition("=") cls._counter = eval(expr.strip()) if not isinstance(cls._counter, int): raise TypeError symbols.append(cls(name.strip(), cls._counter)) cls._counter += 1 cls.index = dict((int(symbol), symbol) for symbol in symbols) globals().update((symbol._name, symbol) for symbol in symbols) def xdr_packer(self, packer): packer.pack_uint(self) class RPCFunc(Enum): pass RPCFunc.define(''' RPC_FUNC_GET_VERSION, RPC_FUNC_GET_RANDOM, RPC_FUNC_SET_PIN, RPC_FUNC_LOGIN, RPC_FUNC_LOGOUT, RPC_FUNC_LOGOUT_ALL, RPC_FUNC_IS_LOGGED_IN, RPC_FUNC_HASH_GET_DIGEST_LEN, RPC_FUNC_HASH_GET_DIGEST_ALGORITHM_ID, RPC_FUNC_HASH_GET_ALGORITHM, RPC_FUNC_HASH_INITIALIZE, RPC_FUNC_HASH_UPDATE, RPC_FUNC_HASH_FINALIZE, RPC_FUNC_PKEY_LOAD, RPC_FUNC_PKEY_OPEN, RPC_FUNC_PKEY_GENERATE_RSA, RPC_FUNC_PKEY_GENERATE_EC, RPC_FUNC_PKEY_CLOSE, RPC_FUNC_PKEY_DELETE, RPC_FUNC_PKEY_GET_KEY_TYPE, RPC_FUNC_PKEY_GET_KEY_FLAGS, RPC_FUNC_PKEY_GET_PUBLIC_KEY_LEN, RPC_FUNC_PKEY_GET_PUBLIC_KEY, RPC_FUNC_PKEY_SIGN, RPC_FUNC_PKEY_VERIFY, RPC_FUNC_PKEY_MATCH, RPC_FUNC_PKEY_GET_KEY_CURVE, RPC_FUNC_PKEY_SET_ATTRIBUTES, RPC_FUNC_PKEY_GET_ATTRIBUTES, ''') class HALDigestAlgorithm(Enum): pass HALDigestAlgorithm.define(''' HAL_DIGEST_ALGORITHM_NONE, HAL_DIGEST_ALGORITHM_SHA1, HAL_DIGEST_ALGORITHM_SHA224, HAL_DIGEST_ALGORITHM_SHA256, HAL_DIGEST_ALGORITHM_SHA512_224, HAL_DIGEST_ALGORITHM_SHA512_256, HAL_DIGEST_ALGORITHM_SHA384, HAL_DIGEST_ALGORITHM_SHA512 ''') class HALKeyType(Enum): pass HALKeyType.define(''' HAL_KEY_TYPE_NONE, HAL_KEY_TYPE_RSA_PRIVATE, HAL_KEY_TYPE_RSA_PUBLIC, HAL_KEY_TYPE_EC_PRIVATE, HAL_KEY_TYPE_EC_PUBLIC ''') class HALCurve(Enum): pass HALCurve.define(''' HAL_CURVE_NONE, HAL_CURVE_P256, HAL_CURVE_P384, HAL_CURVE_P521 ''') class HALUser(Enum): pass HALUser.define(''' HAL_USER_NONE, HAL_USER_NORMAL, HAL_USER_SO, HAL_USER_WHEEL ''') HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE = (1 << 0) HAL_KEY_FLAG_USAGE_KEYENCIPHERMENT = (1 << 1) HAL_KEY_FLAG_USAGE_DATAENCIPHERMENT = (1 << 2) HAL_KEY_FLAG_TOKEN = (1 << 3) HAL_KEY_FLAG_PUBLIC = (1 << 4) HAL_PKEY_ATTRIBUTE_NIL = (0xFFFFFFFF) class UUID(uuid.UUID): def xdr_packer(self, packer): packer.pack_bytes(self.bytes) def cached_property(func): attr_name = "_" + func.__name__ def wrapped(self): try: value = getattr(self, attr_name) except AttributeError: value = func(self) setattr(self, attr_name, value) return value wrapped.__name__ = func.__name__ return property(wrapped) class Handle(object): def __int__(self): return self.handle def __cmp__(self, other): return cmp(self.handle, int(other)) def xdr_packer(self, packer): packer.pack_uint(self.handle) class Digest(Handle): def __init__(self, hsm, handle, algorithm): self.hsm = hsm self.handle = handle self.algorithm = algorithm def update(self, data): self.hsm.hash_update(self, data) def finalize(self, length = None): return self.hsm.hash_finalize(self, length or self.digest_length) @cached_property def algorithm_id(self): return self.hsm.hash_get_digest_algorithm_id(self.algorithm) @cached_property def digest_length(self): return self.hsm.hash_get_digest_length(self.algorithm) class LocalDigest(object): """ Implements same interface as Digest class, but using PyCrypto, to support mixed-mode PKey operations. This only supports algorithms that PyCrypto supports, so no SHA512/224 or SHA512/256, sorry. """ def __init__(self, hsm, handle, algorithm, key): from Crypto.Hash import HMAC, SHA, SHA224, SHA256, SHA384, SHA512 self.hsm = hsm self.handle = handle self.algorithm = algorithm try: h = self._algorithms[algorithm] except AttributeError: self._algorithms = { HAL_DIGEST_ALGORITHM_SHA1 : SHA.SHA1Hash, HAL_DIGEST_ALGORITHM_SHA224 : SHA224.SHA224Hash, HAL_DIGEST_ALGORITHM_SHA256 : SHA256.SHA256Hash, HAL_DIGEST_ALGORITHM_SHA384 : SHA384.SHA384Hash, HAL_DIGEST_ALGORITHM_SHA512 : SHA512.SHA512Hash } h = self._algorithms[algorithm] self.digest_length = h.digest_size self.algorithm_id = chr(0x30) + chr(2 + len(h.oid)) + h.oid self._context = HMAC.HMAC(key = key, digestmod = h) if key else h() def update(self, data): self._context.update(data) def finalize(self, length = None): return self._context.digest() def finalize_padded(self, pkey): if pkey.key_type not in (HAL_KEY_TYPE_RSA_PRIVATE, HAL_KEY_TYPE_RSA_PUBLIC): return self.finalize() # PKCS #1.5 requires the digest to be wrapped up in an ASN.1 DigestInfo object. from Crypto.Util.asn1 import DerSequence, DerNull, DerOctetString return DerSequence([DerSequence([self._context.oid, DerNull().encode()]).encode(), DerOctetString(self.finalize()).encode()]).encode() class PKey(Handle): def __init__(self, hsm, handle, uuid): self.hsm = hsm self.handle = handle self.uuid = uuid self.deleted = False def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): if not self.deleted: self.close() def close(self): self.hsm.pkey_close(self) def delete(self): self.hsm.pkey_delete(self) self.deleted = True @cached_property def key_type(self): return self.hsm.pkey_get_key_type(self) @cached_property def key_curve(self): return self.hsm.pkey_get_key_curve(self) @cached_property def key_flags(self): return self.hsm.pkey_get_key_flags(self) @cached_property def public_key_len(self): return self.hsm.pkey_get_public_key_len(self) @cached_property def public_key(self): return self.hsm.pkey_get_public_key(self, self.public_key_len) def sign(self, hash = 0, data = "", length = 1024): return self.hsm.pkey_sign(self, hash = hash, data = data, length = length) def verify(self, hash = 0, data = "", signature = None): self.hsm.pkey_verify(self, hash = hash, data = data, signature = signature) def set_attributes(self, attributes): self.hsm.pkey_set_attributes(self, attributes) def get_attributes(self, attributes): attrs = self.hsm.pkey_get_attributes(self, attributes, 0) attrs = dict((k, v) for k, v in attrs.iteritems() if v != HAL_PKEY_ATTRIBUTE_NIL) result = dict((a, None) for a in attributes) result.update(self.hsm.pkey_get_attributes(self, attrs.iterkeys(), sum(attrs.itervalues()))) return result class HSM(object): mixed_mode = False def _raise_if_error(self, status): if status != 0: raise HALError.table[status]() def __init__(self, sockname = os.getenv("CRYPTECH_RPC_CLIENT_SOCKET_NAME", "/tmp/.cryptech_muxd.rpc")): self.socket = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) self.socket.connect(sockname) self.sockfile = self.socket.makefile("rb") def _send(self, msg): # Expects an xdrlib.Packer msg = slip_encode(msg.get_buffer()) logger.debug("send: %s", ":".join("{:02x}".format(ord(c)) for c in msg)) self.socket.sendall(msg) def _recv(self, code): # Returns an xdrlib.Unpacker closed = False while True: msg = [self.sockfile.read(1)] while msg[-1] != SLIP_END: if msg[-1] == "": raise HAL_ERROR_RPC_TRANSPORT() msg.append(self.sockfile.read(1)) logger.debug("recv: %s", ":".join("{:02x}".format(ord(c)) for c in msg)) msg = slip_decode("".join(msg)) if not msg: continue msg = xdrlib.Unpacker("".join(msg)) if msg.unpack_uint() != code: continue return msg _pack_builtin = (((int, long), "_pack_uint"), (str, "_pack_bytes"), ((list, tuple, set), "_pack_array"), (dict, "_pack_items")) def _pack_arg(self, packer, arg): if hasattr(arg, "xdr_packer"): return arg.xdr_packer(packer) for cls, method in self._pack_builtin: if isinstance(arg, cls): return getattr(self, method)(packer, arg) raise RuntimeError("Don't know how to pack {!r} ({!r})".format(arg, type(arg))) def _pack_args(self, packer, args): for arg in args: self._pack_arg(packer, arg) def _pack_uint(self, packer, arg): packer.pack_uint(arg) def _pack_bytes(self, packer, arg): packer.pack_bytes(arg) def _pack_array(self, packer, arg): packer.pack_uint(len(arg)) self._pack_args(packer, arg) def _pack_items(self, packer, arg): packer.pack_uint(len(arg)) for name, value in arg.iteritems(): self._pack_arg(packer, name) self._pack_arg(packer, HAL_PKEY_ATTRIBUTE_NIL if value is None else value) @contextlib.contextmanager def rpc(self, code, *args, **kwargs): client = kwargs.get("client", 0) packer = xdrlib.Packer() packer.pack_uint(code) packer.pack_uint(client) self._pack_args(packer, args) self._send(packer) unpacker = self._recv(code) client = unpacker.unpack_uint() self._raise_if_error(unpacker.unpack_uint()) yield unpacker unpacker.done() def get_version(self): with self.rpc(RPC_FUNC_GET_VERSION) as r: return r.unpack_uint() def get_random(self, n): with self.rpc(RPC_FUNC_GET_RANDOM, n) as r: return r.unpack_bytes() def set_pin(self, user, pin, client = 0): with self.rpc(RPC_FUNC_SET_PIN, user, pin, client = client): return def login(self, user, pin, client = 0): with self.rpc(RPC_FUNC_LOGIN, user, pin, client = client): return def logout(self, client = 0): with self.rpc(RPC_FUNC_LOGOUT, client = client): return def logout_all(self): with self.rpc(RPC_FUNC_LOGOUT_ALL): return def is_logged_in(self, user, client = 0): with self.rpc(RPC_FUNC_IS_LOGGED_IN, user, client = client): return def hash_get_digest_length(self, alg): with self.rpc(RPC_FUNC_HASH_GET_DIGEST_LEN, alg) as r: return r.unpack_uint() def hash_get_digest_algorithm_id(self, alg, max_len = 256): with self.rpc(RPC_FUNC_HASH_GET_DIGEST_ALGORITHM_ID, alg, max_len) as r: return r.unpack_bytes() def hash_get_algorithm(self, handle): with self.rpc(RPC_FUNC_HASH_GET_ALGORITHM, handle) as r: return HALDigestAlgorithm.index[r.unpack_uint()] def hash_initialize(self, alg, key = "", client = 0, session = 0, mixed_mode = None): if mixed_mode is None: mixed_mode = self.mixed_mode if mixed_mode: return LocalDigest(self, 0, alg, key) else: with self.rpc(RPC_FUNC_HASH_INITIALIZE, session, alg, key, client = client) as r: return Digest(self, r.unpack_uint(), alg) def hash_update(self, handle, data): with self.rpc(RPC_FUNC_HASH_UPDATE, handle, data): return def hash_finalize(self, handle, length = None): if length is None: length = self.hash_get_digest_length(self.hash_get_algorithm(handle)) with self.rpc(RPC_FUNC_HASH_FINALIZE, handle, length) as r: return r.unpack_bytes() def pkey_load(self, type, curve, der, flags = 0, client = 0, session = 0): with self.rpc(RPC_FUNC_PKEY_LOAD, session, type, curve, der, flags, client = client) as r: return PKey(self, r.unpack_uint(), UUID(bytes = r.unpack_bytes())) def pkey_open(self, uuid, flags = 0, client = 0, session = 0): with self.rpc(RPC_FUNC_PKEY_OPEN, session, uuid, flags, client = client) as r: return PKey(self, r.unpack_uint(), uuid) def pkey_generate_rsa(self, keylen, exponent = "\x01\x00\x01", flags = 0, client = 0, session = 0): with self.rpc(RPC_FUNC_PKEY_GENERATE_RSA, session, keylen, exponent, flags, client = client) as r: return PKey(self, r.unpack_uint(), UUID(bytes = r.unpack_bytes())) def pkey_generate_ec(self, curve, flags = 0, client = 0, session = 0): with self.rpc(RPC_FUNC_PKEY_GENERATE_EC, session, curve, flags, client = client) as r: return PKey(self, r.unpack_uint(), UUID(bytes = r.unpack_bytes())) def pkey_close(self, pkey): with self.rpc(RPC_FUNC_PKEY_CLOSE, pkey): return def pkey_delete(self, pkey): with self.rpc(RPC_FUNC_PKEY_DELETE, pkey): return def pkey_get_key_type(self, pkey): with self.rpc(RPC_FUNC_PKEY_GET_KEY_TYPE, pkey) as r: return HALKeyType.index[r.unpack_uint()] def pkey_get_key_curve(self, pkey): with self.rpc(RPC_FUNC_PKEY_GET_KEY_CURVE, pkey) as r: return HALCurve.index[r.unpack_uint()] def pkey_get_key_flags(self, pkey): with self.rpc(RPC_FUNC_PKEY_GET_KEY_FLAGS, pkey) as r: return r.unpack_uint() def pkey_get_public_key_len(self, pkey): with self.rpc(RPC_FUNC_PKEY_GET_PUBLIC_KEY_LEN, pkey) as r: return r.unpack_uint() def pkey_get_public_key(self, pkey, length = None): if length is None: length = self.pkey_get_public_key_len(pkey) with self.rpc(RPC_FUNC_PKEY_GET_PUBLIC_KEY, pkey, length) as r: return r.unpack_bytes() def pkey_sign(self, pkey, hash = 0, data = "", length = 1024): assert not hash or not data if isinstance(hash, LocalDigest): hash, data = 0, hash.finalize_padded(pkey) with self.rpc(RPC_FUNC_PKEY_SIGN, pkey, hash, data, length) as r: return r.unpack_bytes() def pkey_verify(self, pkey, hash = 0, data = "", signature = None): assert not hash or not data if isinstance(hash, LocalDigest): hash, data = 0, hash.finalize_padded(pkey) with self.rpc(RPC_FUNC_PKEY_VERIFY, pkey, hash, data, signature): return def pkey_match(self, type = 0, curve = 0, flags = 0, attributes = {}, length = 64, client = 0, session = 0): u = UUID(int = 0) n = length while n == length: with self.rpc(RPC_FUNC_PKEY_MATCH, session, type, curve, flags, attributes, length, u, client = client) as r: n = r.unpack_uint() for i in xrange(n): u = UUID(bytes = r.unpack_bytes()) yield u def pkey_set_attributes(self, pkey, attributes): with self.rpc(RPC_FUNC_PKEY_SET_ATTRIBUTES, pkey, attributes): return def pkey_get_attributes(self, pkey, attributes, attributes_buffer_len = 2048): attributes = tuple(attributes) with self.rpc(RPC_FUNC_PKEY_GET_ATTRIBUTES, pkey, attributes, attributes_buffer_len) as r: n = r.unpack_uint() if n != len(attributes): raise HAL_ERROR_RPC_PROTOCOL_ERROR if attributes_buffer_len > 0: return dict((r.unpack_uint(), r.unpack_bytes()) for i in xrange(n)) else: return dict((r.unpack_uint(), r.unpack_uint()) for i in xrange(n))