1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
|
# Copyright (c) 2016, NORDUnet A/S
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
# - Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# - Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# - Neither the name of the NORDUnet nor the names of its contributors may
# be used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
# TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
# TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
A Python interface to the Cryptech libhal RPC API.
"""
# A lot of this is hand-generated XDR data structure encoding. If and
# when we ever convert the C library to use data structures processed
# by rpcgen, we may want to rewrite this code to use the output of
# something like https://github.com/floodlight/xdr.git -- in either
# case the generated code would just be for the data structures, we're
# not likely to want to use the full ONC RPC mechanism.
import os
import sys
import time
import uuid
import xdrlib
import serial
SLIP_END = chr(0300) # indicates end of packet
SLIP_ESC = chr(0333) # indicates byte stuffing
SLIP_ESC_END = chr(0334) # ESC ESC_END means END data byte
SLIP_ESC_ESC = chr(0335) # ESC ESC_ESC means ESC data byte
HAL_OK = 0
class HALError(Exception):
"LibHAL error"
table = [None]
@classmethod
def define(cls, **kw):
assert len(kw) == 1
name, text = kw.items()[0]
e = type(name, (cls,), dict(__doc__ = text))
cls.table.append(e)
globals()[name] = e
HALError.define(HAL_ERROR_BAD_ARGUMENTS = "Bad arguments given")
HALError.define(HAL_ERROR_UNSUPPORTED_KEY = "Unsupported key type or key length")
HALError.define(HAL_ERROR_IO_SETUP_FAILED = "Could not set up I/O with FPGA")
HALError.define(HAL_ERROR_IO_TIMEOUT = "I/O with FPGA timed out")
HALError.define(HAL_ERROR_IO_UNEXPECTED = "Unexpected response from FPGA")
HALError.define(HAL_ERROR_IO_OS_ERROR = "Operating system error talking to FPGA")
HALError.define(HAL_ERROR_IO_BAD_COUNT = "Bad byte count")
HALError.define(HAL_ERROR_CSPRNG_BROKEN = "CSPRNG is returning nonsense")
HALError.define(HAL_ERROR_KEYWRAP_BAD_MAGIC = "Bad magic number while unwrapping key")
HALError.define(HAL_ERROR_KEYWRAP_BAD_LENGTH = "Length out of range while unwrapping key")
HALError.define(HAL_ERROR_KEYWRAP_BAD_PADDING = "Non-zero padding detected unwrapping key")
HALError.define(HAL_ERROR_IMPOSSIBLE = "\"Impossible\" error")
HALError.define(HAL_ERROR_ALLOCATION_FAILURE = "Memory allocation failed")
HALError.define(HAL_ERROR_RESULT_TOO_LONG = "Result too long for buffer")
HALError.define(HAL_ERROR_ASN1_PARSE_FAILED = "ASN.1 parse failed")
HALError.define(HAL_ERROR_KEY_NOT_ON_CURVE = "EC key is not on its purported curve")
HALError.define(HAL_ERROR_INVALID_SIGNATURE = "Invalid signature")
HALError.define(HAL_ERROR_CORE_NOT_FOUND = "Requested core not found")
HALError.define(HAL_ERROR_CORE_BUSY = "Requested core busy")
HALError.define(HAL_ERROR_KEYSTORE_ACCESS = "Could not access keystore")
HALError.define(HAL_ERROR_KEY_NOT_FOUND = "Key not found")
HALError.define(HAL_ERROR_KEY_NAME_IN_USE = "Key name in use")
HALError.define(HAL_ERROR_NO_KEY_SLOTS_AVAILABLE = "No key slots available")
HALError.define(HAL_ERROR_PIN_INCORRECT = "PIN incorrect")
HALError.define(HAL_ERROR_NO_CLIENT_SLOTS_AVAILABLE = "No client slots available")
HALError.define(HAL_ERROR_FORBIDDEN = "Forbidden")
HALError.define(HAL_ERROR_XDR_BUFFER_OVERFLOW = "XDR buffer overflow")
HALError.define(HAL_ERROR_RPC_TRANSPORT = "RPC transport error")
HALError.define(HAL_ERROR_RPC_PACKET_OVERFLOW = "RPC packet overflow")
HALError.define(HAL_ERROR_RPC_BAD_FUNCTION = "Bad RPC function number")
HALError.define(HAL_ERROR_KEY_NAME_TOO_LONG = "Key name too long")
HALError.define(HAL_ERROR_MASTERKEY_NOT_SET = "Master key (Key Encryption Key) not set")
HALError.define(HAL_ERROR_MASTERKEY_FAIL = "Master key generic failure")
HALError.define(HAL_ERROR_MASTERKEY_BAD_LENGTH = "Master key of unacceptable length")
HALError.define(HAL_ERROR_KS_DRIVER_NOT_FOUND = "Keystore driver not found")
HALError.define(HAL_ERROR_KEYSTORE_BAD_CRC = "Bad CRC in keystore")
HALError.define(HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE = "Unsupported keystore block type")
HALError.define(HAL_ERROR_KEYSTORE_LOST_DATA = "Keystore appears to have lost data")
HALError.define(HAL_ERROR_BAD_ATTRIBUTE_LENGTH = "Bad attribute length")
HALError.define(HAL_ERROR_ATTRIBUTE_NOT_FOUND = "Attribute not found")
HALError.define(HAL_ERROR_NO_KEY_INDEX_SLOTS = "No key index slots available")
def def_enum(text):
for i, name in enumerate(text.translate(None, ",").split()):
globals()[name] = i
def_enum('''
RPC_FUNC_GET_VERSION,
RPC_FUNC_GET_RANDOM,
RPC_FUNC_SET_PIN,
RPC_FUNC_LOGIN,
RPC_FUNC_LOGOUT,
RPC_FUNC_LOGOUT_ALL,
RPC_FUNC_IS_LOGGED_IN,
RPC_FUNC_HASH_GET_DIGEST_LEN,
RPC_FUNC_HASH_GET_DIGEST_ALGORITHM_ID,
RPC_FUNC_HASH_GET_ALGORITHM,
RPC_FUNC_HASH_INITIALIZE,
RPC_FUNC_HASH_UPDATE,
RPC_FUNC_HASH_FINALIZE,
RPC_FUNC_PKEY_LOAD,
RPC_FUNC_PKEY_FIND,
RPC_FUNC_PKEY_GENERATE_RSA,
RPC_FUNC_PKEY_GENERATE_EC,
RPC_FUNC_PKEY_CLOSE,
RPC_FUNC_PKEY_DELETE,
RPC_FUNC_PKEY_GET_KEY_TYPE,
RPC_FUNC_PKEY_GET_KEY_FLAGS,
RPC_FUNC_PKEY_GET_PUBLIC_KEY_LEN,
RPC_FUNC_PKEY_GET_PUBLIC_KEY,
RPC_FUNC_PKEY_SIGN,
RPC_FUNC_PKEY_VERIFY,
RPC_FUNC_PKEY_LIST,
RPC_FUNC_PKEY_RENAME,
RPC_FUNC_PKEY_MATCH,
RPC_FUNC_PKEY_SET_ATTRIBUTE,
RPC_FUNC_PKEY_GET_ATTRIBUTE,
RPC_FUNC_PKEY_DELETE_ATTRIBUTE,
''')
def_enum('''
hal_digest_algorithm_none,
hal_digest_algorithm_sha1,
hal_digest_algorithm_sha224,
hal_digest_algorithm_sha256,
hal_digest_algorithm_sha512_224,
hal_digest_algorithm_sha512_256,
hal_digest_algorithm_sha384,
hal_digest_algorithm_sha512
''')
def_enum('''
HAL_KEY_TYPE_NONE = 0,
HAL_KEY_TYPE_RSA_PRIVATE,
HAL_KEY_TYPE_RSA_PUBLIC,
HAL_KEY_TYPE_EC_PRIVATE,
HAL_KEY_TYPE_EC_PUBLIC
''')
def_enum('''
HAL_CURVE_NONE,
HAL_CURVE_P256,
HAL_CURVE_P384,
HAL_CURVE_P521
''')
def_enum('''
HAL_USER_NONE,
HAL_USER_NORMAL,
HAL_USER_SO,
HAL_USER_WHEEL
''')
HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE = (1 << 0)
HAL_KEY_FLAG_USAGE_KEYENCIPHERMENT = (1 << 1)
HAL_KEY_FLAG_USAGE_DATAENCIPHERMENT = (1 << 2)
HAL_KEY_FLAG_TOKEN = (1 << 3)
class RPC(object):
debug = True
def _raise_if_error(self, status):
if status != 0:
raise HALError.table[status]()
def __init__(self, device = os.getenv("CRYPTECH_RPC_CLIENT_SERIAL_DEVICE", "/dev/ttyUSB0")):
while True:
try:
self.tty = serial.Serial(device, 921600, timeout=0.1)
break
except serial.SerialException:
time.sleep(0.2)
def _write(self, c):
if self.debug:
sys.stdout.write("{:02x}".format(ord(c)))
self.tty.write(c)
time.sleep(0.1)
def _send(self, msg): # Expects an xdrlib.Packer
if self.debug:
sys.stdout.write("+send: ")
self._write(SLIP_END)
for c in msg.get_buffer():
if c == SLIP_END:
self._write(SLIP_ESC)
self._write(SLIP_ESC_END)
elif c == SLIP_ESC:
self._write(SLIP_ESC)
self._write(SLIP_ESC_ESC)
else:
self._write(c)
self._write(SLIP_END)
if self.debug:
sys.stdout.write("\n")
def _recv(self, code): # Returns an xdrlib.Unpacker
if self.debug:
sys.stdout.write("+recv: ")
msg = []
esc = False
while True:
c = self.tty.read(1)
if self.debug and c:
sys.stdout.write("{:02x}".format(ord(c)))
if not c:
time.sleep(0.1)
elif c == SLIP_END and not msg:
continue
elif c == SLIP_END:
if self.debug:
sys.stdout.write("\n")
msg = xdrlib.Unpacker("".join(msg))
if msg.unpack_uint() == code:
return msg
msg = []
if self.debug:
sys.stdout.write("+recv: ")
elif c == SLIP_ESC:
esc = True
elif esc and c == SLIP_ESC_END:
esc = False
msg.append(SLIP_END)
elif esc and c == SLIP_ESC_ESC:
esc = False
msg.append(SLIP_ESC)
else:
msg.append(c)
def _pack(self, packer, args):
for arg in args:
if isinstance(arg, (int, long)):
packer.pack_uint(arg)
elif isinstance(arg, str):
packer.pack_bytes(arg)
elif isinstance(arg, uuid.UUID):
packer.pack_bytes(arg.bytes)
elif isinstance(arg, (list, tuple)):
packer.pack_uint(len(arg))
self._pack(packer, arg)
else:
raise RuntimeError("Don't know how to pack {!r} ({!r})".format(arg, type(arg)))
def _call(self, code, *args, **kwargs):
client = kwargs.get("client", 0)
packer = xdrlib.Packer()
packer.pack_uint(code)
packer.pack_uint(client)
self._pack(packer, args)
self._send(packer)
unpacker = self._recv(code)
client = unpacker.unpack_uint()
self._raise_if_error(unpacker.unpack_uint())
return unpacker
def get_version(self):
u = self._call(RPC_FUNC_GET_VERSION)
r = u.unpack_uint()
u.done()
return r
def get_random(self, n):
u = self._call(RPC_FUNC_GET_RANDOM, n)
r = u.unpack_bytes()
u.done()
return r
def set_pin(self, user, pin):
u = self._call(RPC_FUNC_SET_PIN, user, pin)
u.done()
def login(self, user, pin):
u = self._call(RPC_FUNC_LOGIN, user, pin)
u.done()
def logout(self):
u = self._call(RPC_FUNC_LOGOUT)
u.done()
def logout_all(self):
u = self._call(RPC_FUNC_LOGOUT_ALL)
u.done()
def is_logged_in(self, user):
u = self._call(RPC_FUNC_IS_LOGGED_IN, user)
r = u.unpack_bool()
u.done()
return r
def hash_get_digest_length(self, alg):
u = self._call(RPC_FUNC_HASH_GET_DIGEST_LEN, alg)
r = u.unpack_uint()
u.done()
return r
def hash_get_digest_algorithm_id(self, alg, max_len = 256):
u = self._call(RPC_FUNC_HASH_GET_DIGEST_ALGORITHM_ID, alg, max_len)
r = u.unpack_bytes()
u.done()
return r
def hash_get_algorithm(self, handle):
u = self._call(RPC_FUNC_HASH_GET_ALGORITHM, handle)
r = u.unpack_uint()
u.done()
return r
def hash_initialize(self, alg, key = "", client = 0, session = 0):
u = self._call(RPC_FUNC_HASH_INITIALIZE, session, alg, key, client = client)
r = u.unpack_uint()
u.done()
return r
def hash_update(self, handle, data):
u = self._call(RPC_FUNC_HASH_UPDATE, handle, data)
u.done()
def hash_finalize(self, handle, length = None):
if length is None:
length = self.hash_get_digest_length(self.hash_get_algorithm(handle))
u = self._call(RPC_FUNC_HASH_FINALIZE, handle, length)
r = u.unpack_bytes()
u.done()
return r
def pkey_load(self, type, curve, der, flags = 0, client = 0, session = 0):
u = self._call(RPC_FUNC_PKEY_LOAD, session, type, curve, der, flags, client = client)
r = u.unpack_uint(), uuid.UUID(bytes = u.unpack_bytes())
u.done()
return r
def pkey_find(self, uuid, flags = 0, client = 0, session = 0):
u = self._call(RPC_FUNC_PKEY_FIND, session, uuid, flags, client = client)
r = u.unpack_uint()
u.done()
return r
def pkey_generate_rsa(self, keylen, exponent, flags = 0, client = 0, session = 0):
u = self._call(RPC_FUNC_PKEY_GENERATE_RSA, session, keylen, exponent, flags, client = client)
r = u.unpack_uint(), uuid.UUID(bytes = u.unpack_bytes())
u.done()
return r
def pkey_generate_ec(self, curve, flags = 0, client = 0, session = 0):
u = self._call(RPC_FUNC_PKEY_GENERATE_EC, session, curve, flags, client = client)
r = u.unpack_uint(), uuid.UUID(bytes = u.unpack_bytes())
u.done()
return r
def pkey_close(self, pkey):
u = self._call(RPC_FUNC_PKEY_CLOSE, pkey)
u.done()
def pkey_delete(self, pkey):
u = self._call(RPC_FUNC_PKEY_DELETE, pkey)
u.done()
def pkey_get_key_type(self, pkey):
u = self._call(RPC_FUNC_PKEY_GET_KEY_TYPE, pkey)
r = u.unpack_uint()
u.done()
return r
def pkey_get_key_flags(self, pkey):
u = self._call(RPC_FUNC_PKEY_GET_KEY_FLAGS, pkey)
r = u.unpack_uint()
u.done()
return r
def pkey_get_public_key_len(self, pkey):
u = self._call(RPC_FUNC_PKEY_GET_PUBLIC_KEY_LEN, pkey)
r = u.unpack_uint()
u.done()
return r
def pkey_get_public_key(self, pkey, length = None):
if length is None:
length = self.pkey_get_public_key_len(pkey)
u = self._call(RPC_FUNC_PKEY_GET_PUBLIC_KEY, pkey, length)
r = u.unpack_bytes()
u.done()
return r
def pkey_sign(self, pkey, hash = 0, data = "", length = 1024):
u = self._call(RPC_FUNC_PKEY_SIGN, pkey, hash, data, length)
r = u.unpack_bytes()
u.done()
return r
def pkey_verify(self, pkey, hash = 0, data = "", signature = None):
u = self._call(RPC_FUNC_PKEY_VERIFY, pkey, hash, data, signature)
u.done()
def pkey_list(self, flags = 0, client = 0, session = 0, length = 512):
u = self._call(RPC_FUNC_PKEY_LIST, session, length, flags, client = client)
r = tuple((u.unpack_uint(), u.unpack_uint(), u.unpack_uint(),
uuid.UUID(bytes = u.unpack_bytes()))
for i in xrange(u.unpack_uint()))
u.done()
return r
def pkey_match(self, type = 0, curve = 0, flags = 0, attributes = (),
previous_uuid = uuid.UUID(int = 0), length = 512, client = 0, session = 0):
u = self._call(RPC_FUNC_PKEY_MATCH, session, type, curve, flags, attributes, length, previous_uuid, client = client)
r = tuple(uuid.UUID(bytes = u.unpack_bytes())
for i in xrange(u.unpack_uint()))
x = uuid.UUID(bytes = u.unpack_bytes())
u.done()
assert len(r) == 0 or x == r[-1]
return r
def pkey_set_attribute(self, pkey, type, value):
u = self._call(RPC_FUNC_PKEY_SET_ATTRIBUTE, pkey, type, value)
u.done()
def pkey_get_attribute(self, pkey, type):
u = self._call(RPC_FUNC_PKEY_GET_ATTRIBUTE, pkey, type)
r = u.unpack_bytes()
u.done()
return r
def pkey_delete_attribute(self, pkey, type):
u = self._call(RPC_FUNC_PKEY_DELETE_ATTRIBUTE, pkey, type)
u.done()
if __name__ == "__main__":
def hexstr(s):
return "".join("{:02x}".format(ord(c)) for c in s)
rpc = RPC()
print hex(rpc.get_version())
print hexstr(rpc.get_random(16))
h = rpc.hash_initialize(hal_digest_algorithm_sha256)
rpc.hash_update(h, "Hi, Mom")
print hexstr(rpc.hash_finalize(h))
h = rpc.hash_initialize(hal_digest_algorithm_sha256, key = "secret")
rpc.hash_update(h, "Hi, Dad")
print hexstr(rpc.hash_finalize(h))
k, u = rpc.pkey_generate_ec(HAL_CURVE_P256)
t = rpc.pkey_get_key_type(k)
f = rpc.pkey_get_key_flags(k)
d = rpc.pkey_get_public_key(k)
print u, t, f, hexstr(d)
rpc.pkey_close(k)
k = rpc.pkey_find(u)
rpc.pkey_delete(k)
for flags in (0, HAL_KEY_FLAG_TOKEN):
for t, c, f, u in rpc.pkey_list(flags = flags):
print u, t, c, f
for f in (HAL_KEY_FLAG_TOKEN, 0):
for u in rpc.pkey_match(flags = f):
print u
|