1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
|
/*
* hal_internal.h
* --------------
* Internal API declarations for libhal.
*
* Authors: Rob Austein, Paul Selkirk
* Copyright (c) 2015, NORDUnet A/S All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _HAL_INTERNAL_H_
#define _HAL_INTERNAL_H_
#include <string.h>
#include "hal.h"
#include "verilog_constants.h"
/*
* Everything in this file is part of the internal API, that is,
* subject to change without notice. Nothing outside of libhal itself
* should be looking at this file.
*/
/*
* htonl is not available in arm-none-eabi headers or libc.
*/
#ifndef STM32F4XX
#include <arpa/inet.h>
#else
#ifdef __ARMEL__ /* little endian */
inline uint32_t htonl(uint32_t w)
{
return
((w & 0x000000ff) << 24) +
((w & 0x0000ff00) << 8) +
((w & 0x00ff0000) >> 8) +
((w & 0xff000000) >> 24);
}
#else /* big endian */
#define htonl(x) (x)
#endif
#define ntohl htonl
#endif
/*
* Static memory allocation on start-up. Don't use this except where
* really necessary. By design, there's no way to free this, we don't
* want to have to manage a heap. Intent is just to allow allocation
* things like the large-ish ks_index arrays used by ks_flash.c from a
* memory source external to the executable image file (eg, from the
* secondary SDRAM chip on the Cryptech Alpha board).
*
* We shouldn't need this except on the HSM, so for now we don't bother
* with implementing a version of this based on malloc() or sbrk().
*/
extern void *hal_allocate_static_memory(const size_t size);
/*
* Longest hash block and digest we support at the moment.
*/
#define HAL_MAX_HASH_BLOCK_LENGTH SHA512_BLOCK_LEN
#define HAL_MAX_HASH_DIGEST_LENGTH SHA512_DIGEST_LEN
/*
* Dispatch structures for RPC implementation.
*
* The breakdown of which functions go into which dispatch vectors is
* based entirely on pesky details like making sure that the right
* functions get linked in the right cases, and should not be
* construed as making any particular sense in any larger context.
*
* In theory eventually we might want a fully general mechanism to
* allow us to dispatch arbitrary groups of functions either locally
* or remotely on a per-user basis. In practice, we probably want to
* run everything on the HSM except for hashing and digesting, so just
* code for that case initially while leaving the design open for a
* more general mechanism later if warranted.
*
* So we have three cases:
*
* - We're the HSM, so we do everything locally (ie, we run the RPC
* server functions.
*
* - We're the host, so we do everything remotely (ie, we do
* everything using the client-side RPC calls.
*
* - We're the host but are doing hashing locally, so we do a mix.
* This is slightly more complicated than it might at first appear,
* because we must handle the case of one of the pkey functions
* taking a hash context instead of a literal hash value, in which
* case we have to extract the hash value from the context and
* supply it to the pkey RPC client code as a literal value.
*
* ...Except that for PKCS #11 we also have to handle the case of
* "session keys", ie, keys which are not stored on the HSM.
* Apparently people really do use these, mostly for public keys, in
* order to conserve expensive memory on the HSM. So this is another
* feature of mixed mode: keys with HAL_KEY_FLAG_PROXIMATE set live on
* the host, not in the HSM, and the mixed-mode pkey handlers deal
* with the routing. In the other two modes we ignore the flag and
* send everything where we were going to send it anyway. Restricting
* the fancy key handling to mixed mode lets us drop this complexity
* out entirely for applications which have no use for it.
*/
typedef struct {
hal_error_t (*set_pin)(const hal_client_handle_t client,
const hal_user_t user,
const char * const newpin, const size_t newpin_len);
hal_error_t (*login)(const hal_client_handle_t client,
const hal_user_t user,
const char * const newpin, const size_t newpin_len);
hal_error_t (*logout)(const hal_client_handle_t client);
hal_error_t (*logout_all)(void);
hal_error_t (*is_logged_in)(const hal_client_handle_t client,
const hal_user_t user);
hal_error_t (*get_random)(void *buffer, const size_t length);
hal_error_t (*get_version)(uint32_t *version);
} hal_rpc_misc_dispatch_t;
typedef struct {
hal_error_t (*get_digest_length)(const hal_digest_algorithm_t alg, size_t *length);
hal_error_t (*get_digest_algorithm_id)(const hal_digest_algorithm_t alg,
uint8_t *id, size_t *len, const size_t len_max);
hal_error_t (*get_algorithm)(const hal_hash_handle_t hash, hal_digest_algorithm_t *alg);
hal_error_t (*initialize)(const hal_client_handle_t client,
const hal_session_handle_t session,
hal_hash_handle_t *hash,
const hal_digest_algorithm_t alg,
const uint8_t * const key, const size_t key_length);
hal_error_t (*update)(const hal_hash_handle_t hash,
const uint8_t * data, const size_t length);
hal_error_t (*finalize)(const hal_hash_handle_t hash,
uint8_t *digest, const size_t length);
} hal_rpc_hash_dispatch_t;
typedef struct {
hal_error_t (*load)(const hal_client_handle_t client,
const hal_session_handle_t session,
hal_pkey_handle_t *pkey,
const hal_key_type_t type,
const hal_curve_name_t curve,
hal_uuid_t *name,
const uint8_t * const der, const size_t der_len,
const hal_key_flags_t flags);
hal_error_t (*open)(const hal_client_handle_t client,
const hal_session_handle_t session,
hal_pkey_handle_t *pkey,
const hal_uuid_t * const name,
const hal_key_flags_t flags);
hal_error_t (*generate_rsa)(const hal_client_handle_t client,
const hal_session_handle_t session,
hal_pkey_handle_t *pkey,
hal_uuid_t *name,
const unsigned key_length,
const uint8_t * const public_exponent, const size_t public_exponent_len,
const hal_key_flags_t flags);
hal_error_t (*generate_ec)(const hal_client_handle_t client,
const hal_session_handle_t session,
hal_pkey_handle_t *pkey,
hal_uuid_t *name,
const hal_curve_name_t curve,
const hal_key_flags_t flags);
hal_error_t (*close)(const hal_pkey_handle_t pkey);
hal_error_t (*delete)(const hal_pkey_handle_t pkey);
hal_error_t (*get_key_type)(const hal_pkey_handle_t pkey,
hal_key_type_t *type);
hal_error_t (*get_key_curve)(const hal_pkey_handle_t pkey,
hal_curve_name_t *curve);
hal_error_t (*get_key_flags)(const hal_pkey_handle_t pkey,
hal_key_flags_t *flags);
size_t (*get_public_key_len)(const hal_pkey_handle_t pkey);
hal_error_t (*get_public_key)(const hal_pkey_handle_t pkey,
uint8_t *der, size_t *der_len, const size_t der_max);
hal_error_t (*sign)(const hal_pkey_handle_t pkey,
const hal_hash_handle_t hash,
const uint8_t * const input, const size_t input_len,
uint8_t * signature, size_t *signature_len, const size_t signature_max);
hal_error_t (*verify)(const hal_pkey_handle_t pkey,
const hal_hash_handle_t hash,
const uint8_t * const input, const size_t input_len,
const uint8_t * const signature, const size_t signature_len);
hal_error_t (*match)(const hal_client_handle_t client,
const hal_session_handle_t session,
const hal_key_type_t type,
const hal_curve_name_t curve,
const hal_key_flags_t flags,
const hal_pkey_attribute_t *attributes,
const unsigned attributes_len,
hal_uuid_t *result,
unsigned *result_len,
const unsigned result_max,
const hal_uuid_t * const previous_uuid);
hal_error_t (*set_attributes)(const hal_pkey_handle_t pkey,
const hal_pkey_attribute_t *attributes,
const unsigned attributes_len);
hal_error_t (*get_attributes)(const hal_pkey_handle_t pkey,
hal_pkey_attribute_t *attributes,
const unsigned attributes_len,
uint8_t *attributes_buffer,
const size_t attributes_buffer_len);
} hal_rpc_pkey_dispatch_t;
extern const hal_rpc_misc_dispatch_t hal_rpc_local_misc_dispatch, hal_rpc_remote_misc_dispatch, *hal_rpc_misc_dispatch;
extern const hal_rpc_hash_dispatch_t hal_rpc_local_hash_dispatch, hal_rpc_remote_hash_dispatch, *hal_rpc_hash_dispatch;
extern const hal_rpc_pkey_dispatch_t hal_rpc_local_pkey_dispatch, hal_rpc_remote_pkey_dispatch, hal_rpc_mixed_pkey_dispatch, *hal_rpc_pkey_dispatch;
/*
* See code in rpc_pkey.c for how this flag fits into the pkey handle.
*/
#define HAL_PKEY_HANDLE_TOKEN_FLAG (1 << 31)
/*
* Mostly used by the local_pkey code, but the mixed_pkey code needs
* it to pad hashes for RSA PKCS #1.5 signatures. This may indicate
* that we need a slightly more general internal API here, but not
* worth worrying about as long as we can treat RSA as a special case
* and just pass the plain hash for everything else.
*/
extern hal_error_t hal_rpc_pkcs1_construct_digestinfo(const hal_hash_handle_t handle,
uint8_t *digest_info, size_t *digest_info_len,
const size_t digest_info_max);
/*
* CRC-32 stuff (for flash keystore, etc). Dunno if we want a Verilog
* implementation of this, or if it would even be faster than doing it
* the main CPU taking I/O overhead and so forth into account.
*
* These prototypes were generated by pycrc.py, see notes in crc32.c.
*/
typedef uint32_t hal_crc32_t;
static inline hal_crc32_t hal_crc32_init(void)
{
return 0xffffffff;
}
extern hal_crc32_t hal_crc32_update(hal_crc32_t crc, const void *data, size_t data_len);
static inline hal_crc32_t hal_crc32_finalize(hal_crc32_t crc)
{
return crc ^ 0xffffffff;
}
/*
* Sizes for ASN.1-encoded keys, this may not be exact due to ASN.1
* INTEGER encoding rules but should be good enough for buffer sizing:
*
* 2048-bit RSA: 1194 bytes
* 4096-bit RSA: 2351 bytes
* 8192-bit RSA: 4655 bytes
* EC P-256: 121 bytes
* EC P-384: 167 bytes
* EC P-521: 223 bytes
*
* Plus we need a bit of AES-keywrap overhead, since we're storing the
* wrapped form (see hal_aes_keywrap_cyphertext_length()).
*
* A buffer big enough for a 8192-bit RSA key would overflow one
* sub-sector on the flash chip we're using on the Alpha. We could
* invent some more complex scheme where key blocks are allowed to
* span multiple sub-sectors, but since an 8192-bit RSA key would also
* be unusably slow with the current RSA implementation, for the
* moment we take the easy way out and cap this at 4096-bit RSA.
*/
#define HAL_KS_WRAPPED_KEYSIZE ((2351 + 15) & ~7)
/*
* PINs.
*
* The functions here might want renaming, eg, to hal_pin_*().
*/
#ifndef HAL_PIN_SALT_LENGTH
#define HAL_PIN_SALT_LENGTH 16
#endif
typedef struct {
uint32_t iterations;
uint8_t pin[HAL_MAX_HASH_DIGEST_LENGTH];
uint8_t salt[HAL_PIN_SALT_LENGTH];
} hal_ks_pin_t;
extern hal_error_t hal_set_pin_default_iterations(const hal_client_handle_t client,
const uint32_t iterations);
extern hal_error_t hal_get_pin(const hal_user_t user,
const hal_ks_pin_t **pin);
extern hal_error_t hal_set_pin(const hal_user_t user,
const hal_ks_pin_t * const pin);
extern void hal_ks_init_read_only_pins_only(void);
/*
* Master key memory (MKM) and key-encryption-key (KEK).
*
* Providing a mechanism for storing the KEK in flash is a horrible
* kludge which defeats the entire purpose of having the MKM. We
* support it for now because the Alpha hardware does not yet have
* a working battery backup for the MKM, but it should go away RSN.
*/
#ifndef HAL_MKM_FLASH_BACKUP_KLUDGE
#define HAL_MKM_FLASH_BACKUP_KLUDGE 1
#endif
#ifndef KEK_LENGTH
#define KEK_LENGTH (bitsToBytes(256))
#endif
extern hal_error_t hal_mkm_get_kek(uint8_t *kek, size_t *kek_len, const size_t kek_max);
extern hal_error_t hal_mkm_volatile_read(uint8_t *buf, const size_t len);
extern hal_error_t hal_mkm_volatile_write(const uint8_t * const buf, const size_t len);
extern hal_error_t hal_mkm_volatile_erase(const size_t len);
#if HAL_MKM_FLASH_BACKUP_KLUDGE
/* #warning MKM flash backup kludge enabled. Do NOT use this in production! */
extern hal_error_t hal_mkm_flash_read(uint8_t *buf, const size_t len);
extern hal_error_t hal_mkm_flash_write(const uint8_t * const buf, const size_t len);
extern hal_error_t hal_mkm_flash_erase(const size_t len);
#endif
/*
* Keystore API for use by the pkey implementation.
*
* In an attempt to emulate what current theory says will eventually
* be the behavior of the underlying Cryptech Verilog "hardware",
* these functions automatically apply the AES keywrap transformations.
*
* Unclear whether these should also call the ASN.1 encode/decode
* functions. For the moment, the answer is no, but we may need to
* revisit this as the underlying Verilog API evolves.
*
* hal_pkey_slot_t is defined here too, so that keystore drivers can
* piggyback on the pkey database for storage related to keys on which
* the user currently has an active pkey handle. Nothing outside the
* pkey and keystore code should touch this.
*/
typedef struct {
hal_client_handle_t client_handle;
hal_session_handle_t session_handle;
hal_pkey_handle_t pkey_handle;
hal_key_type_t type;
hal_curve_name_t curve;
hal_key_flags_t flags;
hal_uuid_t name;
int hint;
/*
* This might be where we'd stash a (hal_core_t *) pointing to a
* core which has already been loaded with the key, if we were
* trying to be clever about using multiple signing cores. Moot
* point (ie, no way we could possibly test such a thing) as long as
* the FPGA is too small to hold more than one modexp core and ECDSA
* is entirely software, so skip it for now, but the implied
* semantics are interesting: a pkey handle starts to resemble an
* initialized signing core, and once all the cores are in use, one
* can't load another key without closing an existing pkey handle.
*/
} hal_pkey_slot_t;
typedef struct hal_ks_driver hal_ks_driver_t;
typedef struct hal_ks hal_ks_t;
struct hal_ks_driver {
hal_error_t (*init)(const hal_ks_driver_t * const driver,
const int alloc);
hal_error_t (*shutdown)(const hal_ks_driver_t * const driver);
hal_error_t (*open)(const hal_ks_driver_t * const driver,
hal_ks_t **ks);
hal_error_t (*close)(hal_ks_t *ks);
hal_error_t (*store)(hal_ks_t *ks,
hal_pkey_slot_t *slot,
const uint8_t * const der, const size_t der_len);
hal_error_t (*fetch)(hal_ks_t *ks,
hal_pkey_slot_t *slot,
uint8_t *der, size_t *der_len, const size_t der_max);
hal_error_t (*delete)(hal_ks_t *ks,
hal_pkey_slot_t *slot);
hal_error_t (*match)(hal_ks_t *ks,
const hal_client_handle_t client,
const hal_session_handle_t session,
const hal_key_type_t type,
const hal_curve_name_t curve,
const hal_key_flags_t flags,
const hal_pkey_attribute_t *attributes,
const unsigned attributes_len,
hal_uuid_t *result,
unsigned *result_len,
const unsigned result_max,
const hal_uuid_t * const previous_uuid);
hal_error_t (*set_attributes)(hal_ks_t *ks,
hal_pkey_slot_t *slot,
const hal_pkey_attribute_t *attributes,
const unsigned attributes_len);
hal_error_t (*get_attributes)(hal_ks_t *ks,
hal_pkey_slot_t *slot,
hal_pkey_attribute_t *attributes,
const unsigned attributes_len,
uint8_t *attributes_buffer,
const size_t attributes_buffer_len);
};
struct hal_ks {
const hal_ks_driver_t *driver;
/*
* Any other common portions of hal_ks_t go here.
*/
/*
* Driver-specific stuff is handled by a form of subclassing:
* driver module embeds this structure at the head of whatever
* else it needs, and performs casts as needed.
*/
};
extern const hal_ks_driver_t
hal_ks_volatile_driver[1],
hal_ks_token_driver[1];
static inline hal_error_t hal_ks_init(const hal_ks_driver_t * const driver,
const int alloc)
{
if (driver == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (driver->init == NULL)
return HAL_ERROR_NOT_IMPLEMENTED;
return driver->init(driver, alloc);
}
static inline hal_error_t hal_ks_shutdown(const hal_ks_driver_t * const driver)
{
if (driver == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (driver->shutdown == NULL)
return HAL_ERROR_NOT_IMPLEMENTED;
return driver->shutdown(driver);
}
static inline hal_error_t hal_ks_open(const hal_ks_driver_t * const driver,
hal_ks_t **ks)
{
if (driver == NULL || ks == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (driver->open == NULL)
return HAL_ERROR_NOT_IMPLEMENTED;
return driver->open(driver, ks);
}
static inline hal_error_t hal_ks_close(hal_ks_t *ks)
{
if (ks == NULL || ks->driver == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (ks->driver->close == NULL)
return HAL_ERROR_NOT_IMPLEMENTED;
return ks->driver->close(ks);
}
static inline hal_error_t hal_ks_store(hal_ks_t *ks,
hal_pkey_slot_t *slot,
const uint8_t * const der, const size_t der_len)
{
if (ks == NULL || ks->driver == NULL || slot == NULL || der == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (ks->driver->store == NULL)
return HAL_ERROR_NOT_IMPLEMENTED;
return ks->driver->store(ks, slot, der, der_len);
}
static inline hal_error_t hal_ks_fetch(hal_ks_t *ks,
hal_pkey_slot_t *slot,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (ks == NULL || ks->driver == NULL || slot == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (ks->driver->fetch == NULL)
return HAL_ERROR_NOT_IMPLEMENTED;
return ks->driver->fetch(ks, slot, der, der_len, der_max);
}
static inline hal_error_t hal_ks_delete(hal_ks_t *ks,
hal_pkey_slot_t *slot)
{
if (ks == NULL || ks->driver == NULL || slot == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (ks->driver->delete == NULL)
return HAL_ERROR_NOT_IMPLEMENTED;
return ks->driver->delete(ks, slot);
}
static inline hal_error_t hal_ks_match(hal_ks_t *ks,
const hal_client_handle_t client,
const hal_session_handle_t session,
const hal_key_type_t type,
const hal_curve_name_t curve,
const hal_key_flags_t flags,
const hal_pkey_attribute_t *attributes,
const unsigned attributes_len,
hal_uuid_t *result,
unsigned *result_len,
const unsigned result_max,
const hal_uuid_t * const previous_uuid)
{
if (ks == NULL || ks->driver == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (ks->driver->match == NULL)
return HAL_ERROR_NOT_IMPLEMENTED;
return ks->driver->match(ks, client, session, type, curve, flags, attributes, attributes_len,
result, result_len, result_max, previous_uuid);
}
static inline hal_error_t hal_ks_set_attributes(hal_ks_t *ks,
hal_pkey_slot_t *slot,
const hal_pkey_attribute_t *attributes,
const unsigned attributes_len)
{
if (ks == NULL || ks->driver == NULL || slot == NULL ||
attributes == NULL || attributes_len == 0)
return HAL_ERROR_BAD_ARGUMENTS;
if (ks->driver->set_attributes == NULL)
return HAL_ERROR_NOT_IMPLEMENTED;
return ks->driver->set_attributes(ks, slot, attributes, attributes_len);
}
static inline hal_error_t hal_ks_get_attributes(hal_ks_t *ks,
hal_pkey_slot_t *slot,
hal_pkey_attribute_t *attributes,
const unsigned attributes_len,
uint8_t *attributes_buffer,
const size_t attributes_buffer_len)
{
if (ks == NULL || ks->driver == NULL || slot == NULL ||
attributes == NULL || attributes_len == 0)
return HAL_ERROR_BAD_ARGUMENTS;
if (ks->driver->get_attributes == NULL)
return HAL_ERROR_NOT_IMPLEMENTED;
return ks->driver->get_attributes(ks, slot, attributes, attributes_len,
attributes_buffer, attributes_buffer_len);
}
/*
* Keystore index. This is intended to be usable by both memory-based
* (in-memory, mmap(), ...) keystores and keystores based on raw flash.
* Some of the features aren't really necessary for memory-based keystores,
* but should be harmless.
*
* General approach is multiple arrays, all but one of which are
* indexed by "block" numbers, where a block number might be a slot in
* yet another static array, the number of a flash sub-sector, or
* whatever is the appropriate unit for holding one keystore record.
*
* The index array contains nothing but flags and block numbers, and
* is deliberately a small data structure so that moving data around
* within it is relatively cheap.
*
* The index array is divided into two portions: the index proper, and
* the free queue. The index proper is ordered according to the names
* (UUIDs) of the corresponding blocks; the free queue is a FIFO, to
* support a simplistic form of wear leveling in flash-based keystores.
*
* Key names are kept in a separate array, indexed by block number.
* Key names here are a composite of the key's UUID and a "chunk"
* number; the latter allows storage of keys whose total size exceeds
* one block (whatever a block is). For the moment we keep the UUID
* and the chunk number in a single array, which may provide (very)
* slightly better performance due to reference locality in SDRAM, but
* this may change if we need to reclaim the space wasted by structure
* size rounding.
*
* The all-zeros UUID, which (by definition) cannot be a valid key
* UUID, is reserved for the (non-key) block used to stash PINs and
* other small data which aren't really part of the keystore proper
* but are kept with it because the keystore is the flash we have.
*
* Note that this API deliberately says nothing about how the keys
* themselves are stored, that's up to the keystore driver. This
* portion of the API is only concerned with allocation and naming.
*/
typedef struct {
hal_uuid_t name; /* Key name */
uint8_t chunk; /* Key chunk number */
} hal_ks_name_t;
typedef struct {
unsigned size; /* Array length */
unsigned used; /* How many blocks are in use */
uint16_t *index; /* Index/freelist array */
hal_ks_name_t *names; /* Keyname array */
} hal_ks_index_t;
/*
* Finish setting up key index. Caller must populate index, free
* list, and name array.
*
* This function checks a few things then sorts the index proper.
*
* If driver cares about wear leveling, driver must supply the free
* list in the desired order (FIFO); figuring out what that order is a
* problem for the keystore driver.
*/
extern hal_error_t hal_ks_index_setup(hal_ks_index_t *ksi);
/*
* Find a key block, return its block number.
*/
extern hal_error_t hal_ks_index_find(hal_ks_index_t *ksi,
const hal_uuid_t * const name,
const unsigned chunk,
unsigned *blockno,
int *hint);
/*
* Find all the blocks in a key, return the block numbers.
*/
extern hal_error_t hal_ks_index_find_range(hal_ks_index_t *ksi,
const hal_uuid_t * const name,
const unsigned max_blocks,
unsigned *n_blocks,
unsigned *blocknos,
int *hint,
const int strict);
/*
* Add a key block, return its block number.
*/
extern hal_error_t hal_ks_index_add(hal_ks_index_t *ksi,
const hal_uuid_t * const name,
const unsigned chunk,
unsigned *blockno,
int *hint);
/*
* Delete a key block, returns its block number (driver may need it).
*/
extern hal_error_t hal_ks_index_delete(hal_ks_index_t *ksi,
const hal_uuid_t * const name,
const unsigned chunk,
unsigned *blockno,
int *hint);
/*
* Delete all of blocks in a key, returning the block numbers.
*/
extern hal_error_t hal_ks_index_delete_range(hal_ks_index_t *ksi,
const hal_uuid_t * const name,
const unsigned max_blocks,
unsigned *n_blocks,
unsigned *blocknos,
int *hint);
/*
* Replace a key block with a new one, return new block number.
* Name of block does not change. This is an optimization of
* a delete immediately followed by an add for the same name.
*/
extern hal_error_t hal_ks_index_replace(hal_ks_index_t *ksi,
const hal_uuid_t * const name,
const unsigned chunk,
unsigned *blockno,
int *hint);
/*
* Check the index for errors. At least for the moment, this just
* reports errors, it doesn't attempt to fix them.
*/
extern hal_error_t hal_ks_index_fsck(hal_ks_index_t *ksi);
/*
* Keystore attribute utilities, for use by keystore drivers.
*/
extern const size_t hal_ks_attribute_header_size;
extern hal_error_t hal_ks_attribute_scan(const uint8_t * const bytes,
const size_t bytes_len,
hal_pkey_attribute_t *attributes,
const unsigned attributes_len,
size_t *total_len);
extern hal_error_t hal_ks_attribute_delete(uint8_t *bytes,
const size_t bytes_len,
hal_pkey_attribute_t *attributes,
unsigned *attributes_len,
size_t *total_len,
const uint32_t type);
extern hal_error_t hal_ks_attribute_insert(uint8_t *bytes, const size_t bytes_len,
hal_pkey_attribute_t *attributes,
unsigned *attributes_len,
size_t *total_len,
const uint32_t type,
const uint8_t * const value,
const size_t value_len);
/*
* RPC lowest-level send and receive routines. These are blocking, and
* transport-specific (sockets, USB).
*/
extern hal_error_t hal_rpc_send(const uint8_t * const buf, const size_t len);
extern hal_error_t hal_rpc_recv(uint8_t * const buf, size_t * const len);
extern hal_error_t hal_rpc_sendto(const uint8_t * const buf, const size_t len, void *opaque);
extern hal_error_t hal_rpc_recvfrom(uint8_t * const buf, size_t * const len, void **opaque);
extern hal_error_t hal_rpc_client_transport_init(void);
extern hal_error_t hal_rpc_client_transport_close(void);
extern hal_error_t hal_rpc_server_transport_init(void);
extern hal_error_t hal_rpc_server_transport_close(void);
/*
* RPC function numbers
*/
typedef enum {
RPC_FUNC_GET_VERSION,
RPC_FUNC_GET_RANDOM,
RPC_FUNC_SET_PIN,
RPC_FUNC_LOGIN,
RPC_FUNC_LOGOUT,
RPC_FUNC_LOGOUT_ALL,
RPC_FUNC_IS_LOGGED_IN,
RPC_FUNC_HASH_GET_DIGEST_LEN,
RPC_FUNC_HASH_GET_DIGEST_ALGORITHM_ID,
RPC_FUNC_HASH_GET_ALGORITHM,
RPC_FUNC_HASH_INITIALIZE,
RPC_FUNC_HASH_UPDATE,
RPC_FUNC_HASH_FINALIZE,
RPC_FUNC_PKEY_LOAD,
RPC_FUNC_PKEY_OPEN,
RPC_FUNC_PKEY_GENERATE_RSA,
RPC_FUNC_PKEY_GENERATE_EC,
RPC_FUNC_PKEY_CLOSE,
RPC_FUNC_PKEY_DELETE,
RPC_FUNC_PKEY_GET_KEY_TYPE,
RPC_FUNC_PKEY_GET_KEY_FLAGS,
RPC_FUNC_PKEY_GET_PUBLIC_KEY_LEN,
RPC_FUNC_PKEY_GET_PUBLIC_KEY,
RPC_FUNC_PKEY_SIGN,
RPC_FUNC_PKEY_VERIFY,
RPC_FUNC_PKEY_MATCH,
RPC_FUNC_PKEY_GET_KEY_CURVE,
RPC_FUNC_PKEY_SET_ATTRIBUTES,
RPC_FUNC_PKEY_GET_ATTRIBUTES,
} rpc_func_num_t;
#define RPC_VERSION 0x01010000 /* 1.1.0.0 */
/*
* RPC client locality. These have to be defines rather than an enum,
* because they're handled by the preprocessor.
*/
#define RPC_CLIENT_LOCAL 0
#define RPC_CLIENT_REMOTE 1
#define RPC_CLIENT_MIXED 2
#define RPC_CLIENT_NONE 3
/*
* Maximum size of a HAL RPC packet.
*/
#ifndef HAL_RPC_MAX_PKT_SIZE
#define HAL_RPC_MAX_PKT_SIZE 4096
#endif
/*
* Location of AF_UNIX socket for RPC client mux daemon.
*/
#ifndef HAL_CLIENT_DAEMON_DEFAULT_SOCKET_NAME
#define HAL_CLIENT_DAEMON_DEFAULT_SOCKET_NAME "/tmp/cryptech_rpcd.socket"
#endif
/*
* Default device name and line speed for HAL RPC serial connection to HSM.
*/
#ifndef HAL_CLIENT_SERIAL_DEFAULT_DEVICE
#define HAL_CLIENT_SERIAL_DEFAULT_DEVICE "/dev/ttyUSB0"
#endif
#ifndef HAL_CLIENT_SERIAL_DEFAULT_SPEED
#define HAL_CLIENT_SERIAL_DEFAULT_SPEED 921600
#endif
/*
* Names of environment variables for setting the above in RPC clients.
*/
#define HAL_CLIENT_SERIAL_DEVICE_ENVVAR "CRYPTECH_RPC_CLIENT_SERIAL_DEVICE"
#define HAL_CLIENT_SERIAL_SPEED_ENVVAR "CRYPTECH_RPC_CLIENT_SERIAL_SPEED"
#endif /* _HAL_INTERNAL_H_ */
/*
* Local variables:
* indent-tabs-mode: nil
* End:
*/
|