1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
|
/*
* hashsig.c
* ---------
* Implementation of draft-mcgrew-hash-sigs-10.txt
*
* Copyright (c) 2018, NORDUnet A/S All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "hal.h"
#include "hashsig.h"
#include "ks.h"
#include "asn1_internal.h"
#include "xdr_internal.h"
typedef struct { uint8_t bytes[32]; } bytestring32;
typedef struct { uint8_t bytes[16]; } bytestring16;
#define D_PBLC 0x8080
#define D_MESG 0x8181
#define D_LEAF 0x8282
#define D_INTR 0x8383
#define u32str(X) htonl(X)
#define u16str(X) htons(X)
#define u8str(X) (X & 0xff)
#define check(op) do { hal_error_t _err = (op); if (_err != HAL_OK) return _err; } while (0)
/* ---------------------------------------------------------------- */
/*
* XDR extensions
*/
static inline hal_error_t hal_xdr_encode_bytestring32(uint8_t ** const outbuf, const uint8_t * const limit, const bytestring32 * const value)
{
return hal_xdr_encode_fixed_opaque(outbuf, limit, (const uint8_t *)value, sizeof(bytestring32));
}
static inline hal_error_t hal_xdr_decode_bytestring32_ptr(const uint8_t ** const inbuf, const uint8_t * const limit, bytestring32 **value)
{
return hal_xdr_decode_fixed_opaque_ptr(inbuf, limit, (const uint8_t ** const)value, sizeof(bytestring32));
}
static inline hal_error_t hal_xdr_decode_bytestring32(const uint8_t ** const inbuf, const uint8_t * const limit, bytestring32 * const value)
{
return hal_xdr_decode_fixed_opaque(inbuf, limit, (uint8_t * const)value, sizeof(bytestring32));
}
static inline hal_error_t hal_xdr_encode_bytestring16(uint8_t ** const outbuf, const uint8_t * const limit, const bytestring16 *value)
{
return hal_xdr_encode_fixed_opaque(outbuf, limit, (const uint8_t *)value, sizeof(bytestring16));
}
static inline hal_error_t hal_xdr_decode_bytestring16_ptr(const uint8_t ** const inbuf, const uint8_t * const limit, bytestring16 **value)
{
return hal_xdr_decode_fixed_opaque_ptr(inbuf, limit, (const uint8_t ** const)value, sizeof(bytestring16));
}
static inline hal_error_t hal_xdr_decode_bytestring16(const uint8_t ** const inbuf, const uint8_t * const limit, bytestring16 * const value)
{
return hal_xdr_decode_fixed_opaque(inbuf, limit, (uint8_t * const)value, sizeof(bytestring16));
}
/* ---------------------------------------------------------------- */
/*
* ASN.1 extensions
*/
#define hal_asn1_encode_size_t(n, der, der_len, der_max) \
hal_asn1_encode_uint32((const uint32_t)n, der, der_len, der_max)
#define hal_asn1_decode_size_t(np, der, der_len, der_max) \
hal_asn1_decode_uint32((uint32_t *)np, der, der_len, der_max)
#define hal_asn1_encode_lms_algorithm(type, der, der_len, der_max) \
hal_asn1_encode_uint32((const uint32_t)type, der, der_len, der_max)
#define hal_asn1_decode_lms_algorithm(type, der, der_len, der_max) \
hal_asn1_decode_uint32((uint32_t *)type, der, der_len, der_max)
#define hal_asn1_encode_lmots_algorithm(type, der, der_len, der_max) \
hal_asn1_encode_uint32((const uint32_t)type, der, der_len, der_max)
#define hal_asn1_decode_lmots_algorithm(type, der, der_len, der_max) \
hal_asn1_decode_uint32((uint32_t *)type, der, der_len, der_max)
#define hal_asn1_encode_uuid(data, der, der_len, der_max) \
hal_asn1_encode_octet_string((const uint8_t * const)data, sizeof(hal_uuid_t), der, der_len, der_max)
#define hal_asn1_decode_uuid(data, der, der_len, der_max) \
hal_asn1_decode_octet_string((uint8_t *)data, sizeof(hal_uuid_t), der, der_len, der_max)
#define hal_asn1_encode_bytestring16(data, der, der_len, der_max) \
hal_asn1_encode_octet_string((const uint8_t * const)data, sizeof(bytestring16), der, der_len, der_max)
#define hal_asn1_decode_bytestring16(data, der, der_len, der_max) \
hal_asn1_decode_octet_string((uint8_t *)data, sizeof(bytestring16), der, der_len, der_max)
#define hal_asn1_encode_bytestring32(data, der, der_len, der_max) \
hal_asn1_encode_octet_string((const uint8_t * const)data, sizeof(bytestring32), der, der_len, der_max)
#define hal_asn1_decode_bytestring32(data, der, der_len, der_max) \
hal_asn1_decode_octet_string((uint8_t *)data, sizeof(bytestring32), der, der_len, der_max)
/* ---------------------------------------------------------------- */
/*
* LM-OTS
*/
typedef const struct lmots_parameter_set {
lmots_algorithm_t type;
size_t n, w, p, ls;
} lmots_parameter_t;
static lmots_parameter_t lmots_parameters[] = {
{ lmots_sha256_n32_w1, 32, 1, 265, 7 },
{ lmots_sha256_n32_w2, 32, 2, 133, 6 },
{ lmots_sha256_n32_w4, 32, 4, 67, 4 },
{ lmots_sha256_n32_w8, 32, 8, 34, 0 },
};
typedef struct lmots_key {
hal_key_type_t type;
lmots_parameter_t *lmots;
bytestring16 I;
size_t q;
bytestring32 * x;
bytestring32 K;
} lmots_key_t;
static inline lmots_parameter_t *lmots_select_parameter_set(const lmots_algorithm_t lmots_type)
{
if (lmots_type < lmots_sha256_n32_w1 || lmots_type > lmots_sha256_n32_w8)
return NULL;
else
return &lmots_parameters[lmots_type - lmots_sha256_n32_w1];
}
static inline size_t lmots_private_key_len(lmots_parameter_t * const lmots)
{
/* u32str(type) || I || u32str(q) || x[0] || x[1] || ... || x[p-1] */
return 2 * sizeof(uint32_t) + sizeof(bytestring16) + (lmots->p * lmots->n);
}
static inline size_t lmots_public_key_len(lmots_parameter_t * const lmots)
{
/* u32str(type) || I || u32str(q) || K */
return 2 * sizeof(uint32_t) + sizeof(bytestring16) + lmots->n;
}
static inline size_t lmots_signature_len(lmots_parameter_t * const lmots)
{
/* u32str(type) || C || y[0] || ... || y[p-1] */
return sizeof(uint32_t) + (lmots->p + 1) * lmots->n;
}
#if RPC_CLIENT == RPC_CLIENT_LOCAL
/* Given a key with most fields filled in, generate the lmots private and
* public key components (x and K).
* Let the caller worry about storage.
*/
static hal_error_t lmots_generate(lmots_key_t * const key)
{
if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMOTS || key->lmots == NULL || key->x == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
// Algorithm 0: Generating a Private Key
// 3. set n and p according to the typecode and Table 1
size_t n = key->lmots->n;
size_t p = key->lmots->p;
size_t w = key->lmots->w;
// 4. compute the array x as follows:
// for ( i = 0; i < p; i = i + 1 ) {
// set x[i] to a uniformly random n-byte string
// }
for (size_t i = 0; i < p; ++i)
check(hal_rpc_get_random(&key->x[i], n));
// Algorithm 1: Generating a One Time Signature Public Key From a
// Private Key
// 4. compute the string K as follows:
uint8_t statebuf[512];
hal_hash_state_t *state = NULL;
bytestring32 y[p];
uint32_t l;
uint16_t s;
uint8_t b;
// for ( i = 0; i < p; i = i + 1 ) {
for (size_t i = 0; i < p; ++i) {
// tmp = x[i]
bytestring32 tmp;
memcpy(&tmp, &key->x[i], sizeof(tmp));
// for ( j = 0; j < 2^w - 1; j = j + 1 ) {
for (size_t j = 0; j < (1U << w) - 1; ++j) {
// tmp = H(I || u32str(q) || u16str(i) || u8str(j) || tmp)
check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
s = u16str(i); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
b = u8str(j); check(hal_hash_update(state, (const uint8_t *)&b, sizeof(b)));
check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp)));
check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp)));
}
// y[i] = tmp
memcpy(&y[i], &tmp, sizeof(tmp));
// }
}
// K = H(I || u32str(q) || u16str(D_PBLC) || y[0] || ... || y[p-1])
check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
s = u16str(D_PBLC); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
for (size_t i = 0; i < p; ++i)
check(hal_hash_update(state, (const uint8_t *)&y[i], sizeof(y[i])));
check(hal_hash_finalize(state, (uint8_t *)&key->K, sizeof(key->K)));
return HAL_OK;
}
#endif
/* strings of w-bit elements */
static uint8_t coef(const uint8_t * const S, const size_t i, size_t w)
{
switch (w) {
case 1:
return (S[i/8] >> (7 - (i % 8))) & 0x01;
case 2:
return (S[i/4] >> (6 - (2 * (i % 4)))) & 0x03;
case 4:
return (S[i/2] >> (4 - (4 * (i % 2)))) & 0x0f;
case 8:
return S[i];
default:
return 0;
}
}
/* checksum */
static uint16_t Cksm(const uint8_t * const S, lmots_parameter_t *lmots)
{
uint16_t sum = 0;
for (size_t i = 0; i < (lmots->n * 8 / lmots->w); ++i)
sum += ((1 << lmots->w) - 1) - coef(S, i, lmots->w);
return (sum << lmots->ls);
}
#if RPC_CLIENT == RPC_CLIENT_LOCAL
static hal_error_t lmots_sign(lmots_key_t *key,
const uint8_t * const msg, const size_t msg_len,
uint8_t * sig, size_t *sig_len, const size_t sig_max)
{
if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMOTS || msg == NULL || sig == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
// Algorithm 3: Generating a One Time Signature From a Private Key and a
// Message
// 1. set type to the typecode of the algorithm
//
// 2. set n, p, and w according to the typecode and Table 1
size_t n = key->lmots->n;
size_t p = key->lmots->p;
size_t w = key->lmots->w;
if (sig_max < lmots_signature_len(key->lmots))
return HAL_ERROR_BAD_ARGUMENTS;
// 3. determine x, I and q from the private key
//
// 4. set C to a uniformly random n-byte string
bytestring32 C;
check(hal_rpc_get_random(&C, n));
// 5. compute the array y as follows:
uint8_t statebuf[512];
hal_hash_state_t *state = NULL;
uint8_t Q[n + 2]; /* hash || 16-bit checksum */
uint32_t l;
uint16_t s;
uint8_t b;
// Q = H(I || u32str(q) || u16str(D_MESG) || C || message)
check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
s = u16str(D_MESG); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
check(hal_hash_update(state, (const uint8_t *)&C, sizeof(C)));
check(hal_hash_update(state, msg, msg_len));
check(hal_hash_finalize(state, Q, n));
/* append checksum */
*(uint16_t *)&Q[n] = u16str(Cksm((uint8_t *)Q, key->lmots));
bytestring32 y[p];
// for ( i = 0; i < p; i = i + 1 ) {
for (size_t i = 0; i < p; ++i) {
// a = coef(Q || Cksm(Q), i, w)
uint8_t a = coef(Q, i, w);
// tmp = x[i]
bytestring32 tmp;
memcpy(&tmp, &key->x[i], sizeof(tmp));
// for ( j = 0; j < a; j = j + 1 ) {
for (size_t j = 0; j < (size_t)a; ++j) {
// tmp = H(I || u32str(q) || u16str(i) || u8str(j) || tmp)
check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
s = u16str(i); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
b = u8str(j); check(hal_hash_update(state, (const uint8_t *)&b, sizeof(b)));
check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp)));
check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp)));
// }
}
// y[i] = tmp
memcpy(&y[i], &tmp, sizeof(tmp));
}
// 6. return u32str(type) || C || y[0] || ... || y[p-1]
uint8_t *sigptr = sig;
const uint8_t * const siglim = sig + sig_max;
check(hal_xdr_encode_int(&sigptr, siglim, key->lmots->type));
check(hal_xdr_encode_bytestring32(&sigptr, siglim, &C));
for (size_t i = 0; i < p; ++i)
check(hal_xdr_encode_bytestring32(&sigptr, siglim, &y[i]));
if (sig_len != NULL)
*sig_len = sigptr - sig;
return HAL_OK;
}
#endif
static hal_error_t lmots_public_key_candidate(const lmots_key_t * const key,
const uint8_t * const msg, const size_t msg_len,
const uint8_t * const sig, const size_t sig_len)
{
if (key == NULL || msg == NULL || sig == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
/* Skip the length checks here, because we did a unitary length check
* at the start of lms_verify.
*/
// 1. if the signature is not at least four bytes long, return INVALID
//
// 2. parse sigtype, C, and y from the signature as follows:
// a. sigtype = strTou32(first 4 bytes of signature)
const uint8_t *sigptr = sig;
const uint8_t * const siglim = sig + sig_len;
uint32_t sigtype;
check(hal_xdr_decode_int(&sigptr, siglim, &sigtype));
// b. if sigtype is not equal to pubtype, return INVALID
if ((lmots_algorithm_t)sigtype != key->lmots->type)
return HAL_ERROR_INVALID_SIGNATURE;
// c. set n and p according to the pubtype and Table 1; if the
// signature is not exactly 4 + n * (p+1) bytes long, return INVALID
size_t n = key->lmots->n;
size_t p = key->lmots->p;
size_t w = key->lmots->w;
// d. C = next n bytes of signature
bytestring32 C;
check(hal_xdr_decode_bytestring32(&sigptr, siglim, &C));
// e. y[0] = next n bytes of signature
// y[1] = next n bytes of signature
// ...
// y[p-1] = next n bytes of signature
bytestring32 y[p];
for (size_t i = 0; i < p; ++i)
check(hal_xdr_decode_bytestring32(&sigptr, siglim, &y[i]));
// 3. compute the string Kc as follows
uint8_t statebuf[512];
hal_hash_state_t *state = NULL;
uint8_t Q[n + 2]; /* hash || 16-bit checksum */
uint32_t l;
uint16_t s;
uint8_t b;
// Q = H(I || u32str(q) || u16str(D_MESG) || C || message)
check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
s = u16str(D_MESG); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
check(hal_hash_update(state, (const uint8_t *)&C, sizeof(C)));
check(hal_hash_update(state, msg, msg_len));
check(hal_hash_finalize(state, Q, n));
/* append checksum */
*(uint16_t *)&Q[n] = u16str(Cksm((uint8_t *)Q, key->lmots));
bytestring32 z[p];
// for ( i = 0; i < p; i = i + 1 ) {
for (size_t i = 0; i < p; ++i) {
// a = coef(Q || Cksm(Q), i, w)
uint8_t a = coef(Q, i, w);
// tmp = y[i]
bytestring32 tmp;
memcpy(&tmp, &y[i], sizeof(tmp));
// for ( j = a; j < 2^w - 1; j = j + 1 ) {
for (size_t j = (size_t)a; j < (1U << w) - 1; ++j) {
// tmp = H(I || u32str(q) || u16str(i) || u8str(j) || tmp)
check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
s = u16str(i); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
b = u8str(j); check(hal_hash_update(state, (const uint8_t *)&b, sizeof(b)));
check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp)));
check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp)));
// }
}
// z[i] = tmp
memcpy(&z[i], &tmp, sizeof(tmp));
// }
}
// Kc = H(I || u32str(q) || u16str(D_PBLC) || z[0] || z[1] || ... || z[p-1])
check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
s = u16str(D_PBLC); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
for (size_t i = 0; i < p; ++i)
check(hal_hash_update(state, (const uint8_t *)&z[i], sizeof(z[i])));
check(hal_hash_finalize(state, (uint8_t *)&key->K, sizeof(key->K)));
// 4. return Kc
return HAL_OK;
}
#if RPC_CLIENT == RPC_CLIENT_LOCAL
static hal_error_t lmots_private_key_to_der(const lmots_key_t * const key,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMOTS)
return HAL_ERROR_BAD_ARGUMENTS;
// u32str(lmots_type) || I || u32str(q) || K || x[0] || x[1] || ... || x[p-1]
/* K is not an integral part of the private key, but we store it to speed up restart */
/*
* Calculate data length.
*/
size_t len, vlen = 0, hlen;
check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_bytestring16(&key->I, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_size_t(key->q, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_bytestring32(&key->K, NULL, &len, 0)); vlen += len;
for (size_t i = 0; i < key->lmots->p; ++i) {
check(hal_asn1_encode_bytestring32(&key->x[i], NULL, &len, 0)); vlen += len;
}
check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen, 0));
check(hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len,
NULL, 0, NULL, hlen + vlen, NULL, der_len, der_max));
if (der == NULL)
return HAL_OK;
/*
* Encode data.
*/
check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max));
uint8_t *d = der + hlen;
memset(d, 0, vlen);
check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_encode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_encode_size_t(key->q, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_encode_bytestring32(&key->K, d, &len, vlen)); d += len; vlen -= len;
for (size_t i = 0; i < key->lmots->p; ++i) {
check(hal_asn1_encode_bytestring32(&key->x[i], d, &len, vlen)); d += len; vlen -= len;
}
return hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len,
NULL, 0, der, d - der, der, der_len, der_max);
}
static size_t lmots_private_key_to_der_len(const lmots_key_t * const key)
{
size_t len = 0;
return (lmots_private_key_to_der(key, NULL, &len, 0) == HAL_OK) ? len : 0;
}
static hal_error_t lmots_private_key_from_der(lmots_key_t *key,
const uint8_t *der, const size_t der_len)
{
if (key == NULL || der == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
key->type = HAL_KEY_TYPE_HASHSIG_LMOTS;
size_t hlen, vlen, alg_oid_len, curve_oid_len, privkey_len;
const uint8_t *alg_oid, *curve_oid, *privkey;
check(hal_asn1_decode_pkcs8_privatekeyinfo(&alg_oid, &alg_oid_len,
&curve_oid, &curve_oid_len,
&privkey, &privkey_len,
der, der_len));
if (alg_oid_len != hal_asn1_oid_mts_hashsig_len ||
memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0 ||
curve_oid_len != 0)
return HAL_ERROR_ASN1_PARSE_FAILED;
check(hal_asn1_decode_header(ASN1_SEQUENCE, privkey, privkey_len, &hlen, &vlen));
const uint8_t *d = privkey + hlen;
size_t len;
// u32str(lmots_type) || I || u32str(q) || K || x[0] || x[1] || ... || x[p-1]
lmots_algorithm_t lmots_type;
check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &len, vlen)); d += len; vlen -= len;
key->lmots = lmots_select_parameter_set(lmots_type);
check(hal_asn1_decode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_decode_size_t(&key->q, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_decode_bytestring32(&key->K, d, &len, vlen)); d += len; vlen -= len;
if (key->x != NULL) {
for (size_t i = 0; i < key->lmots->p; ++i) {
check(hal_asn1_decode_bytestring32(&key->x[i], d, &len, vlen)); d += len; vlen -= len;
}
if (d != privkey + privkey_len)
return HAL_ERROR_ASN1_PARSE_FAILED;
}
return HAL_OK;
}
#endif
/* ---------------------------------------------------------------- */
/*
* LMS
*/
typedef const struct lms_parameter_set {
lms_algorithm_t type;
size_t m, h;
} lms_parameter_t;
static lms_parameter_t lms_parameters[] = {
{ lms_sha256_n32_h5, 32, 5 },
{ lms_sha256_n32_h10, 32, 10 },
{ lms_sha256_n32_h15, 32, 15 },
{ lms_sha256_n32_h20, 32, 20 },
{ lms_sha256_n32_h25, 32, 25 },
};
typedef struct lms_key {
hal_key_type_t type;
size_t level;
lms_parameter_t *lms;
lmots_parameter_t *lmots;
bytestring16 I;
size_t q; /* index of next lmots signing key */
hal_uuid_t *lmots_keys; /* private key components */
bytestring32 *T; /* public key components */
bytestring32 T1; /* copy of T[1] */
uint8_t *pubkey; /* in XDR format */
size_t pubkey_len;
uint8_t *signature; /* of public key by parent lms key */
size_t signature_len;
} lms_key_t;
static inline lms_parameter_t *lms_select_parameter_set(const lms_algorithm_t lms_type)
{
if (lms_type < lms_sha256_n32_h5 || lms_type > lms_sha256_n32_h25)
return NULL;
else
return &lms_parameters[lms_type - lms_sha256_n32_h5];
}
static inline size_t lms_public_key_len(lms_parameter_t * const lms)
{
/* u32str(type) || u32str(otstype) || I || T[1] */
return 2 * sizeof(uint32_t) + 16 + lms->m;
}
static inline size_t lms_signature_len(lms_parameter_t * const lms, lmots_parameter_t * const lmots)
{
/* u32str(q) || ots_signature || u32str(type) || path[0] || path[1] || ... || path[h-1] */
return 2 * sizeof(uint32_t) + lmots_signature_len(lmots) + lms->h * lms->m;
}
#if RPC_CLIENT == RPC_CLIENT_LOCAL
/* Given a key with most fields filled in, generate the lms private and
* public key components.
* Let the caller worry about storage.
*/
static hal_error_t lms_generate(lms_key_t *key)
{
if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMS || key->lms == NULL || key->lmots == NULL || key->lmots_keys == NULL || key->T == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
check(hal_uuid_gen((hal_uuid_t *)&key->I));
key->q = 0;
bytestring32 x[key->lmots->p];
lmots_key_t lmots_key = {
.type = HAL_KEY_TYPE_HASHSIG_LMOTS,
.lmots = key->lmots,
.x = x
};
memcpy(&lmots_key.I, &key->I, sizeof(key->I));
hal_pkey_slot_t slot = {
.type = HAL_KEY_TYPE_HASHSIG_LMOTS,
.curve = HAL_CURVE_NONE,
.flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE | ((key->level == 0) ? HAL_KEY_FLAG_TOKEN: 0)
};
hal_ks_t *ks = (key->level == 0) ? hal_ks_token : hal_ks_volatile;
uint8_t statebuf[512];
hal_hash_state_t *state = NULL;
uint32_t l;
uint16_t s;
size_t h2 = (1 << key->lms->h);
/* private key - array of lmots key names */
for (size_t q = 0; q < h2; ++q) {
/* generate the lmots private and public key components */
lmots_key.q = q;
check(lmots_generate(&lmots_key));
/* store the lmots key */
uint8_t der[lmots_private_key_to_der_len(&lmots_key)];
size_t der_len;
check(lmots_private_key_to_der(&lmots_key, der, &der_len, sizeof(der)));
check(hal_uuid_gen(&slot.name));
hal_error_t err = hal_ks_store(ks, &slot, der, der_len);
memset(&x, 0, sizeof(x));
memset(der, 0, sizeof(der));
if (err != HAL_OK) return err;
/* record the lmots keystore name */
memcpy(&key->lmots_keys[q], &slot.name, sizeof(slot.name));
/* compute T[r] = H(I || u32str(r) || u16str(D_LEAF) || OTS_PUB_HASH[r-2^h]) */
size_t r = h2 + q;
check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
l = u32str(r); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
s = u16str(D_LEAF); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
check(hal_hash_update(state, (const uint8_t *)&lmots_key.K, sizeof(lmots_key.K)));
check(hal_hash_finalize(state, (uint8_t *)&key->T[r], sizeof(key->T[r])));
}
/* generate the rest of T[r] = H(I || u32str(r) || u16str(D_INTR) || T[2*r] || T[2*r+1]) */
for (size_t r = h2 - 1; r > 0; --r) {
check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
l = u32str(r); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
s = u16str(D_INTR); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
check(hal_hash_update(state, (const uint8_t *)&key->T[2*r], sizeof(key->T[r])));
check(hal_hash_update(state, (const uint8_t *)&key->T[2*r+1], sizeof(key->T[r])));
check(hal_hash_finalize(state, (uint8_t *)&key->T[r], sizeof(key->T[r])));
}
memcpy(&key->T1, &key->T[1], sizeof(key->T1));
/* generate the XDR encoding of the public key, which will be signed
* by the previous lms key
*/
uint8_t *pubkey = key->pubkey;
const uint8_t * const publim = key->pubkey + key->pubkey_len;
// u32str(lms_type) || u32str(lmots_type) || I || T[1]
check(hal_xdr_encode_int(&pubkey, publim, key->lms->type));
check(hal_xdr_encode_int(&pubkey, publim, key->lmots->type));
check(hal_xdr_encode_bytestring16(&pubkey, publim, &key->I));
check(hal_xdr_encode_bytestring32(&pubkey, publim, &key->T1));
return HAL_OK;
}
static hal_error_t lms_delete(const lms_key_t * const key)
{
hal_pkey_slot_t slot = {0};
hal_ks_t *ks = (key->level == 0) ? hal_ks_token : hal_ks_volatile;
/* delete the lmots keys */
for (size_t i = 0; i < (1U << key->lms->h); ++i) {
memcpy(&slot.name, &key->lmots_keys[i], sizeof(slot.name));
check(hal_ks_delete(ks, &slot));
}
/* delete the lms key */
memcpy(&slot.name, &key->I, sizeof(slot.name));
return hal_ks_delete(ks, &slot);
}
static hal_error_t lms_private_key_to_der(const lms_key_t * const key,
uint8_t *der, size_t *der_len, const size_t der_max);
static hal_error_t lms_sign(lms_key_t * const key,
const uint8_t * const msg, const size_t msg_len,
uint8_t *sig, size_t *sig_len, const size_t sig_max)
{
if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMS || msg == NULL || sig == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (key->q >= (1U << key->lms->h))
return HAL_ERROR_HASHSIG_KEY_EXHAUSTED;
if (sig_max < lms_signature_len(key->lms, key->lmots))
return HAL_ERROR_RESULT_TOO_LONG;
/* u32str(q) || ots_signature || u32str(lms_type) || path[0] || path[1] || ... || path[h-1] */
uint8_t *sigptr = sig;
const uint8_t * const siglim = sig + sig_max;
check(hal_xdr_encode_int(&sigptr, siglim, key->q));
/* fetch and decode the lmots signing key from the keystore */
hal_pkey_slot_t slot;
memset(&slot, 0, sizeof(slot));
memcpy(&slot.name, &key->lmots_keys[key->q], sizeof(slot.name));
lmots_key_t lmots_key;
memset(&lmots_key, 0, sizeof(lmots_key));
bytestring32 x[key->lmots->p];
memset(&x, 0, sizeof(x));
lmots_key.x = x;
uint8_t der[HAL_KS_WRAPPED_KEYSIZE];
size_t der_len;
hal_ks_t *ks = (key->level == 0) ? hal_ks_token : hal_ks_volatile;
check(hal_ks_fetch(ks, &slot, der, &der_len, sizeof(der)));
check(lmots_private_key_from_der(&lmots_key, der, der_len));
memset(&der, 0, sizeof(der));
//? check lmots_type and I vs. lms key?
/* generate the lmots signature */
size_t lmots_sig_len;
check(lmots_sign(&lmots_key, msg, msg_len, sigptr, &lmots_sig_len, sig_max - (sigptr - sig)));
memset(&x, 0, sizeof(x));
sigptr += lmots_sig_len;
check(hal_xdr_encode_int(&sigptr, siglim, key->lms->type));
/* generate the path array */
for (size_t r = (1 << key->lms->h) + key->q; r > 1; r /= 2)
check(hal_xdr_encode_bytestring32(&sigptr, siglim, ((r & 1) ? &key->T[r-1] : &key->T[r+1])));
if (sig_len != NULL)
*sig_len = sigptr - sig;
/* update and store q before returning the signature */
++key->q;
check(lms_private_key_to_der(key, der, &der_len, sizeof(der)));
slot.type = HAL_KEY_TYPE_HASHSIG_LMS;
slot.flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE | ((key->level == 0) ? HAL_KEY_FLAG_TOKEN : 0);
memcpy(&slot.name, &key->I, sizeof(slot.name));
check(hal_ks_rewrite_der(ks, &slot, der, der_len));
return HAL_OK;
}
#endif
static hal_error_t lms_public_key_candidate(const lms_key_t * const key,
const uint8_t * const msg, const size_t msg_len,
const uint8_t * const sig, const size_t sig_len,
bytestring32 * Tc);
static hal_error_t lms_verify(const lms_key_t * const key,
const uint8_t * const msg, const size_t msg_len,
const uint8_t * const sig, const size_t sig_len)
{
if (key == NULL || msg == NULL || sig == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
/* We can do one length check right now, rather than the 3 in
* Algorithm 6b and 2 in Algorithm 4b, because the lms and lmots types
* in the signature have to match the key.
*/
if (sig_len != lms_signature_len(key->lms, key->lmots))
return HAL_ERROR_INVALID_SIGNATURE;
// Algorithm 6: LMS Signature Verification
//
// 1. if the public key is not at least eight bytes long, return
// INVALID
//
// 2. parse pubtype, I, and T[1] from the public key as follows:
//
// a. pubtype = strTou32(first 4 bytes of public key)
//
// b. ots_typecode = strTou32(next 4 bytes of public key)
//
// c. set m according to pubtype, based on Table 2
//
// d. if the public key is not exactly 24 + m bytes
// long, return INVALID
//
// e. I = next 16 bytes of the public key
//
// f. T[1] = next m bytes of the public key
//
// 3. compute the candidate LMS root value Tc from the signature,
// message, identifier and pubtype using Algorithm 6b.
bytestring32 Tc;
check(lms_public_key_candidate(key, msg, msg_len, sig, sig_len, &Tc));
// 4. if Tc is equal to T[1], return VALID; otherwise, return INVALID
return (memcmp(&Tc, &key->T1, sizeof(Tc)) ? HAL_ERROR_INVALID_SIGNATURE : HAL_OK);
}
static hal_error_t lms_public_key_candidate(const lms_key_t * const key,
const uint8_t * const msg, const size_t msg_len,
const uint8_t * const sig, const size_t sig_len,
bytestring32 * Tc)
{
// Algorithm 6b: Computing an LMS Public Key Candidate from a Signature,
// Message, Identifier, and algorithm typecode
/* XXX and pubotstype */
// 1. if the signature is not at least eight bytes long, return INVALID
//
// 2. parse sigtype, q, ots_signature, and path from the signature as
// follows:
//
// a. q = strTou32(first 4 bytes of signature)
const uint8_t *sigptr = sig;
const uint8_t * const siglim = sig + sig_len;
uint32_t q;
check(hal_xdr_decode_int(&sigptr, siglim, &q));
// b. otssigtype = strTou32(next 4 bytes of signature)
uint32_t otssigtype;
check(hal_xdr_decode_int_peek(&sigptr, siglim, &otssigtype));
// c. if otssigtype is not the OTS typecode from the public key, return INVALID
if ((lmots_algorithm_t)otssigtype != key->lmots->type)
return HAL_ERROR_INVALID_SIGNATURE;
// d. set n, p according to otssigtype and Table 1; if the
// signature is not at least 12 + n * (p + 1) bytes long, return INVALID
//
// e. ots_signature = bytes 8 through 8 + n * (p + 1) - 1 of signature
/* XXX Technically, this is also wrong - this is the remainder of
* ots_signature after otssigtype. The full ots_signature would be
* bytes 4 through 8 + n * (p + 1) - 1.
*/
const uint8_t * const ots_signature = sigptr;
sigptr += lmots_signature_len(key->lmots);
// f. sigtype = strTou32(4 bytes of signature at location 8 + n * (p + 1))
uint32_t sigtype;
check(hal_xdr_decode_int(&sigptr, siglim, &sigtype));
// f. if sigtype is not the LM typecode from the public key, return INVALID
if ((lms_algorithm_t)sigtype != key->lms->type)
return HAL_ERROR_INVALID_SIGNATURE;
// g. set m, h according to sigtype and Table 2
size_t m = key->lms->m;
size_t h = key->lms->h;
size_t h2 = (1 << key->lms->h);
// h. if q >= 2^h or the signature is not exactly 12 + n * (p + 1) + m * h bytes long, return INVALID
if (q >= h2)
return HAL_ERROR_INVALID_SIGNATURE;
// i. set path as follows:
// path[0] = next m bytes of signature
// path[1] = next m bytes of signature
// ...
// path[h-1] = next m bytes of signature
bytestring32 path[h];
for (size_t i = 0; i < h; ++i)
check(hal_xdr_decode_bytestring32(&sigptr, siglim, &path[i]));
// 3. Kc = candidate public key computed by applying Algorithm 4b
// to the signature ots_signature, the message, and the
// identifiers I, q
lmots_key_t lmots_key = {
.type = HAL_KEY_TYPE_HASHSIG_LMOTS,
.lmots = key->lmots,
.q = q
};
memcpy(&lmots_key.I, &key->I, sizeof(lmots_key.I));
check(lmots_public_key_candidate(&lmots_key, msg, msg_len, ots_signature, lmots_signature_len(key->lmots)));
// 4. compute the candidate LMS root value Tc as follows:
uint8_t statebuf[512];
hal_hash_state_t *state = NULL;
uint32_t l;
uint16_t s;
// node_num = 2^h + q
size_t r = h2 + q;
// tmp = H(I || u32str(node_num) || u16str(D_LEAF) || Kc)
bytestring32 tmp;
check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
check(hal_hash_update(state, (const uint8_t *)&lmots_key.I, sizeof(lmots_key.I)));
l = u32str(r); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
s = u16str(D_LEAF); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
check(hal_hash_update(state, (const uint8_t *)&lmots_key.K, sizeof(lmots_key.K)));
check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp)));
// i = 0
// while (node_num > 1) {
// if (node_num is odd):
// tmp = H(I || u32str(node_num/2) || u16str(D_INTR) || path[i] || tmp)
// else:
// tmp = H(I || u32str(node_num/2) || u16str(D_INTR) || tmp || path[i])
// node_num = node_num/2
// i = i + 1
// }
for (size_t i = 0; r > 1; r /= 2, ++i) {
check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
l = u32str(r/2); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
s = u16str(D_INTR); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
if (r & 1) {
check(hal_hash_update(state, (const uint8_t *)&path[i], m));
check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp)));
}
else {
check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp)));
check(hal_hash_update(state, (const uint8_t *)&path[i], m));
}
check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp)));
}
// Tc = tmp
memcpy(Tc, &tmp, sizeof(*Tc));
return HAL_OK;
}
#if RPC_CLIENT == RPC_CLIENT_LOCAL
static hal_error_t lms_private_key_to_der(const lms_key_t * const key,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMS)
return HAL_ERROR_BAD_ARGUMENTS;
/*
* Calculate data length.
*/
// u32str(lms_type) || u32str(lmots_type) || I || q
size_t len, vlen = 0, hlen;
check(hal_asn1_encode_lms_algorithm(key->lms->type, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_bytestring16(&key->I, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_size_t(key->q, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen, 0));
check(hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len,
NULL, 0, NULL, hlen + vlen, NULL, der_len, der_max));
if (der == NULL)
return HAL_OK;
/*
* Encode data.
*/
check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max));
uint8_t *d = der + hlen;
memset(d, 0, vlen);
check(hal_asn1_encode_lms_algorithm(key->lms->type, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_encode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_encode_size_t(key->q, d, &len, vlen)); d += len; vlen -= len;
return hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len,
NULL, 0, der, d - der, der, der_len, der_max);
}
static size_t lms_private_key_to_der_len(const lms_key_t * const key)
{
size_t len = 0;
return lms_private_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0;
}
static hal_error_t lms_private_key_from_der(lms_key_t *key,
const uint8_t *der, const size_t der_len)
{
if (key == NULL || der == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
key->type = HAL_KEY_TYPE_HASHSIG_LMS;
size_t hlen, vlen, alg_oid_len, curve_oid_len, privkey_len;
const uint8_t *alg_oid, *curve_oid, *privkey;
check(hal_asn1_decode_pkcs8_privatekeyinfo(&alg_oid, &alg_oid_len,
&curve_oid, &curve_oid_len,
&privkey, &privkey_len,
der, der_len));
if (alg_oid_len != hal_asn1_oid_mts_hashsig_len ||
memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0 ||
curve_oid_len != 0)
return HAL_ERROR_ASN1_PARSE_FAILED;
check(hal_asn1_decode_header(ASN1_SEQUENCE, privkey, privkey_len, &hlen, &vlen));
const uint8_t *d = privkey + hlen;
size_t n;
// u32str(lms_type) || u32str(lmots_type) || I || q
lms_algorithm_t lms_type;
check(hal_asn1_decode_lms_algorithm(&lms_type, d, &n, vlen)); d += n; vlen -= n;
key->lms = lms_select_parameter_set(lms_type);
lmots_algorithm_t lmots_type;
check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &n, vlen)); d += n; vlen -= n;
key->lmots = lmots_select_parameter_set(lmots_type);
check(hal_asn1_decode_bytestring16(&key->I, d, &n, vlen)); d += n; vlen -= n;
check(hal_asn1_decode_size_t(&key->q, d, &n, vlen)); d += n; vlen -= n;
if (d != privkey + privkey_len)
return HAL_ERROR_ASN1_PARSE_FAILED;
return HAL_OK;
}
#endif
/* ---------------------------------------------------------------- */
/*
* HSS
*/
/* For purposes of the external API, the key type is "hal_hashsig_key_t".
* Internally, we refer to it as "hss_key_t".
*/
typedef struct hal_hashsig_key hss_key_t;
struct hal_hashsig_key {
hal_key_type_t type;
hss_key_t *next;
hal_uuid_t name;
size_t L;
lms_parameter_t *lms;
lmots_parameter_t *lmots;
bytestring16 I;
bytestring32 T1;
lms_key_t *lms_keys;
};
const size_t hal_hashsig_key_t_size = sizeof(hss_key_t);
static hss_key_t *hss_keys = NULL;
static inline size_t hss_public_key_len(lms_parameter_t * const lms)
{
/* L || pub[0] */
return sizeof(uint32_t) + lms_public_key_len(lms);
}
static inline size_t hss_signature_len(const size_t L, lms_parameter_t * const lms, lmots_parameter_t * const lmots)
{
/* u32str(Nspk) || sig[0] || pub[1] || ... || sig[Nspk-1] || pub[Nspk] || sig[Nspk] */
return sizeof(uint32_t) + L * lms_signature_len(lms, lmots) + (L - 1) * lms_public_key_len(lms);
}
size_t hal_hashsig_signature_len(const size_t L,
const lms_algorithm_t lms_type,
const lmots_algorithm_t lmots_type)
{
lms_parameter_t * const lms = lms_select_parameter_set(lms_type);
if (lms == NULL)
return 0;
lmots_parameter_t * const lmots = lmots_select_parameter_set(lmots_type);
if (lmots == NULL)
return 0;
return hss_signature_len(L, lms, lmots);
}
size_t hal_hashsig_lmots_private_key_len(const lmots_algorithm_t lmots_type)
{
lmots_parameter_t * const lmots = lmots_select_parameter_set(lmots_type);
if (lmots == NULL)
return 0;
return lmots_private_key_len(lmots);
}
#if RPC_CLIENT == RPC_CLIENT_LOCAL
static inline void *gnaw(uint8_t **mem, size_t *len, const size_t size)
{
if (mem == NULL || *mem == NULL || len == NULL || size > *len)
return NULL;
void *ret = *mem;
*mem += size;
*len -= size;
return ret;
}
static hal_error_t hss_alloc(hal_hashsig_key_t **key_,
const size_t L,
const lms_algorithm_t lms_type,
const lmots_algorithm_t lmots_type)
{
if (key_ == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (L == 0 || L > 8)
return HAL_ERROR_BAD_ARGUMENTS;
lms_parameter_t *lms = lms_select_parameter_set(lms_type);
if (lms == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
size_t h2 = (1 << lms->h);
lmots_parameter_t *lmots = lmots_select_parameter_set(lmots_type);
if (lmots == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
/* w=1 fails on the Alpha, because the key exceeds the keystore block
* size. The XDR encoding of the key is going to differ from the DER
* encoding, but it's at least in the ballpark to tell us whether the key
* will fit.
*/
if (lmots_private_key_len(lmots) > HAL_KS_BLOCK_SIZE)
return HAL_ERROR_UNSUPPORTED_KEY;
if (hss_signature_len(L, lms, lmots) > HAL_RPC_MAX_PKT_SIZE)
return HAL_ERROR_UNSUPPORTED_KEY;
/* check volatile keystore for space to store the lower-level trees */
size_t available;
check(hal_ks_available(hal_ks_volatile, &available));
if (available < (L - 1) * (h2 + 1))
return HAL_ERROR_NO_KEY_INDEX_SLOTS;
size_t lms_sig_len = lms_signature_len(lms, lmots);
size_t lms_pub_len = lms_public_key_len(lms);
/* allocate lms tree nodes and lmots key names, atomically */
size_t len = (sizeof(hss_key_t) +
L * sizeof(lms_key_t) +
L * lms_sig_len +
L * lms_pub_len +
L * h2 * sizeof(hal_uuid_t) +
L * (2 * h2) * sizeof(bytestring32));
uint8_t *mem = hal_allocate_static_memory(len);
if (mem == NULL)
return HAL_ERROR_ALLOCATION_FAILURE;
memset(mem, 0, len);
/* allocate the key that will stay in working memory */
hss_key_t *key = gnaw(&mem, &len, sizeof(hss_key_t));
*key_ = key;
key->type = HAL_KEY_TYPE_HASHSIG_PRIVATE;
key->L = L;
key->lms = lms;
key->lmots = lmots;
/* add to the list of active keys */
key->next = hss_keys;
hss_keys = key;
/* allocate the list of lms trees */
key->lms_keys = gnaw(&mem, &len, L * sizeof(lms_key_t));
for (size_t i = 0; i < L; ++i) {
/* XXX some of this is redundant to lms_private_key_from_der */
lms_key_t * lms_key = &key->lms_keys[i];
lms_key->type = HAL_KEY_TYPE_HASHSIG_LMS;
lms_key->lms = lms;
lms_key->lmots = lmots;
lms_key->level = i;
lms_key->lmots_keys = (hal_uuid_t *)gnaw(&mem, &len, h2 * sizeof(hal_uuid_t));
lms_key->T = gnaw(&mem, &len, (2 * h2) * sizeof(bytestring32));
lms_key->signature = gnaw(&mem, &len, lms_sig_len);
lms_key->signature_len = lms_sig_len;
lms_key->pubkey = gnaw(&mem, &len, lms_pub_len);
lms_key->pubkey_len = lms_pub_len;
}
return HAL_OK;
}
/* called from pkey_local_generate_hashsig */
hal_error_t hal_hashsig_key_gen(hal_core_t *core,
hal_hashsig_key_t **key_,
const size_t L,
const lms_algorithm_t lms_type,
const lmots_algorithm_t lmots_type)
{
/* hss_alloc does most of the checks */
/* check flash keystore for space to store the root tree */
lms_parameter_t *lms = lms_select_parameter_set(lms_type);
if (lms == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
size_t available;
check(hal_ks_available(hal_ks_token, &available));
if (available < (1U << lms->h) + 2)
return HAL_ERROR_NO_KEY_INDEX_SLOTS;
check(hss_alloc(key_, L, lms_type, lmots_type));
hss_key_t *key = *key_;
/* generate the lms trees */
for (size_t i = 0; i < L; ++i) {
lms_key_t * lms_key = &key->lms_keys[i];
check(lms_generate(lms_key));
if (i > 0)
/* sign this tree with the previous */
check(lms_sign(&key->lms_keys[i-1],
(const uint8_t * const)lms_key->pubkey, lms_public_key_len(key->lms),
lms_key->signature, NULL, lms_signature_len(key->lms, key->lmots)));
/* store the lms key */
hal_pkey_slot_t slot = {
.type = HAL_KEY_TYPE_HASHSIG_LMS,
.curve = HAL_CURVE_NONE,
.flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE | ((i == 0) ? HAL_KEY_FLAG_TOKEN: 0)
};
hal_ks_t *ks = (i == 0) ? hal_ks_token : hal_ks_volatile;
uint8_t der[lms_private_key_to_der_len(lms_key)];
size_t der_len;
memcpy(&slot.name, &lms_key->I, sizeof(slot.name));
check(lms_private_key_to_der(lms_key, der, &der_len, sizeof(der)));
check(hal_ks_store(ks, &slot, der, der_len));
}
memcpy(&key->I, &key->lms_keys[0].I, sizeof(key->I));
memcpy(&key->T1, &key->lms_keys[0].T1, sizeof(key->T1));
/* pkey_local_generate_hashsig stores the key */
return HAL_OK;
}
/* caller will delete the hss key from the keystore */
hal_error_t hal_hashsig_key_delete(const hal_hashsig_key_t * const key)
{
if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_PRIVATE)
return HAL_ERROR_BAD_ARGUMENTS;
/* delete the lms trees and their lmots keys */
for (size_t level = 0; level < key->L; ++level)
check(lms_delete(&key->lms_keys[level]));
/* XXX free memory, if supported */
(void)hal_free_static_memory(key);
/* remove from global hss_keys linked list */
/* XXX or mark it unused, for possible re-use */
if (hss_keys == key) {
hss_keys = key->next;
}
else {
for (hss_key_t *prev = hss_keys; prev != NULL; prev = prev->next) {
if (prev->next == key) {
prev->next = key->next;
break;
}
}
}
return HAL_OK;
}
hal_error_t hal_hashsig_sign(hal_core_t *core,
const hal_hashsig_key_t * const key,
const uint8_t * const msg, const size_t msg_len,
uint8_t *sig, size_t *sig_len, const size_t sig_max)
{
if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_PRIVATE || msg == NULL || sig == NULL || sig_len == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (sig_max < hss_signature_len(key->L, key->lms, key->lmots))
return HAL_ERROR_RESULT_TOO_LONG;
// To sign a message using the private key prv, the following steps are
// performed:
//
// If prv[L-1] is exhausted, then determine the smallest integer d
// such that all of the private keys prv[d], prv[d+1], ... , prv[L-1]
// are exhausted. If d is equal to zero, then the HSS key pair is
// exhausted, and it MUST NOT generate any more signatures.
// Otherwise, the key pairs for levels d through L-1 must be
// regenerated during the signature generation process, as follows.
// For i from d to L-1, a new LMS public and private key pair with a
// new identifier is generated, pub[i] and prv[i] are set to those
// values, then the public key pub[i] is signed with prv[i-1], and
// sig[i-1] is set to the resulting value.
size_t h2 = (1 << key->lms->h);
if (key->lms_keys[key->L-1].q >= h2) {
size_t d;
for (d = key->L-1; d > 0 && key->lms_keys[d-1].q >= h2; --d) {
}
if (d == 0)
return HAL_ERROR_HASHSIG_KEY_EXHAUSTED;
for ( ; d < key->L; ++d) {
lms_key_t *lms_key = &key->lms_keys[d];
/* Delete then regenerate the LMS key. We don't worry about
* power-cycling in the middle, because the lower-level trees are
* all stored in the volatile keystore, so we'd have to regenerate
* them anyway on restart; and this way we don't have to allocate
* any additional memory.
*/
check(lms_delete(lms_key));
check(lms_generate(lms_key));
check(lms_sign(&key->lms_keys[d-1],
(const uint8_t * const)lms_key->pubkey, lms_key->pubkey_len,
lms_key->signature, NULL, lms_key->signature_len));
hal_pkey_slot_t slot = {
.type = HAL_KEY_TYPE_HASHSIG_LMS,
.curve = HAL_CURVE_NONE,
.flags = (lms_key->level == 0) ? HAL_KEY_FLAG_TOKEN: 0
};
hal_ks_t *ks = (lms_key->level == 0) ? hal_ks_token : hal_ks_volatile;
uint8_t der[lms_private_key_to_der_len(lms_key)];
size_t der_len;
memcpy(&slot.name, &lms_key->I, sizeof(slot.name));
check(lms_private_key_to_der(lms_key, der, &der_len, sizeof(der)));
check(hal_ks_store(ks, &slot, der, der_len));
}
}
// The message is signed with prv[L-1], and the value sig[L-1] is set
// to that result.
//
// The value of the HSS signature is set as follows. We let
// signed_pub_key denote an array of octet strings, where
// signed_pub_key[i] = sig[i] || pub[i+1], for i between 0 and Nspk-
// 1, inclusive, where Nspk = L-1 denotes the number of signed public
// keys. Then the HSS signature is u32str(Nspk) ||
// signed_pub_key[0] || ... || signed_pub_key[Nspk-1] || sig[Nspk].
uint8_t *sigptr = sig;
const uint8_t * const siglim = sig + sig_max;
check(hal_xdr_encode_int(&sigptr, siglim, key->L - 1));
/* copy the lms signed public keys into the signature */
for (size_t i = 1; i < key->L; ++i) {
lms_key_t *lms_key = &key->lms_keys[i];
check(hal_xdr_encode_fixed_opaque(&sigptr, siglim, lms_key->signature, lms_key->signature_len));
check(hal_xdr_encode_fixed_opaque(&sigptr, siglim, lms_key->pubkey, lms_key->pubkey_len));
}
/* sign the message with the last lms private key */
size_t len;
check(lms_sign(&key->lms_keys[key->L-1], msg, msg_len, sigptr, &len, sig_max - (sigptr - sig)));
sigptr += len;
*sig_len = sigptr - sig;
return HAL_OK;
}
#endif
hal_error_t hal_hashsig_verify(hal_core_t *core,
const hal_hashsig_key_t * const key,
const uint8_t * const msg, const size_t msg_len,
const uint8_t * const sig, const size_t sig_len)
{
if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_PUBLIC || msg == NULL || sig == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
core = core;
// To verify a signature sig and message using the public key pub, the
// following steps are performed:
//
// The signature S is parsed into its components as follows:
//
// Nspk = strTou32(first four bytes of S)
// if Nspk+1 is not equal to the number of levels L in pub:
// return INVALID
const uint8_t *sigptr = sig;
const uint8_t * const siglim = sig + sig_len;
uint32_t Nspk;
check(hal_xdr_decode_int(&sigptr, siglim, &Nspk));
if (Nspk + 1 != key->L)
return HAL_ERROR_INVALID_SIGNATURE;
// key = pub
// for (i = 0; i < Nspk; i = i + 1) {
// sig = next LMS signature parsed from S
// msg = next LMS public key parsed from S
// if (lms_verify(msg, key, sig) != VALID):
// return INVALID
// key = msg
// }
lms_key_t pub = {
.type = HAL_KEY_TYPE_HASHSIG_LMS,
.lms = key->lms,
.lmots = key->lmots
};
memcpy(&pub.I, &key->I, sizeof(pub.I));
memcpy(&pub.T1, &key->T1, sizeof(pub.T1));
for (size_t i = 0; i < Nspk; ++i) {
const uint8_t * const lms_sig = sigptr;
/* peek into the signature for the lmots and lms types */
/* XXX The structure of the LMS signature makes this a bigger pain
* in the ass than necessary.
*/
/* skip over q */
sigptr += 4;
/* read lmots_type out of the ots_signature */
uint32_t lmots_type;
check(hal_xdr_decode_int_peek(&sigptr, siglim, &lmots_type));
lmots_parameter_t *lmots = lmots_select_parameter_set((lmots_algorithm_t)lmots_type);
if (lmots == NULL)
return HAL_ERROR_INVALID_SIGNATURE;
/* skip over ots_signature */
sigptr += lmots_signature_len(lmots);
/* read lms_type after ots_signature */
uint32_t lms_type;
check(hal_xdr_decode_int(&sigptr, siglim, &lms_type));
lms_parameter_t *lms = lms_select_parameter_set((lms_algorithm_t)lms_type);
if (lms == NULL)
return HAL_ERROR_INVALID_SIGNATURE;
/* skip over the path elements of the lms signature */
sigptr += lms->h * lms->m;
/*XXX sigptr = lms_sig + lms_signature_len(lms, lmots); */
/* verify the signature over the bytestring version of the signed public key */
check(lms_verify(&pub, sigptr, lms_public_key_len(lms), lms_sig, sigptr - lms_sig));
/* parse the signed public key */
check(hal_xdr_decode_int(&sigptr, siglim, &lms_type));
pub.lms = lms_select_parameter_set((lmots_algorithm_t)lms_type);
if (pub.lms == NULL)
return HAL_ERROR_INVALID_SIGNATURE;
check(hal_xdr_decode_int(&sigptr, siglim, &lmots_type));
pub.lmots = lmots_select_parameter_set((lmots_algorithm_t)lmots_type);
if (pub.lmots == NULL)
return HAL_ERROR_INVALID_SIGNATURE;
check(hal_xdr_decode_bytestring16(&sigptr, siglim, &pub.I));
check(hal_xdr_decode_bytestring32(&sigptr, siglim, &pub.T1));
}
/* verify the final signature over the message */
return lms_verify(&pub, msg, msg_len, sigptr, sig_len - (sigptr - sig));
}
hal_error_t hal_hashsig_private_key_to_der(const hal_hashsig_key_t * const key,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_PRIVATE)
return HAL_ERROR_BAD_ARGUMENTS;
/*
* Calculate data length.
*/
size_t len, vlen = 0, hlen;
check(hal_asn1_encode_size_t(key->L, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_lms_algorithm(key->lms->type, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_bytestring16(&key->I, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_bytestring32(&key->T1, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen, 0));
check(hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len,
NULL, 0, NULL, hlen + vlen, NULL, der_len, der_max));
if (der == NULL)
return HAL_OK;
/*
* Encode data.
*/
check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max));
uint8_t *d = der + hlen;
memset(d, 0, vlen);
check(hal_asn1_encode_size_t(key->L, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_encode_lms_algorithm(key->lms->type, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_encode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_encode_bytestring32(&key->T1, d, &len, vlen)); d += len; vlen -= len;
return hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len,
NULL, 0, der, d - der, der, der_len, der_max);
}
size_t hal_hashsig_private_key_to_der_len(const hal_hashsig_key_t * const key)
{
size_t len = 0;
return hal_hashsig_private_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0;
}
hal_error_t hal_hashsig_private_key_from_der(hal_hashsig_key_t **key_,
void *keybuf, const size_t keybuf_len,
const uint8_t *der, const size_t der_len)
{
if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hal_hashsig_key_t) || der == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
hss_key_t *key = *key_ = keybuf;
key->type = HAL_KEY_TYPE_HASHSIG_PRIVATE;
size_t hlen, vlen, alg_oid_len, curve_oid_len, privkey_len;
const uint8_t *alg_oid, *curve_oid, *privkey;
hal_error_t err;
if ((err = hal_asn1_decode_pkcs8_privatekeyinfo(&alg_oid, &alg_oid_len,
&curve_oid, &curve_oid_len,
&privkey, &privkey_len,
der, der_len)) != HAL_OK)
return err;
if (alg_oid_len != hal_asn1_oid_mts_hashsig_len ||
memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0 ||
curve_oid_len != 0)
return HAL_ERROR_ASN1_PARSE_FAILED;
if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, privkey, privkey_len, &hlen, &vlen)) != HAL_OK)
return err;
const uint8_t *d = privkey + hlen;
size_t n;
check(hal_asn1_decode_size_t(&key->L, d, &n, vlen)); d += n; vlen -= n;
lms_algorithm_t lms_type;
check(hal_asn1_decode_lms_algorithm(&lms_type, d, &n, vlen)); d += n; vlen -= n;
key->lms = lms_select_parameter_set(lms_type);
lmots_algorithm_t lmots_type;
check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &n, vlen)); d += n; vlen -= n;
key->lmots = lmots_select_parameter_set(lmots_type);
check(hal_asn1_decode_bytestring16(&key->I, d, &n, vlen)); d += n; vlen -= n;
check(hal_asn1_decode_bytestring32(&key->T1, d, &n, vlen)); d += n; vlen -= n;
if (d != privkey + privkey_len)
return HAL_ERROR_ASN1_PARSE_FAILED;
/* Find this key in the list of active hashsig keys, and return a
* pointer to that key structure, rather than the caller-provided key
* structure. (The caller will wipe his own key structure when done,
* and not molest ours.)
*/
for (hss_key_t *hss_key = hss_keys; hss_key != NULL; hss_key = hss_key->next) {
if (memcmp(&key->I, &hss_key->lms_keys[0].I, sizeof(key->I)) == 0) {
*key_ = hss_key;
}
}
return HAL_OK;
}
hal_error_t hal_hashsig_public_key_to_der(const hal_hashsig_key_t * const key,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (key == NULL || (key->type != HAL_KEY_TYPE_HASHSIG_PRIVATE &&
key->type != HAL_KEY_TYPE_HASHSIG_PUBLIC))
return HAL_ERROR_BAD_ARGUMENTS;
// L || u32str(lms_type) || u32str(lmots_type) || I || T[1]
size_t len, vlen = 0, hlen;
check(hal_asn1_encode_size_t(key->L, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_lms_algorithm(key->lms->type, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_bytestring16(&key->I, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_bytestring32(&key->T1, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max));
if (der != NULL) {
uint8_t *d = der + hlen;
size_t dlen = vlen;
memset(d, 0, vlen);
check(hal_asn1_encode_size_t(key->L, d, &len, dlen)); d += len; dlen -= len;
check(hal_asn1_encode_lms_algorithm(key->lms->type, d, &len, dlen)); d += len; dlen -= len;
check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, dlen)); d += len; dlen -= len;
check(hal_asn1_encode_bytestring16(&key->I, d, &len, dlen)); d += len; dlen -= len;
check(hal_asn1_encode_bytestring32(&key->T1, d, &len, dlen)); d += len; dlen -= len;
}
return hal_asn1_encode_spki(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len,
NULL, 0, der, hlen + vlen,
der, der_len, der_max);
}
size_t hal_hashsig_public_key_to_der_len(const hal_hashsig_key_t * const key)
{
size_t len = 0;
return hal_hashsig_public_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0;
}
hal_error_t hal_hashsig_public_key_from_der(hal_hashsig_key_t **key_,
void *keybuf, const size_t keybuf_len,
const uint8_t * const der, const size_t der_len)
{
if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hss_key_t) || der == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
hss_key_t *key = keybuf;
memset(keybuf, 0, keybuf_len);
*key_ = key;
key->type = HAL_KEY_TYPE_HASHSIG_PUBLIC;
const uint8_t *alg_oid = NULL, *null = NULL, *pubkey = NULL;
size_t alg_oid_len, null_len, pubkey_len;
check(hal_asn1_decode_spki(&alg_oid, &alg_oid_len, &null, &null_len, &pubkey, &pubkey_len, der, der_len));
if (null != NULL || null_len != 0 || alg_oid == NULL ||
alg_oid_len != hal_asn1_oid_mts_hashsig_len || memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0)
return HAL_ERROR_ASN1_PARSE_FAILED;
size_t len, hlen, vlen;
check(hal_asn1_decode_header(ASN1_SEQUENCE, pubkey, pubkey_len, &hlen, &vlen));
const uint8_t * const pubkey_end = pubkey + hlen + vlen;
const uint8_t *d = pubkey + hlen;
// L || u32str(lms_type) || u32str(lmots_type) || I || T[1]
lms_algorithm_t lms_type;
lmots_algorithm_t lmots_type;
check(hal_asn1_decode_size_t(&key->L, d, &len, pubkey_end - d)); d += len;
check(hal_asn1_decode_lms_algorithm(&lms_type, d, &len, pubkey_end - d)); d += len;
key->lms = lms_select_parameter_set(lms_type);
check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &len, pubkey_end - d)); d += len;
key->lmots = lmots_select_parameter_set(lmots_type);
check(hal_asn1_decode_bytestring16(&key->I, d, &len, pubkey_end - d)); d += len;
check(hal_asn1_decode_bytestring32(&key->T1, d, &len, pubkey_end - d)); d += len;
if (d != pubkey_end)
return HAL_ERROR_ASN1_PARSE_FAILED;
return HAL_OK;
}
hal_error_t hal_hashsig_key_load_public(hal_hashsig_key_t **key_,
void *keybuf, const size_t keybuf_len,
const size_t L,
const lms_algorithm_t lms_type,
const lmots_algorithm_t lmots_type,
const uint8_t * const I, const size_t I_len,
const uint8_t * const T1, const size_t T1_len)
{
if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hal_hashsig_key_t) ||
I == NULL || I_len != sizeof(bytestring16) ||
T1 == NULL || T1_len != sizeof(bytestring32))
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
hal_hashsig_key_t *key = keybuf;
key->type = HAL_KEY_TYPE_HASHSIG_PUBLIC;
key->L = L;
key->lms = lms_select_parameter_set(lms_type);
key->lmots = lmots_select_parameter_set(lmots_type);
if (key->lms == NULL || key->lmots == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
memcpy(&key->I, I, I_len);
memcpy(&key->T1, T1, T1_len);
*key_ = key;
return HAL_OK;
}
hal_error_t hal_hashsig_key_load_public_xdr(hal_hashsig_key_t **key_,
void *keybuf, const size_t keybuf_len,
const uint8_t * const xdr, const size_t xdr_len)
{
const uint8_t *xdrptr = xdr;
const uint8_t * const xdrlim = xdr + xdr_len;
/* L || u32str(lms_type) || u32str(lmots_type) || I || T[1] */
uint32_t L, lms_type, lmots_type;
bytestring16 *I;
bytestring32 *T1;
check(hal_xdr_decode_int(&xdrptr, xdrlim, &L));
check(hal_xdr_decode_int(&xdrptr, xdrlim, &lms_type));
check(hal_xdr_decode_int(&xdrptr, xdrlim, &lmots_type));
check(hal_xdr_decode_bytestring16_ptr(&xdrptr, xdrlim, &I));
check(hal_xdr_decode_bytestring32_ptr(&xdrptr, xdrlim, &T1));
return hal_hashsig_key_load_public(key_, keybuf, keybuf_len, L, lms_type, lmots_type,
(const uint8_t * const)I, sizeof(bytestring16),
(const uint8_t * const)T1, sizeof(bytestring32));
}
hal_error_t hal_hashsig_public_key_der_to_xdr(const uint8_t * const der, const size_t der_len,
uint8_t * const xdr, size_t * const xdr_len , const size_t xdr_max)
{
if (der == NULL || xdr == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
const uint8_t *alg_oid = NULL, *null = NULL, *pubkey = NULL;
size_t alg_oid_len, null_len, pubkey_len;
check(hal_asn1_decode_spki(&alg_oid, &alg_oid_len, &null, &null_len, &pubkey, &pubkey_len, der, der_len));
if (null != NULL || null_len != 0 || alg_oid == NULL ||
alg_oid_len != hal_asn1_oid_mts_hashsig_len || memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0)
return HAL_ERROR_ASN1_PARSE_FAILED;
size_t len, hlen, vlen;
check(hal_asn1_decode_header(ASN1_SEQUENCE, pubkey, pubkey_len, &hlen, &vlen));
const uint8_t * const pubkey_end = pubkey + hlen + vlen;
const uint8_t *d = pubkey + hlen;
// L || u32str(lms_type) || u32str(lmots_type) || I || T[1]
size_t L;
lms_algorithm_t lms_type;
lmots_algorithm_t lmots_type;
bytestring16 I;
bytestring32 T1;
check(hal_asn1_decode_size_t(&L, d, &len, pubkey_end - d)); d += len;
check(hal_asn1_decode_lms_algorithm(&lms_type, d, &len, pubkey_end - d)); d += len;
check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &len, pubkey_end - d)); d += len;
check(hal_asn1_decode_bytestring16(&I, d, &len, pubkey_end - d)); d += len;
check(hal_asn1_decode_bytestring32(&T1, d, &len, pubkey_end - d)); d += len;
if (d != pubkey_end)
return HAL_ERROR_ASN1_PARSE_FAILED;
uint8_t * xdrptr = xdr;
const uint8_t * const xdrlim = xdr + xdr_max;
check(hal_xdr_encode_int(&xdrptr, xdrlim, L));
check(hal_xdr_encode_int(&xdrptr, xdrlim, lms_type));
check(hal_xdr_encode_int(&xdrptr, xdrlim, lmots_type));
check(hal_xdr_encode_bytestring16(&xdrptr, xdrlim, &I));
check(hal_xdr_encode_bytestring32(&xdrptr, xdrlim, &T1));
if (xdr_len != NULL)
*xdr_len = xdrptr - xdr;
return HAL_OK;
}
#if RPC_CLIENT == RPC_CLIENT_LOCAL
/* Reinitialize the hashsig key structures after a device restart */
hal_error_t hal_hashsig_ks_init(void)
{
const hal_client_handle_t client = { -1 };
const hal_session_handle_t session = { HAL_HANDLE_NONE };
hal_uuid_t prev_name = {{0}};
unsigned len;
hal_pkey_slot_t slot = {0};
uint8_t der[HAL_KS_WRAPPED_KEYSIZE];
size_t der_len;
/* Find all hss private keys */
while ((hal_ks_match(hal_ks_token, client, session,
HAL_KEY_TYPE_HASHSIG_PRIVATE, HAL_CURVE_NONE, 0, 0, NULL, 0,
&slot.name, &len, 1, &prev_name) == HAL_OK) && (len > 0)) {
hal_hashsig_key_t keybuf, *key;
if (hal_ks_fetch(hal_ks_token, &slot, der, &der_len, sizeof(der)) != HAL_OK ||
hal_hashsig_private_key_from_der(&key, (void *)&keybuf, sizeof(keybuf), der, der_len) != HAL_OK) {
(void)hal_ks_delete(hal_ks_token, &slot);
continue;
}
/* Make sure we have the lms key */
hal_pkey_slot_t lms_slot = {0};
lms_key_t lms_key;
memcpy(&lms_slot.name, &key->I, sizeof(lms_slot.name));
if (hal_ks_fetch(hal_ks_token, &lms_slot, der, &der_len, sizeof(der)) != HAL_OK ||
lms_private_key_from_der(&lms_key, der, der_len) != HAL_OK ||
/* check keys for consistency */
lms_key.lms != key->lms ||
lms_key.lmots != key->lmots ||
memcmp(&lms_key.I, &key->I, sizeof(lms_key.I)) != 0 ||
/* optimistically allocate the full hss key structure */
hss_alloc(&key, key->L, key->lms->type, key->lmots->type) != HAL_OK) {
(void)hal_ks_delete(hal_ks_token, &slot);
(void)hal_ks_delete(hal_ks_token, &lms_slot);
continue;
}
/* hss_alloc redefines key, so copy fields from the old version of the key */
memcpy(&key->I, &keybuf.I, sizeof(key->I));
memcpy(&key->T1, &keybuf.T1, sizeof(key->T1));
key->name = slot.name;
/* initialize top-level lms key (beyond what hss_alloc did) */
memcpy(&key->lms_keys[0].I, &lms_key.I, sizeof(lms_key.I));
key->lms_keys[0].q = lms_key.q;
prev_name = slot.name;
}
/* Delete orphaned lms keys */
memset(&prev_name, 0, sizeof(prev_name));
while ((hal_ks_match(hal_ks_token, client, session,
HAL_KEY_TYPE_HASHSIG_LMS, HAL_CURVE_NONE, 0, 0, NULL, 0,
&slot.name, &len, 1, &prev_name) == HAL_OK) && (len > 0)) {
hss_key_t *hss_key;
for (hss_key = hss_keys; hss_key != NULL; hss_key = hss_key->next) {
if (memcmp(&slot.name, &hss_key->I, sizeof(slot.name)) == 0)
break;
}
if (hss_key == NULL) {
(void)hal_ks_delete(hal_ks_token, &slot);
continue;
}
prev_name = slot.name;
}
/* Find all lmots keys */
memset(&prev_name, 0, sizeof(prev_name));
while ((hal_ks_match(hal_ks_token, client, session,
HAL_KEY_TYPE_HASHSIG_LMOTS, HAL_CURVE_NONE, 0, 0, NULL, 0,
&slot.name, &len, 1, &prev_name) == HAL_OK) && (len > 0)) {
if (hss_keys == NULL) {
/* if no hss keys were recovered, all lmots keys are orphaned */
(void)hal_ks_delete(hal_ks_token, &slot);
continue;
}
lmots_key_t lmots_key = {0};
if (hal_ks_fetch(hal_ks_token, &slot, der, &der_len, sizeof(der)) != HAL_OK ||
lmots_private_key_from_der(&lmots_key, der, der_len) != HAL_OK) {
(void)hal_ks_delete(hal_ks_token, &slot);
continue;
}
hss_key_t *hss_key;
for (hss_key = hss_keys; hss_key != NULL; hss_key = hss_key->next) {
if (memcmp(&hss_key->I, &lmots_key.I, sizeof(lmots_key.I)) == 0)
break;
}
if (hss_key == NULL) {
/* delete orphaned key */
(void)hal_ks_delete(hal_ks_token, &slot);
continue;
}
/* record this lmots key in the top-level lms key */
memcpy(&hss_key->lms_keys[0].lmots_keys[lmots_key.q], &slot.name, sizeof(slot.name));
/* compute T[r] = H(I || u32str(r) || u16str(D_LEAF) || K) */
size_t r = (1U << hss_key->lms->h) + lmots_key.q;
uint8_t statebuf[512];
hal_hash_state_t *state = NULL;
hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf));
hal_hash_update(state, (const uint8_t *)&hss_key->I, sizeof(hss_key->I));
uint32_t l = u32str(r); hal_hash_update(state, (const uint8_t *)&l, sizeof(l));
uint16_t s = u16str(D_LEAF); hal_hash_update(state, (const uint8_t *)&s, sizeof(s));
hal_hash_update(state, (const uint8_t *)&lmots_key.K, sizeof(lmots_key.K));
hal_hash_finalize(state, (uint8_t *)&hss_key->lms_keys[0].T[r], sizeof(hss_key->lms_keys[0].T[r]));
prev_name = slot.name;
}
/* After all keys have been read, scan for completeness. */
hal_uuid_t uuid_0 = {{0}};
hss_key_t *hss_key, *hss_next = NULL;
for (hss_key = hss_keys; hss_key != NULL; hss_key = hss_next) {
hss_next = hss_key->next;
int fail = 0;
for (size_t i = 0; i < (1U << hss_key->lms->h); ++i) {
if (hal_uuid_cmp(&hss_key->lms_keys[0].lmots_keys[i], &uuid_0) == 0) {
fail = 1;
break;
}
}
if (fail) {
fail:
/* lms key is incomplete, give up on it */
/* delete lmots keys */
for (size_t i = 0; i < (1U << hss_key->lms->h); ++i) {
if (hal_uuid_cmp(&hss_key->lms_keys[0].lmots_keys[i], &uuid_0) != 0) {
memcpy(&slot.name, &hss_key->lms_keys[0].lmots_keys[i], sizeof(slot.name));
(void)hal_ks_delete(hal_ks_token, &slot);
}
}
/* delete lms key */
memcpy(&slot.name, &hss_key->I, sizeof(slot.name));
(void)hal_ks_delete(hal_ks_token, &slot);
/* delete hss key */
slot.name = hss_key->name;
(void)hal_ks_delete(hal_ks_token, &slot);
/* remove the hss key from the key list */
if (hss_keys == hss_key) {
hss_keys = hss_key->next;
}
else {
for (hss_key_t *prev = hss_keys; prev != NULL; prev = prev->next) {
if (prev->next == hss_key) {
prev->next = hss_key->next;
break;
}
}
}
(void)hal_free_static_memory(hss_key);
continue;
}
/* generate the rest of T[] */
for (size_t r = (1U << hss_key->lms->h) - 1; r > 0; --r) {
uint8_t statebuf[512];
hal_hash_state_t *state = NULL;
hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf));
hal_hash_update(state, (const uint8_t *)&hss_key->I, sizeof(hss_key->I));
uint32_t l = u32str(r); hal_hash_update(state, (const uint8_t *)&l, sizeof(l));
uint16_t s = u16str(D_INTR); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
hal_hash_update(state, (const uint8_t *)&hss_key->lms_keys[0].T[2*r], sizeof(hss_key->lms_keys[0].T[r]));
hal_hash_update(state, (const uint8_t *)&hss_key->lms_keys[0].T[2*r+1], sizeof(hss_key->lms_keys[0].T[r]));
hal_hash_finalize(state, (uint8_t *)&hss_key->lms_keys[0].T[r], sizeof(hss_key->lms_keys[0].T[r]));
}
if (memcmp(&hss_key->lms_keys[0].T[1], &hss_key->T1, sizeof(hss_key->lms_keys[0].T[1])) != 0)
goto fail;
/* generate the lower-level lms keys */
for (size_t i = 1; i < hss_key->L; ++i) {
lms_key_t * lms_key = &hss_key->lms_keys[i];
if (lms_generate(lms_key) != HAL_OK)
goto fail;
/* store the lms key */
slot.type = HAL_KEY_TYPE_HASHSIG_LMS;
slot.flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE;
memcpy(&slot.name, &lms_key->I, sizeof(slot.name));
if (lms_private_key_to_der(lms_key, der, &der_len, sizeof(der)) != HAL_OK ||
hal_ks_store(hal_ks_volatile, &slot, der, der_len) != HAL_OK ||
/* sign this lms key with the previous */
lms_sign(&hss_key->lms_keys[i-1],
(const uint8_t * const)lms_key->pubkey, lms_key->pubkey_len,
lms_key->signature, NULL, lms_key->signature_len) != HAL_OK)
goto fail;
}
}
return HAL_OK;
}
#endif
|