1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
|
/*
* hashes.c
* --------
* HAL interface to Cryptech hash cores.
*
* Authors: Joachim Strömbergson, Paul Selkirk, Rob Austein
* Copyright (c) 2014-2015, SUNET
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include "hal.h"
/*
* HMAC magic numbers.
*/
#define HMAC_IPAD 0x36
#define HMAC_OPAD 0x5c
/*
* Driver. This encapsulates whatever per-algorithm voodoo we need
* this week. At the moment, this is mostly Cryptech core addresses,
* but this is subject to change without notice.
*
* Most of the addresses in the current version could be calculated
* from a single address (the core base address), but this week's
* theory prefers the precomputed composite addresses, and doing it
* this way saves some microscopic bit of addition at runtime.
* Whatever. It'll probably all change again once we have a dynamic
* memory map, so it's not really worth overthinking at the moment.
*/
struct hal_hash_driver {
size_t length_length; /* Length of the length field */
off_t block_addr; /* Where to write hash blocks */
off_t ctrl_addr; /* Control register */
off_t status_addr; /* Status register */
off_t digest_addr; /* Where to read digest */
off_t name_addr; /* Where to read core name */
char core_name[8]; /* Expected name of core */
uint8_t ctrl_mode; /* Digest mode, for cores that have modes */
};
/*
* Hash state. For now we assume that the only core state we need to
* save and restore is the current digest value.
*/
struct hal_hash_state {
const hal_hash_descriptor_t *descriptor;
const hal_hash_driver_t *driver;
uint64_t msg_length_high; /* Total data hashed in this message */
uint64_t msg_length_low; /* (128 bits in SHA-512 cases) */
uint8_t block[HAL_MAX_HASH_BLOCK_LENGTH], /* Block we're accumulating */
core_state[HAL_MAX_HASH_DIGEST_LENGTH]; /* Saved core state */
size_t block_used; /* How much of the block we've used */
unsigned block_count; /* Blocks sent */
unsigned flags;
};
#define STATE_FLAG_STATE_ALLOCATED 0x1 /* State buffer dynamically allocated */
/*
* HMAC state. Right now this just holds the key block and a hash
* context; if and when we figure out how PCLSR the hash cores, we
* might want to save a lot more than that, and may also want to
* reorder certain operations during HMAC initialization to get a
* performance boost for things like PBKDF2.
*/
struct hal_hmac_state {
hal_hash_state_t hash_state; /* Hash state */
uint8_t keybuf[HAL_MAX_HASH_BLOCK_LENGTH]; /* HMAC key */
};
/*
* Drivers for known digest algorithms.
*
* Initialization of the core_name field is not a typo, we're
* concatenating two string constants and trusting the compiler to
* whine if the resulting string doesn't fit into the field.
*/
static const hal_hash_driver_t sha1_driver = {
SHA1_LENGTH_LEN,
SHA1_ADDR_BLOCK, SHA1_ADDR_CTRL, SHA1_ADDR_STATUS, SHA1_ADDR_DIGEST,
SHA1_ADDR_NAME0, (SHA1_NAME0 SHA1_NAME1),
0
};
static const hal_hash_driver_t sha256_driver = {
SHA256_LENGTH_LEN,
SHA256_ADDR_BLOCK, SHA256_ADDR_CTRL, SHA256_ADDR_STATUS, SHA256_ADDR_DIGEST,
SHA256_ADDR_NAME0, (SHA256_NAME0 SHA256_NAME1),
0
};
static const hal_hash_driver_t sha512_224_driver = {
SHA512_LENGTH_LEN,
SHA512_ADDR_BLOCK, SHA512_ADDR_CTRL, SHA512_ADDR_STATUS, SHA512_ADDR_DIGEST,
SHA512_ADDR_NAME0, (SHA512_NAME0 SHA512_NAME1),
MODE_SHA_512_224
};
static const hal_hash_driver_t sha512_256_driver = {
SHA512_LENGTH_LEN,
SHA512_ADDR_BLOCK, SHA512_ADDR_CTRL, SHA512_ADDR_STATUS, SHA512_ADDR_DIGEST,
SHA512_ADDR_NAME0, (SHA512_NAME0 SHA512_NAME1),
MODE_SHA_512_256
};
static const hal_hash_driver_t sha384_driver = {
SHA512_LENGTH_LEN,
SHA512_ADDR_BLOCK, SHA512_ADDR_CTRL, SHA512_ADDR_STATUS, SHA512_ADDR_DIGEST,
SHA512_ADDR_NAME0, (SHA512_NAME0 SHA512_NAME1),
MODE_SHA_384
};
static const hal_hash_driver_t sha512_driver = {
SHA512_LENGTH_LEN,
SHA512_ADDR_BLOCK, SHA512_ADDR_CTRL, SHA512_ADDR_STATUS, SHA512_ADDR_DIGEST,
SHA512_ADDR_NAME0, (SHA512_NAME0 SHA512_NAME1),
MODE_SHA_512
};
/*
* Digest algorithm identifiers: DER encoded full TLV of an
* DigestAlgorithmIdentifier SEQUENCE including OID for the algorithm in
* question and a NULL parameters value.
*
* See RFC 2313 and the NIST algorithm registry:
* http://csrc.nist.gov/groups/ST/crypto_apps_infra/csor/algorithms.html
*
* The DER encoding is too complex to generate in the C preprocessor,
* and we want these as compile-time constants, so we just supply the
* raw hex encoding here. If this gets seriously out of control we'll
* write a script to generate a header file we can include.
*/
static const uint8_t
dalgid_sha1[] = { 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00 },
dalgid_sha256[] = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00 },
dalgid_sha384[] = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00 },
dalgid_sha512[] = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00 },
dalgid_sha512_224[] = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x05, 0x05, 0x00 },
dalgid_sha512_256[] = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x06, 0x05, 0x00 };
/*
* Descriptors. Yes, the {hash,hmac}_state_length fields are a bit
* repetitive given that they (currently) have the same value
* regardless of algorithm, but we don't want to wire in that
* assumption, so it's simplest to be explicit.
*/
const hal_hash_descriptor_t hal_hash_sha1[1] = {{
SHA1_BLOCK_LEN, SHA1_DIGEST_LEN,
sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
dalgid_sha1, sizeof(dalgid_sha1),
&sha1_driver, 0
}};
const hal_hash_descriptor_t hal_hash_sha256[1] = {{
SHA256_BLOCK_LEN, SHA256_DIGEST_LEN,
sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
dalgid_sha256, sizeof(dalgid_sha256),
&sha256_driver, 1
}};
const hal_hash_descriptor_t hal_hash_sha512_224[1] = {{
SHA512_BLOCK_LEN, SHA512_224_DIGEST_LEN,
sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
dalgid_sha512_224, sizeof(dalgid_sha512_224),
&sha512_224_driver, 0
}};
const hal_hash_descriptor_t hal_hash_sha512_256[1] = {{
SHA512_BLOCK_LEN, SHA512_256_DIGEST_LEN,
sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
dalgid_sha512_256, sizeof(dalgid_sha512_256),
&sha512_256_driver, 0
}};
const hal_hash_descriptor_t hal_hash_sha384[1] = {{
SHA512_BLOCK_LEN, SHA384_DIGEST_LEN,
sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
dalgid_sha384, sizeof(dalgid_sha384),
&sha384_driver, 0
}};
const hal_hash_descriptor_t hal_hash_sha512[1] = {{
SHA512_BLOCK_LEN, SHA512_DIGEST_LEN,
sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
dalgid_sha512, sizeof(dalgid_sha512),
&sha512_driver, 0
}};
/*
* Debugging control.
*/
static int debug = 0;
void hal_hash_set_debug(int onoff)
{
debug = onoff;
}
/*
* Internal utility to do whatever checking we need of a descriptor,
* then extract the driver pointer in a way that works nicely with
* initialization of an automatic const pointer.
*
* Returns the driver pointer on success, NULL on failure.
*/
static const hal_hash_driver_t *check_driver(const hal_hash_descriptor_t * const descriptor)
{
return descriptor == NULL ? NULL : descriptor->driver;
}
/*
* Report whether cores are present.
*/
hal_error_t hal_hash_core_present(const hal_hash_descriptor_t * const descriptor)
{
const hal_hash_driver_t * const driver = check_driver(descriptor);
if (driver == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
return hal_io_expected(driver->name_addr,
(const uint8_t *) driver->core_name,
sizeof(driver->core_name));
}
/*
* Initialize hash state.
*/
hal_error_t hal_hash_initialize(const hal_hash_descriptor_t * const descriptor,
hal_hash_state_t **state_,
void *state_buffer, const size_t state_length)
{
const hal_hash_driver_t * const driver = check_driver(descriptor);
hal_hash_state_t *state = state_buffer;
if (driver == NULL || state_ == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (state_buffer != NULL && state_length < descriptor->hash_state_length)
return HAL_ERROR_BAD_ARGUMENTS;
if (state_buffer == NULL && (state = malloc(descriptor->hash_state_length)) == NULL)
return HAL_ERROR_ALLOCATION_FAILURE;
memset(state, 0, sizeof(*state));
state->descriptor = descriptor;
state->driver = driver;
if (state_buffer == NULL)
state->flags |= STATE_FLAG_STATE_ALLOCATED;
*state_ = state;
return HAL_OK;
}
/*
* Clean up hash state. No-op unless memory was dynamically allocated.
*/
void hal_hash_cleanup(hal_hash_state_t **state_)
{
if (state_ == NULL)
return;
hal_hash_state_t *state = *state_;
if (state == NULL || (state->flags & STATE_FLAG_STATE_ALLOCATED) == 0)
return;
memset(state, 0, state->descriptor->hash_state_length);
free(state);
*state_ = NULL;
}
/*
* Read hash result from core. At least for now, this also serves to
* read current hash state from core.
*/
static hal_error_t hash_read_digest(const hal_hash_driver_t * const driver,
uint8_t *digest,
const size_t digest_length)
{
hal_error_t err;
assert(digest != NULL && digest_length % 4 == 0);
if ((err = hal_io_wait_valid(driver->status_addr)) != HAL_OK)
return err;
return hal_io_read(driver->digest_addr, digest, digest_length);
}
/*
* Write hash state back to core.
*/
static hal_error_t hash_write_digest(const hal_hash_driver_t * const driver,
const uint8_t * const digest,
const size_t digest_length)
{
hal_error_t err;
assert(digest != NULL && digest_length % 4 == 0);
if ((err = hal_io_wait_ready(driver->status_addr)) != HAL_OK)
return err;
return hal_io_write(driver->digest_addr, digest, digest_length);
}
/*
* Send one block to a core.
*/
static hal_error_t hash_write_block(hal_hash_state_t * const state)
{
uint8_t ctrl_cmd[4];
hal_error_t err;
assert(state != NULL && state->descriptor != NULL && state->driver != NULL);
assert(state->descriptor->block_length % 4 == 0);
assert(state->descriptor->digest_length <= sizeof(state->core_state) ||
!state->descriptor->can_restore_state);
if (debug)
fprintf(stderr, "[ %s ]\n", state->block_count == 0 ? "init" : "next");
if ((err = hal_io_wait_ready(state->driver->status_addr)) != HAL_OK)
return err;
if (state->descriptor->can_restore_state &&
state->block_count != 0 &&
(err = hash_write_digest(state->driver, state->core_state,
state->descriptor->digest_length)) != HAL_OK)
return err;
if ((err = hal_io_write(state->driver->block_addr, state->block,
state->descriptor->block_length)) != HAL_OK)
return err;
ctrl_cmd[0] = ctrl_cmd[1] = ctrl_cmd[2] = 0;
ctrl_cmd[3] = state->block_count == 0 ? CTRL_INIT : CTRL_NEXT;
ctrl_cmd[3] |= state->driver->ctrl_mode;
if ((err = hal_io_write(state->driver->ctrl_addr, ctrl_cmd, sizeof(ctrl_cmd))) != HAL_OK)
return err;
if (state->descriptor->can_restore_state &&
(err = hash_read_digest(state->driver, state->core_state,
state->descriptor->digest_length)) != HAL_OK)
return err;
return hal_io_wait_valid(state->driver->status_addr);
}
/*
* Add data to hash.
*/
hal_error_t hal_hash_update(hal_hash_state_t *state, /* Opaque state block */
const uint8_t * const data_buffer, /* Data to be hashed */
size_t data_buffer_length) /* Length of data_buffer */
{
const uint8_t *p = data_buffer;
hal_error_t err;
size_t n;
if (state == NULL || data_buffer == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (data_buffer_length == 0)
return HAL_OK;
assert(state->descriptor != NULL && state->driver != NULL);
assert(state->descriptor->block_length <= sizeof(state->block));
while ((n = state->descriptor->block_length - state->block_used) <= data_buffer_length) {
/*
* We have enough data for another complete block.
*/
if (debug)
fprintf(stderr, "[ Full block, data_buffer_length %lu, used %lu, n %lu, msg_length %llu ]\n",
(unsigned long) data_buffer_length, (unsigned long) state->block_used, (unsigned long) n, state->msg_length_low);
memcpy(state->block + state->block_used, p, n);
if ((state->msg_length_low += n) < n)
state->msg_length_high++;
state->block_used = 0;
data_buffer_length -= n;
p += n;
if ((err = hash_write_block(state)) != HAL_OK)
return err;
state->block_count++;
}
if (data_buffer_length > 0) {
/*
* Data left over, but not enough for a full block, stash it.
*/
if (debug)
fprintf(stderr, "[ Partial block, data_buffer_length %lu, used %lu, n %lu, msg_length %llu ]\n",
(unsigned long) data_buffer_length, (unsigned long) state->block_used, (unsigned long) n, state->msg_length_low);
assert(data_buffer_length < n);
memcpy(state->block + state->block_used, p, data_buffer_length);
if ((state->msg_length_low += data_buffer_length) < data_buffer_length)
state->msg_length_high++;
state->block_used += data_buffer_length;
}
return HAL_OK;
}
/*
* Finish hash and return digest.
*/
hal_error_t hal_hash_finalize(hal_hash_state_t *state, /* Opaque state block */
uint8_t *digest_buffer, /* Returned digest */
const size_t digest_buffer_length) /* Length of digest_buffer */
{
uint64_t bit_length_high, bit_length_low;
hal_error_t err;
uint8_t *p;
size_t n;
int i;
if (state == NULL || digest_buffer == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
assert(state->descriptor != NULL && state->driver != NULL);
if (digest_buffer_length < state->descriptor->digest_length)
return HAL_ERROR_BAD_ARGUMENTS;
assert(state->descriptor->block_length <= sizeof(state->block));
/*
* Add padding, then pull result from the core
*/
bit_length_low = (state->msg_length_low << 3);
bit_length_high = (state->msg_length_high << 3) | (state->msg_length_low >> 61);
/* Initial pad byte */
assert(state->block_used < state->descriptor->block_length);
state->block[state->block_used++] = 0x80;
/* If not enough room for bit count, zero and push current block */
if ((n = state->descriptor->block_length - state->block_used) < state->driver->length_length) {
if (debug)
fprintf(stderr, "[ Overflow block, used %lu, n %lu, msg_length %llu ]\n",
(unsigned long) state->block_used, (unsigned long) n, state->msg_length_low);
if (n > 0)
memset(state->block + state->block_used, 0, n);
if ((err = hash_write_block(state)) != HAL_OK)
return err;
state->block_count++;
state->block_used = 0;
}
/* Pad final block */
n = state->descriptor->block_length - state->block_used;
assert(n >= state->driver->length_length);
if (n > 0)
memset(state->block + state->block_used, 0, n);
if (debug)
fprintf(stderr, "[ Final block, used %lu, n %lu, msg_length %llu ]\n",
(unsigned long) state->block_used, (unsigned long) n, state->msg_length_low);
p = state->block + state->descriptor->block_length;
for (i = 0; (bit_length_low || bit_length_high) && i < state->driver->length_length; i++) {
*--p = (uint8_t) (bit_length_low & 0xFF);
bit_length_low >>= 8;
if (bit_length_high) {
bit_length_low |= ((bit_length_high & 0xFF) << 56);
bit_length_high >>= 8;
}
}
/* Push final block */
if ((err = hash_write_block(state)) != HAL_OK)
return err;
state->block_count++;
/* All data pushed to core, now we just need to read back the result */
if ((err = hash_read_digest(state->driver, digest_buffer, state->descriptor->digest_length)) != HAL_OK)
return err;
return HAL_OK;
}
/*
* Initialize HMAC state.
*/
hal_error_t hal_hmac_initialize(const hal_hash_descriptor_t * const descriptor,
hal_hmac_state_t **state_,
void *state_buffer, const size_t state_length,
const uint8_t * const key, const size_t key_length)
{
const hal_hash_driver_t * const driver = check_driver(descriptor);
hal_hmac_state_t *state = state_buffer;
hal_error_t err;
int i;
if (descriptor == NULL || driver == NULL || state_ == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (state_buffer != NULL && state_length < descriptor->hmac_state_length)
return HAL_ERROR_BAD_ARGUMENTS;
if (state_buffer == NULL && (state = malloc(descriptor->hmac_state_length)) == NULL)
return HAL_ERROR_ALLOCATION_FAILURE;
hal_hash_state_t *h = &state->hash_state;
assert(descriptor->block_length <= sizeof(state->keybuf));
#if 0
/*
* RFC 2104 frowns upon keys shorter than the digest length.
* ... but most of the test vectors fail this test!
*/
if (key_length < descriptor->digest_length)
return HAL_ERROR_UNSUPPORTED_KEY;
#endif
if ((err = hal_hash_initialize(descriptor, &h, &state->hash_state,
sizeof(state->hash_state))) != HAL_OK)
goto fail;
if (state_buffer == NULL)
h->flags |= STATE_FLAG_STATE_ALLOCATED;
/*
* If the supplied HMAC key is longer than the hash block length, we
* need to hash the supplied HMAC key to get the real HMAC key.
* Otherwise, we just use the supplied HMAC key directly.
*/
memset(state->keybuf, 0, sizeof(state->keybuf));
if (key_length <= descriptor->block_length)
memcpy(state->keybuf, key, key_length);
else if ((err = hal_hash_update(h, key, key_length)) != HAL_OK ||
(err = hal_hash_finalize(h, state->keybuf, sizeof(state->keybuf))) != HAL_OK ||
(err = hal_hash_initialize(descriptor, &h, &state->hash_state,
sizeof(state->hash_state))) != HAL_OK)
goto fail;
/*
* XOR the key with the IPAD value, then start the inner hash.
*/
for (i = 0; i < descriptor->block_length; i++)
state->keybuf[i] ^= HMAC_IPAD;
if ((err = hal_hash_update(h, state->keybuf, descriptor->block_length)) != HAL_OK)
goto fail;
/*
* Prepare the key for the final hash. Since we just XORed key with
* IPAD, we need to XOR with both IPAD and OPAD to get key XOR OPAD.
*/
for (i = 0; i < descriptor->block_length; i++)
state->keybuf[i] ^= HMAC_IPAD ^ HMAC_OPAD;
/*
* If we had some good way of saving all of our state (including
* state internal to the hash core), this would be a good place to
* do it, since it might speed up algorithms like PBKDF2 which do
* repeated HMAC operations using the same key. Revisit this if and
* when the hash cores support such a thing.
*/
*state_ = state;
return HAL_OK;
fail:
if (state_buffer == NULL)
free(state);
return err;
}
/*
* Clean up HMAC state. No-op unless memory was dynamically allocated.
*/
void hal_hmac_cleanup(hal_hmac_state_t **state_)
{
if (state_ == NULL)
return;
hal_hmac_state_t *state = *state_;
if (state == NULL)
return;
hal_hash_state_t *h = &state->hash_state;
if ((h->flags & STATE_FLAG_STATE_ALLOCATED) == 0)
return;
memset(state, 0, h->descriptor->hmac_state_length);
free(state);
*state_ = NULL;
}
/*
* Add data to HMAC.
*/
hal_error_t hal_hmac_update(hal_hmac_state_t *state,
const uint8_t * data, const size_t length)
{
if (state == NULL || data == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
return hal_hash_update(&state->hash_state, data, length);
}
/*
* Finish and return HMAC.
*/
hal_error_t hal_hmac_finalize(hal_hmac_state_t *state,
uint8_t *hmac, const size_t length)
{
if (state == NULL || hmac == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
hal_hash_state_t *h = &state->hash_state;
const hal_hash_descriptor_t *descriptor = h->descriptor;
uint8_t d[HAL_MAX_HASH_DIGEST_LENGTH];
hal_error_t err;
assert(descriptor != NULL && descriptor->digest_length <= sizeof(d));
/*
* Finish up inner hash and extract digest, then perform outer hash
* to get HMAC. Key was prepared for this in hal_hmac_initialize().
*/
if ((err = hal_hash_finalize(h, d, sizeof(d))) != HAL_OK ||
(err = hal_hash_initialize(descriptor, &h, &state->hash_state,
sizeof(state->hash_state))) != HAL_OK ||
(err = hal_hash_update(h, state->keybuf, descriptor->block_length)) != HAL_OK ||
(err = hal_hash_update(h, d, descriptor->digest_length)) != HAL_OK ||
(err = hal_hash_finalize(h, hmac, length)) != HAL_OK)
return err;
return HAL_OK;
}
/*
* "Any programmer who fails to comply with the standard naming, formatting,
* or commenting conventions should be shot. If it so happens that it is
* inconvenient to shoot him, then he is to be politely requested to recode
* his program in adherence to the above standard."
* -- Michael Spier, Digital Equipment Corporation
*
* Local variables:
* indent-tabs-mode: nil
* End:
*/
|