aboutsummaryrefslogtreecommitdiff
path: root/ecdsa.c
blob: e46904d6a981b6b6432587f1dc60c6fb406b1a05 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
22
/*
 * Test code that just sends the letters 'a' to 'z' over and
 * over again using USART2.
 *
 * Toggles the BLUE LED slowly and the RED LED for every
 * character sent.
 */
#include "stm32f4xx_hal.h"
#include "stm-init.h"
#include "stm-led.h"
#include "stm-uart.h"

void test_for_shorts(char port, GPIO_TypeDef* GPIOx, uint16_t GPIO_Test_Pins);

//------------------------------------------------------------------------------
// Defines
//------------------------------------------------------------------------------


//------------------------------------------------------------------------------
// Macros
//------------------------------------------------------------------------------

/* These are all the pins used by the FMC interface */
#define GPIOB_PINS  (GPIO_PIN_7)

#define GPIOD_PINS  (GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_11	\
		     |GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15	\
		     |GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_3|GPIO_PIN_4	\
		     |GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7)

#define GPIOE_PINS  (GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_7	\
		     |GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_11	\
		     |GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15)

#define GPIOF_PINS  (GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3	\
		     |GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_12|GPIO_PIN_13	\
		     |GPIO_PIN_14|GPIO_PIN_15)

#define GPIOG_PINS  (GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3	\
		     |GPIO_PIN_4|GPIO_PIN_5)

#define GPIOH_PINS  (GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_11	\
		     |GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15)

#define GPIOI_PINS  (GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_0|GPIO_PIN_1	\
		     |GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_6|GPIO_PIN_7)

int
main()
{
  stm_init();

  // enable gpio clocks
  __GPIOA_CLK_ENABLE();
  __GPIOB_CLK_ENABLE();
  __GPIOD_CLK_ENABLE();
  __GPIOE_CLK_ENABLE();
  __GPIOF_CLK_ENABLE();
  __GPIOG_CLK_ENABLE();
  __GPIOH_CLK_ENABLE();
  __GPIOI_CLK_ENABLE();

  while (1) {
    HAL_GPIO_TogglePin(LED_PORT, LED_GREEN);
    uart_send_string("\r\n\r\n\r\n\r\n\r\n");

    test_for_shorts('B', GPIOB, GPIOB_PINS);
    test_for_shorts('D', GPIOD, GPIOD_PINS);
    test_for_shorts('E', GPIOE, GPIOE_PINS);
    test_for_shorts('F', GPIOF, GPIOF_PINS);
    test_for_shorts('G', GPIOG, GPIOG_PINS);
    test_for_shorts('H', GPIOH, GPIOH_PINS);
    test_for_shorts('I', GPIOI, GPIOI_PINS);
    led_toggle(LED_BLUE);
    HAL_Delay(2000);
  }
}

void configure_all_as_input(GPIO_TypeDef* GPIOx, uint16_t GPIO_Test_Pins)
{
  GPIO_InitTypeDef GPIO_InitStruct;

  /* Configure all pins as input. XXX do all pins (0xffff) instead of just GPIO_Test_Pins? */
  GPIO_InitStruct.Pin = GPIO_Test_Pins;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_PULLDOWN;
  GPIO_InitStruct.Speed = GPIO_SPEED_LOW;
  HAL_GPIO_Init(GPIOx, &GPIO_InitStruct);
}

uint8_t check_no_input(char port, GPIO_TypeDef* GPIOx, uint16_t GPIO_Test_Pins, char wrote_port, uint16_t wrote_value)
{
  uint16_t read;

  /* Read all pins from port at once. XXX check all pins, not just GPIO_Test_Pins? */
  read = (GPIOx->IDR & GPIO_Test_Pins);

  if (! read) {
    /* No unexpected pins read as HIGH */
    return 0;
  }

  led_on(LED_RED);

  uart_send_string("Wrote ");
  uart_send_binary(wrote_value, 16);

  uart_send_string(" to port GPIO");
  uart_send_char(wrote_port);

  uart_send_string(", read ");
  uart_send_binary(read, 16);

  uart_send_string(" from GPIO");
  uart_send_char(port);

  uart_send_string("\r\n");

  return 1;
}

void test_for_shorts(char port, GPIO_TypeDef* GPIOx, uint16_t GPIO_Test_Pins)
{
  GPIO_InitTypeDef GPIO_InitStruct;
  uint16_t i, fail = 0, Test_Pin, read;

  configure_all_as_input(GPIOB, GPIOB_PINS);
  configure_all_as_input(GPIOD, GPIOD_PINS);
  configure_all_as_input(GPIOE, GPIOE_PINS);
  configure_all_as_input(GPIOF, GPIOF_PINS);
  configure_all_as_input(GPIOG, GPIOG_PINS);
  configure_all_as_input(GPIOH, GPIOH_PINS);
  configure_all_as_input(GPIOI, GPIOI_PINS);

  check_no_input('B', GPIOB, GPIOB_PINS, 'x', 0);
  check_no_input('D', GPIOD, GPIOD_PINS, 'x', 0);
  check_no_input('E', GPIOE, GPIOE_PINS, 'x', 0);
  check_no_input('F', GPIOF, GPIOF_PINS, 'x', 0);
  check_no_input('G', GPIOG, GPIOG_PINS, 'x', 0);
  check_no_input('H', GPIOH, GPIOH_PINS, 'x', 0);
  check_no_input('I', GPIOI, GPIOI_PINS, 'x', 0);

  for (i = 0; i < 31; i++) {
    Test_Pin = 1 << i;
    if (! (GPIO_Test_Pins & Test_Pin)) continue;

    configure_all_as_input(GPIOx, GPIO_Test_Pins);

    /* Change one pin to output */
    GPIO_InitStruct.Pin = Test_Pin;
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStruct.Pull = GPIO_PULLDOWN;
    GPIO_InitStruct.Speed = GPIO_SPEED_LOW;
    HAL_GPIO_Init(GPIOx, &GPIO_InitStruct);

    HAL_GPIO_WritePin(GPIOx, Test_Pin, GPIO_PIN_SET);

    /* Slight delay after setting the output pin. Without this, the Test_Pin
       bit might read as zero, as it is only sampled once every AHB1 clock cycle.
       Reference manual DM00031020 section 8.3.1.
    */
    HAL_Delay(1);

    /* Read all input GPIOs from port at once. XXX check all pins, not just GPIO_Test_Pins? */
    read = GPIOx->IDR & GPIO_Test_Pins;

    if (read == Test_Pin) {
      /* No unexpected pins read as HIGH */
      led_toggle(LED_GREEN);
    } else {
      led_on(LED_RED);
      uart_send_string("GPIO");
      uart_send_char(port);

      uart_send_string(" exp ");
      uart_send_binary(Test_Pin, 16);

      uart_send_string(" got ");
      uart_send_binary(read, 16);

      uart_send_string(" diff ");
      uart_send_binary(read ^ Test_Pin, 16);

      uart_send_string("\r\n");

      fail++;
    }

    /* Check there is no input on any of the other GPIO ports (adjacent pins might live on different ports) */
    if (port != 'B') fail += check_no_input('B', GPIOB, GPIOB_PINS, port, Test_Pin);
    if (port != 'D') fail += check_no_input('D', GPIOD, GPIOD_PINS, port, Test_Pin);
    if (port != 'E') fail += check_no_input('E', GPIOE, GPIOE_PINS, port, Test_Pin);
    if (port != 'F') fail += check_no_input('F', GPIOF, GPIOF_PINS, port, Test_Pin);
    if (port != 'G') fail += check_no_input('G', GPIOG, GPIOG_PINS, port, Test_Pin);
    if (port != 'H') fail += check_no_input('H', GPIOH, GPIOH_PINS, port, Test_Pin);
    if (port != 'I') fail += check_no_input('I', GPIOI, GPIOI_PINS, port, Test_Pin);

    HAL_GPIO_WritePin(GPIOx, Test_Pin, GPIO_PIN_RESET);
  }

  if (fail) {
    uart_send_string("\r\n");
  }
}
a> 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
/*
 * ecdsa.c
 * -------
 * Elliptic Curve Digital Signature Algorithm for NIST prime curves.
 *
 * At some point we may want to refactor this code to separate
 * functionality that applies to all elliptic curve cryptography into
 * a separate module from functions specific to ECDSA over the NIST
 * prime curves, but it's simplest to keep this all in one place
 * initially.
 *
 * Much of the code in this module is based, at least loosely, on Tom
 * St Denis's libtomcrypt code.  Algorithms for point addition and
 * point doubling courtesy of the hyperelliptic.org formula database.
 *
 * Authors: Rob Austein
 * Copyright (c) 2015, NORDUnet A/S
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * - Redistributions of source code must retain the above copyright notice,
 *   this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 *
 * - Neither the name of the NORDUnet nor the names of its contributors may
 *   be used to endorse or promote products derived from this software
 *   without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * We use "Tom's Fast Math" library for our bignum implementation.
 * This particular implementation has a couple of nice features:
 *
 * - The code is relatively readable, thus reviewable.
 *
 * - The bignum representation doesn't use dynamic memory, which
 *   simplifies things for us.
 *
 * The price tag for not using dynamic memory is that libtfm has to be
 * configured to know about the largest bignum one wants it to be able
 * to support at compile time.  This should not be a serious problem.
 *
 * We use a lot of one-element arrays (fp_int[1] instead of plain
 * fp_int) to avoid having to prefix every use of an fp_int with "&".
 * Perhaps we should encapsulate this idiom in a typedef.
 *
 * Unfortunately, libtfm is bad about const-ification, but we want to
 * hide that from our users, so our public API uses const as
 * appropriate and we use inline functions to remove const constraints
 * in a relatively type-safe manner before calling libtom.
 */

#include <stdint.h>
#include <assert.h>

#include "hal.h"
#include <tfm.h>
#include "asn1_internal.h"

/*
 * Whether we're using static test vectors instead of the random
 * number generator.  Do NOT enable this in production (doh).
 */

#ifndef HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM
#define HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM 0
#endif

#ifdef RPC_CLIENT
#define hal_get_random(core, buffer, length) hal_rpc_get_random(buffer, length)
#endif

/*
 * Whether we want debug output.
 */

static int debug = 0;

void hal_ecdsa_set_debug(const int onoff)
{
  debug = onoff;
}

/*
 * ECDSA curve descriptor.  We only deal with named curves; at the
 * moment, we only deal with NIST prime curves where the elliptic
 * curve's "a" parameter is always -3 and its "h" value (order of
 * elliptic curve group divided by order of base point) is always 1.
 *
 * Since the Montgomery parameters we need for the point arithmetic
 * depend only on the underlying field prime, we precompute them when
 * we load the curve and store them in the field descriptor, even
 * though they aren't really curve parameters per se.
 *
 * For similar reasons, we also include the ASN.1 OBJECT IDENTIFIERs
 * used to name these curves.
 */

typedef struct {
  fp_int q[1];                          /* Modulus of underlying prime field */
  fp_int b[1];                          /* Curve's "b" parameter */
  fp_int Gx[1];                         /* x component of base point G */
  fp_int Gy[1];                         /* y component of base point G */
  fp_int n[1];                          /* Order of base point G */
  fp_int mu[1];                         /* Montgomery normalization factor */
  fp_digit rho;                         /* Montgomery reduction value */
  const uint8_t *oid;                   /* OBJECT IDENTIFIER */
  size_t oid_len;                       /* Length of OBJECT IDENTIFIER */
} ecdsa_curve_t;

/*
 * ECDSA key implementation.  This structure type is private to this
 * module, anything else that needs to touch one of these just gets a
 * typed opaque pointer.  We do, however, export the size, so that we
 * can make memory allocation the caller's problem.
 *
 * EC points are stored in Jacobian format such that (x, y, z) =>
 * (x/z**2, y/z**3, 1) when interpretted as affine coordinates.
 *
 * There are really three different representations in use here:
 *
 * 1) Plain affine representation (z == 1);
 * 2) Montgomery form affine representation (z == curve->mu); and
 * 3) Montgomery form Jacobian representation (whatever).
 *
 * Only form (1) is ever visible outside this module.  We perform
 * explicit conversions from form (1) to form (2) and from forms (2,3)
 * to form (1).  Form (3) only occurs as the result of compuation.
 *
 * In theory, we could shave some microscopic amount of time off of
 * signature verification by supporting an explicit conversion from
 * form (3) to form (2), but it's not worth the additional complexity.
 */

typedef struct {
  fp_int x[1], y[1], z[1];
} ec_point_t;

struct hal_ecdsa_key {
  hal_key_type_t type;                  /* Public or private */
  hal_curve_name_t curve;               /* Curve descriptor */
  ec_point_t Q[1];                      /* Public key */
  fp_int d[1];                          /* Private key */
};

const size_t hal_ecdsa_key_t_size = sizeof(struct hal_ecdsa_key);

/*
 * Initializers.  We want to be able to initialize automatic fp_int
 * and ec_point_t variables to a sane value (less error prone), but
 * picky compilers whine about the number of curly braces required.
 * So we define macros which isolate that madness in one place, and
 * use those macros everywhere.
 */

#define INIT_FP_INT	{{{0}}}
#define	INIT_EC_POINT_T	{{INIT_FP_INT}}

/*
 * Error handling.
 */

#define lose(_code_) do { err = _code_; goto fail; } while (0)

/*
 * We can't (usefully) initialize fp_int variables to non-zero values
 * at compile time, so instead we load all the curve parameters the
 * first time anything asks for any of them.
 */

static const ecdsa_curve_t * const get_curve(const hal_curve_name_t curve)
{
  static ecdsa_curve_t curve_p256, curve_p384, curve_p521;
  static int initialized = 0;

  if (!initialized) {

#include "ecdsa_curves.h"

    fp_read_unsigned_bin(curve_p256.q,  unconst_uint8_t(p256_q),  sizeof(p256_q));
    fp_read_unsigned_bin(curve_p256.b,  unconst_uint8_t(p256_b),  sizeof(p256_b));
    fp_read_unsigned_bin(curve_p256.Gx, unconst_uint8_t(p256_Gx), sizeof(p256_Gx));
    fp_read_unsigned_bin(curve_p256.Gy, unconst_uint8_t(p256_Gy), sizeof(p256_Gy));
    fp_read_unsigned_bin(curve_p256.n,  unconst_uint8_t(p256_n),  sizeof(p256_n));
    if (fp_montgomery_setup(curve_p256.q, &curve_p256.rho) != FP_OKAY)
      return NULL;
    fp_zero(curve_p256.mu);
    fp_montgomery_calc_normalization(curve_p256.mu, curve_p256.q);
    curve_p256.oid = p256_oid;
    curve_p256.oid_len = sizeof(p256_oid);

    fp_read_unsigned_bin(curve_p384.q,  unconst_uint8_t(p384_q),  sizeof(p384_q));
    fp_read_unsigned_bin(curve_p384.b,  unconst_uint8_t(p384_b),  sizeof(p384_b));
    fp_read_unsigned_bin(curve_p384.Gx, unconst_uint8_t(p384_Gx), sizeof(p384_Gx));
    fp_read_unsigned_bin(curve_p384.Gy, unconst_uint8_t(p384_Gy), sizeof(p384_Gy));
    fp_read_unsigned_bin(curve_p384.n,  unconst_uint8_t(p384_n),  sizeof(p384_n));
    if (fp_montgomery_setup(curve_p384.q, &curve_p384.rho) != FP_OKAY)
      return NULL;
    fp_zero(curve_p384.mu);
    fp_montgomery_calc_normalization(curve_p384.mu, curve_p384.q);
    curve_p384.oid = p384_oid;
    curve_p384.oid_len = sizeof(p384_oid);

    fp_read_unsigned_bin(curve_p521.q,  unconst_uint8_t(p521_q),  sizeof(p521_q));
    fp_read_unsigned_bin(curve_p521.b,  unconst_uint8_t(p521_b),  sizeof(p521_b));
    fp_read_unsigned_bin(curve_p521.Gx, unconst_uint8_t(p521_Gx), sizeof(p521_Gx));
    fp_read_unsigned_bin(curve_p521.Gy, unconst_uint8_t(p521_Gy), sizeof(p521_Gy));
    fp_read_unsigned_bin(curve_p521.n,  unconst_uint8_t(p521_n),  sizeof(p521_n));
    if (fp_montgomery_setup(curve_p521.q, &curve_p521.rho) != FP_OKAY)
      return NULL;
    fp_zero(curve_p521.mu);
    fp_montgomery_calc_normalization(curve_p521.mu, curve_p521.q);
    curve_p521.oid = p521_oid;
    curve_p521.oid_len = sizeof(p521_oid);

    initialized = 1;
  }

  switch (curve) {
  case HAL_CURVE_P256:  return &curve_p256;
  case HAL_CURVE_P384:  return &curve_p384;
  case HAL_CURVE_P521:  return &curve_p521;
  default:              return NULL;
  }
}

static inline const ecdsa_curve_t * oid_to_curve(hal_curve_name_t *curve_name,
                                                 const uint8_t * const oid,
                                                 const size_t oid_len)
{
  assert(curve_name != NULL && oid != NULL);

  const ecdsa_curve_t *curve = NULL;
  *curve_name = HAL_CURVE_NONE;

  while ((curve = get_curve(++*curve_name)) != NULL)
    if (oid_len == curve->oid_len && memcmp(oid, curve->oid, oid_len) == 0)
      return curve;

  return NULL;
}

/*
 * Finite field operations (hence "ff_").  These are basically just
 * the usual bignum operations, constrained by the field modulus.
 *
 * All of these are operations in the field underlying the specified
 * curve, and assume that operands are already in Montgomery form.
 *
 * The ff_add() and ff_sub() are written a bit oddly, in an attempt to
 * make them run in constant time.  An optimizing compiler may be
 * clever enough to defeat this.  In the long run, we probably want to
 * perform these field operations in Verilog anyway.
 *
 * We might be able to squeeze a bit more speed out of the point
 * arithmetic by making using fp_mul_2d() when multiplying by a power
 * of two.  Skipping for now as a premature optimization, but if we do
 * need this, it'd probably be simplest to add a ff_dbl() function
 * which handles overflow in the same way that ff_add() does.
 */

static inline void ff_add(const ecdsa_curve_t * const curve,
                          const fp_int * const a,
                          const fp_int * const b,
                          fp_int *c)
{
  fp_int t[2][1] = {INIT_FP_INT};

  fp_add(unconst_fp_int(a), unconst_fp_int(b), t[0]);
  fp_sub(t[0], unconst_fp_int(curve->q), t[1]);

  fp_copy(t[fp_cmp_d(t[1], 0) != FP_LT], c);

  memset(t, 0, sizeof(t));
}

static inline void ff_sub(const ecdsa_curve_t * const curve,
                          const fp_int * const a,
                          const fp_int * const b,
                          fp_int *c)
{
  fp_int t[2][1] = {INIT_FP_INT};

  fp_sub(unconst_fp_int(a), unconst_fp_int(b), t[0]);
  fp_add(t[0], unconst_fp_int(curve->q), t[1]);

  fp_copy(t[fp_cmp_d(t[0], 0) == FP_LT], c);

  memset(t, 0, sizeof(t));
}

static inline void ff_mul(const ecdsa_curve_t * const curve,
                          const fp_int * const a,
                          const fp_int * const b,
                          fp_int *c)
{
  fp_mul(unconst_fp_int(a), unconst_fp_int(b), c);
  fp_montgomery_reduce(c, unconst_fp_int(curve->q), curve->rho);
}

static inline void ff_sqr(const ecdsa_curve_t * const curve,
                          const fp_int * const a,
                          fp_int *b)
{
  fp_sqr(unconst_fp_int(a), b);
  fp_montgomery_reduce(b, unconst_fp_int(curve->q), curve->rho);
}

/*
 * Test whether a point is the point at infinity.
 *
 * In Jacobian projective coordinate, any point of the form
 *
 *   (j ** 2, j **3, 0) for j in [1..q-1]
 *
 * is on the line at infinity, but for practical purposes simply
 * checking the z coordinate is probably sufficient.
 */

static inline int point_is_infinite(const ec_point_t * const P)
{
  assert(P != NULL);
  return fp_iszero(P->z);
}

/*
 * Set a point to be the point at infinity.  For Jacobian projective
 * coordinates, it's customary to use (1 : 1 : 0) as the
 * representitive value.
 *
 * If a curve is supplied, we want the Montgomery form of the point at
 * infinity for that curve.
 */

static inline void point_set_infinite(ec_point_t *P, const ecdsa_curve_t * const curve)
{
  assert(P != NULL);

  if (curve != NULL) {
    fp_copy(unconst_fp_int(curve->mu), P->x);
    fp_copy(unconst_fp_int(curve->mu), P->y);
    fp_zero(P->z);
  }

  else {
    fp_set(P->x, 1);
    fp_set(P->y, 1);
    fp_zero(P->z);
  }
}

/*
 * Copy a point.
 */

static inline void point_copy(const ec_point_t * const P, ec_point_t *R)
{
  if (P != NULL && R != NULL && P != R)
    *R = *P;
}

/**
 * Convert a point into Montgomery form.
 * @param P        [in/out] The point to map
 * @param curve    The curve parameters structure
 */

static inline hal_error_t point_to_montgomery(ec_point_t *P,
                                              const ecdsa_curve_t * const curve)
{
  assert(P != NULL && curve != NULL);

  if (fp_cmp_d(unconst_fp_int(P->z), 1) != FP_EQ)
    return HAL_ERROR_BAD_ARGUMENTS;

  if (fp_mulmod(P->x, unconst_fp_int(curve->mu), unconst_fp_int(curve->q), P->x) != FP_OKAY ||
      fp_mulmod(P->y, unconst_fp_int(curve->mu), unconst_fp_int(curve->q), P->y) != FP_OKAY)
    return HAL_ERROR_IMPOSSIBLE;

  fp_copy(unconst_fp_int(curve->mu), P->z);
  return HAL_OK;
}

/**
 * Map a point in projective Jacbobian coordinates back to affine
 * space.  This also converts back from Montgomery to plain form.
 * @param P        [in/out] The point to map
 * @param curve    The curve parameters structure
 *
 * It's not possible to represent the point at infinity in plain
 * affine coordinates, and the calling function will have to handle
 * the point at infinity specially in any case, so we declare this to
 * be the calling function's problem.
 */

static inline hal_error_t point_to_affine(ec_point_t *P,
                                          const ecdsa_curve_t * const curve)
{
  assert(P != NULL && curve != NULL);

  if (point_is_infinite(P))
    return HAL_ERROR_IMPOSSIBLE;

  hal_error_t err = HAL_ERROR_IMPOSSIBLE;

  fp_int t1[1] = INIT_FP_INT;
  fp_int t2[1] = INIT_FP_INT;

  fp_int * const q = unconst_fp_int(curve->q);

  fp_montgomery_reduce(P->z, q, curve->rho);

  if (fp_invmod (P->z,   q, t1) != FP_OKAY ||    /* t1 = 1 / z    */
      fp_sqrmod (t1,     q, t2) != FP_OKAY ||    /* t2 = 1 / z**2 */
      fp_mulmod (t1, t2, q, t1) != FP_OKAY)      /* t1 = 1 / z**3 */
    goto fail;

  fp_mul (P->x,  t2,  P->x);                     /* x = x / z**2 */
  fp_mul (P->y,  t1,  P->y);                     /* y = y / z**3 */
  fp_set (P->z,  1);                             /* z = 1        */

  fp_montgomery_reduce(P->x, q, curve->rho);
  fp_montgomery_reduce(P->y, q, curve->rho);

  err = HAL_OK;

 fail:
  fp_zero(t1);
  fp_zero(t2);
  return err;
}

/**
 * Double an EC point.
 * @param P             The point to double
 * @param R             [out] The destination of the double
 * @param curve         The curve parameters structure
 *
 * Algorithm is dbl-2001-b from
 * http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html
 */

static inline void point_double(const ec_point_t * const P,
                                ec_point_t *R,
                                const ecdsa_curve_t * const curve)
{
  assert(P != NULL && R != NULL && curve != NULL);

  const int was_infinite = point_is_infinite(P);

  fp_int alpha[1] = INIT_FP_INT;
  fp_int beta[1]  = INIT_FP_INT;
  fp_int gamma[1] = INIT_FP_INT;
  fp_int delta[1] = INIT_FP_INT;
  fp_int t1[1]    = INIT_FP_INT;
  fp_int t2[1]    = INIT_FP_INT;

  ff_sqr  (curve,  P->z,          delta);       /* delta = Pz ** 2 */
  ff_sqr  (curve,  P->y,          gamma);       /* gamma = Py ** 2 */
  ff_mul  (curve,  P->x,  gamma,  beta);        /* beta  = Px * gamma */
  ff_sub  (curve,  P->x,  delta,  t1);          /* alpha = 3 * (Px - delta) * (Px + delta) */
  ff_add  (curve,  P->x,  delta,  t2);
  ff_mul  (curve,  t1,    t2,     t1);
  ff_add  (curve,  t1,    t1,     t2);
  ff_add  (curve,  t1,    t2,     alpha);

  ff_sqr  (curve,  alpha,         t1);          /* Rx = (alpha ** 2) - (8 * beta) */
  ff_add  (curve,  beta,  beta,   t2);
  ff_add  (curve,  t2,    t2,     t2);
  ff_add  (curve,  t2,    t2,     t2);
  ff_sub  (curve,  t1,    t2,     R->x);

  ff_add  (curve,  P->y,  P->z,   t1);          /* Rz = ((Py + Pz) ** 2) - gamma - delta */
  ff_sqr  (curve,  t1,            t1);
  ff_sub  (curve,  t1,    gamma,  t1);
  ff_sub  (curve,  t1,    delta,  R->z);

  ff_add  (curve,  beta,  beta,   t1);          /* Ry = (((4 * beta) - Rx) * alpha) - (8 * (gamma ** 2)) */
  ff_add  (curve,  t1,    t1,     t1);
  ff_sub  (curve,  t1,    R->x,   t1);
  ff_mul  (curve,  t1,    alpha,  t1);
  ff_sqr  (curve,  gamma,         t2);
  ff_add  (curve,  t2,    t2,     t2);
  ff_add  (curve,  t2,    t2,     t2);
  ff_add  (curve,  t2,    t2,     t2);
  ff_sub  (curve,  t1,    t2,     R->y);

  assert(was_infinite == point_is_infinite(P));

  fp_zero(alpha); fp_zero(beta); fp_zero(gamma); fp_zero(delta); fp_zero(t1); fp_zero(t2);
}

/**
 * Add two EC points
 * @param P             The point to add
 * @param Q             The point to add
 * @param R             [out] The destination of the double
 * @param curve         The curve parameters structure
 *
 * Algorithm is madd-2007-bl from
 * http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html
 *
 * The special cases are unfortunate, but are probably unavoidable for
 * this type of curve.  We do what we can to make this constant-time
 * in spite of the special cases.  The one we really can't do much
 * about is P == Q, because in that case we have to switch to the
 * point doubling algorithm.
 */

static inline void point_add(const ec_point_t * const P,
                             const ec_point_t * const Q,
                             ec_point_t *R,
                             const ecdsa_curve_t * const curve)
{
  assert(P != NULL && Q != NULL && R != NULL && curve != NULL);

  /*
   * Q must be affine in Montgomery form.
   */

  assert(fp_cmp(unconst_fp_int(Q->z), unconst_fp_int(curve->mu)) == FP_EQ);

#warning What happens here if P and Q are not equal but map to the same point in affine space?

  const int same_xz = (fp_cmp(unconst_fp_int(P->z), unconst_fp_int(Q->z)) == FP_EQ &&
                       fp_cmp(unconst_fp_int(P->x), unconst_fp_int(Q->x)) == FP_EQ);

  /*
   * If P == Q, we must use point doubling instead of point addition,
   * and there's nothing we can do to mask the timing differences.
   * So just do it, right away.
   */

  if (same_xz && fp_cmp(unconst_fp_int(P->y), unconst_fp_int(Q->y)) == FP_EQ)
    return point_double(P, R, curve);

  /*
   * Check now for the other special cases, but defer handling them
   * until the end, to mask timing differences.
   */

  const int P_was_infinite = point_is_infinite(P);

  fp_int Qy_neg[1] = INIT_FP_INT;
  fp_sub(unconst_fp_int(curve->q), unconst_fp_int(Q->y), Qy_neg);
  const int result_is_infinite = fp_cmp(unconst_fp_int(P->y), Qy_neg) == FP_EQ && same_xz;
  fp_zero(Qy_neg);

  /*
   * Main point addition algorithm.
   */

  fp_int Z1Z1[1] = INIT_FP_INT;
  fp_int H[1]    = INIT_FP_INT;
  fp_int HH[1]   = INIT_FP_INT;
  fp_int I[1]    = INIT_FP_INT;
  fp_int J[1]    = INIT_FP_INT;
  fp_int r[1]    = INIT_FP_INT;
  fp_int V[1]    = INIT_FP_INT;
  fp_int t[1]    = INIT_FP_INT;

  ff_sqr  (curve,  P->z,           Z1Z1);       /* Z1Z1 = Pz ** 2 */

  ff_mul  (curve,  Q->x,   Z1Z1,   H);          /* H = (Qx * Z1Z1) - Px */
  ff_sub  (curve,  H,      P->x,   H);

  ff_sqr  (curve,  H,              HH);         /* HH = H ** 2 */

  ff_add  (curve,  HH,     HH,     I);          /* I = 4 * HH */
  ff_add  (curve,  I,      I,      I);

  ff_mul  (curve,  H,      I,      J);          /* J = H * I */

  ff_mul  (curve,  P->z,   Z1Z1,   r);          /* r = 2 * ((Qy * Pz * Z1Z1) - Py) */
  ff_mul  (curve,  Q->y,   r,      r);
  ff_sub  (curve,  r,      P->y,   r);
  ff_add  (curve,  r,      r,      r);

  ff_mul  (curve,  P->x,   I,      V);          /* V = Px * I */

  ff_sqr  (curve,  r,              R->x);       /* Rx = (r ** 2) - J - (2 * V) */
  ff_sub  (curve,  R->x,   J,      R->x);
  ff_sub  (curve,  R->x,   V,      R->x);
  ff_sub  (curve,  R->x,   V,      R->x);

  ff_mul  (curve,  P->y,   J,      t);         /* Ry = (r * (V - Rx)) - (2 * Py * J) */
  ff_sub  (curve,  V,      R->x,   R->y);
  ff_mul  (curve,  r,      R->y,   R->y);
  ff_sub  (curve,  R->y,   t,      R->y);
  ff_sub  (curve,  R->y,   t,      R->y);

  ff_add  (curve,  P->z,   H,      R->z);       /* Rz = ((Pz + H) ** 2) - Z1Z1 - HH */
  ff_sqr  (curve,  R->z,           R->z);
  ff_sub  (curve,  R->z,   Z1Z1,   R->z);
  ff_sub  (curve,  R->z,   HH,     R->z);

  fp_zero(Z1Z1), fp_zero(H), fp_zero(HH), fp_zero(I), fp_zero(J), fp_zero(r), fp_zero(V), fp_zero(t);

  /*
   * Handle deferred special cases, then we're done.
   */

  if (P_was_infinite)
    point_copy(Q, R);

  else if (result_is_infinite)
    point_set_infinite(R, curve);
}

/**
 * Perform a point multiplication.
 * @param k             The scalar to multiply by
 * @param P             The base point
 * @param R             [out] Destination for kP
 * @param curve         Curve parameters
 * @return HAL_OK on success
 *
 * P must be in affine form.
 */

static hal_error_t point_scalar_multiply(const fp_int * const k,
                                         const ec_point_t * const P_,
                                         ec_point_t *R,
                                         const ecdsa_curve_t * const curve)
{
  assert(k != NULL && P_ != NULL && R != NULL &&  curve != NULL);

  if (fp_iszero(k) || fp_cmp_d(unconst_fp_int(P_->z), 1) != FP_EQ)
    return HAL_ERROR_BAD_ARGUMENTS;

  hal_error_t err;

  /*
   * Convert P to Montgomery form.
   */

  ec_point_t P[1];
  point_copy(P_, P);

  if ((err = point_to_montgomery(P, curve)) != HAL_OK) {
    memset(P, 0, sizeof(P));
    return err;
  }

  /*
   * Initialize table.
   * M[0] is a dummy for constant timing.
   * M[1] is where we accumulate the result.
   */

  ec_point_t M[2][1] = {INIT_EC_POINT_T};

  point_set_infinite(M[0], curve);
  point_set_infinite(M[1], curve);

  /*
   * Walk down bits of the scalar, performing dummy operations to mask
   * timing.
   *
   * Note that, in order for the timing protection to work, the
   * number of iterations in the loop has to depend on the order of
   * the base point rather than on the scalar.
   */

  for (int bit_index = fp_count_bits(unconst_fp_int(curve->n)) - 1; bit_index >= 0; bit_index--) {

    const int digit_index = bit_index / DIGIT_BIT;
    const fp_digit  digit = digit_index < k->used ? k->dp[digit_index] : 0;
    const fp_digit   mask = ((fp_digit) 1) << (bit_index % DIGIT_BIT);
    const int         bit = (digit & mask) != 0;

    point_double (M[1],        M[1],    curve);
    point_add    (M[bit],  P,  M[bit],  curve);

  }

  /*
   * Copy result, map back to affine, then done.
   */

  point_copy(M[1], R);

  err = point_to_affine(R, curve);

  memset(P, 0, sizeof(P));
  memset(M, 0, sizeof(M));

  return err;
}

/*
 * Testing only: ECDSA key generation and signature both have a
 * critical dependency on random numbers, but we can't use the random
 * number generator when testing against static test vectors. So add a
 * wrapper around the random number generator calls, with a hook to
 * let us override the generator for test purposes.  Do NOT use this
 * in production, kids.
 */

#if HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM

#warning hal_ecdsa random number generator overridden for test purposes
#warning DO NOT USE THIS IN PRODUCTION

typedef hal_error_t (*rng_override_test_function_t)(void *, const size_t);

static rng_override_test_function_t rng_test_override_function = 0;

rng_override_test_function_t hal_ecdsa_set_rng_override_test_function(rng_override_test_function_t new_func)
{
  rng_override_test_function_t old_func = rng_test_override_function;
  rng_test_override_function = new_func;
  return old_func;
}

static inline hal_error_t get_random(void *buffer, const size_t length)
{
  if (rng_test_override_function)
    return rng_test_override_function(buffer, length);
  else
    return hal_get_random(NULL, buffer, length);
}

#else /* HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM */

static inline hal_error_t get_random(void *buffer, const size_t length)
{
  return hal_get_random(NULL, buffer, length);
}

#endif /* HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM */

/*
 * Pick a random point on the curve, return random scalar and
 * resulting point.
 */

static hal_error_t point_pick_random(const ecdsa_curve_t * const curve,
                                     fp_int *k,
                                     ec_point_t *P)
{
  hal_error_t err;

  assert(curve != NULL && k != NULL && P != NULL);

  /*
   * Pick a random scalar corresponding to a point on the curve.  Per
   * the NSA (gulp) Suite B guidelines, we ask the CSPRNG for 64 more
   * bits than we need, which should be enough to mask any bias
   * induced by the modular reduction.
   *
   * We're picking a point out of the subgroup generated by the base
   * point on the elliptic curve, so the modulus for this calculation
   * is the order of the base point.
   *
   * Zero is an excluded value, but the chance of a non-broken CSPRNG
   * returning zero is so low that it would almost certainly indicate
   * an undiagnosed bug in the CSPRNG.
   */

  uint8_t k_buf[fp_unsigned_bin_size(unconst_fp_int(curve->n)) + 8];

  do {

    if ((err = get_random(k_buf, sizeof(k_buf))) != HAL_OK)
      return err;

    fp_read_unsigned_bin(k, k_buf, sizeof(k_buf));

    if (fp_iszero(k) || fp_mod(k, unconst_fp_int(curve->n), k) != FP_OKAY)
      return HAL_ERROR_IMPOSSIBLE;

  } while (fp_iszero(k));

  memset(k_buf, 0, sizeof(k_buf));

  /*
   * Calculate P = kG and return.
   */

  fp_copy(curve->Gx, P->x);
  fp_copy(curve->Gy, P->y);
  fp_set(P->z, 1);

  return point_scalar_multiply(k, P, P, curve);
}

/*
 * Test whether a point really is on a particular curve.  This is
 * called "validation" when applied to a public key, and is required
 * before verifying a signature.
 */

static int point_is_on_curve(const ec_point_t * const P,
                             const ecdsa_curve_t * const curve)
{
  assert(P != NULL && curve != NULL);

  fp_int t1[1] = INIT_FP_INT;
  fp_int t2[1] = INIT_FP_INT;

  /*
   * Compute y**2 - x**3 + 3*x.
   */

  fp_sqr(unconst_fp_int(P->y), t1);             /* t1 = y**2 */
  fp_sqr(unconst_fp_int(P->x), t2);             /* t2 = x**2 */
  if (fp_mod(t2, unconst_fp_int(curve->q), t2) != FP_OKAY)
    return 0;
  fp_mul(unconst_fp_int(P->x), t2, t2);         /* t2 = x**3 */
  fp_sub(t1, t2, t1);                           /* t1 = y**2 - x**3 */
  fp_add(t1, unconst_fp_int(P->x), t1);         /* t1 = y**2 - x**3 + 1*x */
  fp_add(t1, unconst_fp_int(P->x), t1);         /* t1 = y**2 - x**3 + 2*x */
  fp_add(t1, unconst_fp_int(P->x), t1);         /* t1 = y**2 - x**3 + 3*x */

  /*
   * Normalize and test whether computed value matches b.
   */

  if (fp_mod(t1, unconst_fp_int(curve->q), t1) != FP_OKAY)
    return 0;
  while (fp_cmp_d(t1, 0) == FP_LT)
    fp_add(t1, unconst_fp_int(curve->q), t1);
  while (fp_cmp(t1, unconst_fp_int(curve->q)) != FP_LT)
    fp_sub(t1, unconst_fp_int(curve->q), t1);

  return fp_cmp(t1, unconst_fp_int(curve->b)) == FP_EQ;
}

/*
 * Generate a new ECDSA key.
 */

hal_error_t hal_ecdsa_key_gen(const hal_core_t *core,
                              hal_ecdsa_key_t **key_,
                              void *keybuf, const size_t keybuf_len,
                              const hal_curve_name_t curve_)
{
  const ecdsa_curve_t * const curve = get_curve(curve_);
  hal_ecdsa_key_t *key = keybuf;
  hal_error_t err;

  if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key) || curve == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  memset(keybuf, 0, keybuf_len);

  key->type = HAL_KEY_TYPE_EC_PRIVATE;
  key->curve = curve_;

  if ((err = point_pick_random(curve, key->d, key->Q)) != HAL_OK)
    return err;

  assert(point_is_on_curve(key->Q, curve));

  *key_ = key;
  return HAL_OK;
}

/*
 * Extract key type (public or private).
 */

hal_error_t hal_ecdsa_key_get_type(const hal_ecdsa_key_t * const key,
                                   hal_key_type_t *key_type)
{
  if (key == NULL || key_type == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  *key_type = key->type;
  return HAL_OK;
}

/*
 * Extract name of curve underlying a key.
 */

hal_error_t hal_ecdsa_key_get_curve(const hal_ecdsa_key_t * const key,
                                    hal_curve_name_t *curve)
{
  if (key == NULL || curve == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  *curve = key->curve;
  return HAL_OK;
}

/*
 * Extract public key components.
 */

hal_error_t hal_ecdsa_key_get_public(const hal_ecdsa_key_t * const key,
                                     uint8_t *x, size_t *x_len, const size_t x_max,
                                     uint8_t *y, size_t *y_len, const size_t y_max)
{
  if (key == NULL || (x_len == NULL && x != NULL) || (y_len == NULL && y != NULL))
    return HAL_ERROR_BAD_ARGUMENTS;

  if (x_len != NULL)
    *x_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->x));

  if (y_len != NULL)
    *y_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->y));

  if ((x != NULL && *x_len > x_max) ||
      (y != NULL && *y_len > y_max))
    return HAL_ERROR_RESULT_TOO_LONG;

  if (x != NULL)
    fp_to_unsigned_bin(unconst_fp_int(key->Q->x), x);

  if (y != NULL)
    fp_to_unsigned_bin(unconst_fp_int(key->Q->y), y);

  return HAL_OK;
}

/*
 * Clear a key.
 */

void hal_ecdsa_key_clear(hal_ecdsa_key_t *key)
{
  if (key != NULL)
    memset(key, 0, sizeof(*key));
}

/*
 * Load a public key from components, and validate that the public key
 * really is on the named curve.
 */

hal_error_t hal_ecdsa_key_load_public(hal_ecdsa_key_t **key_,
                                      void *keybuf, const size_t keybuf_len,
                                      const hal_curve_name_t curve_,
                                      const uint8_t * const x, const size_t x_len,
                                      const uint8_t * const y, const size_t y_len)
{
  const ecdsa_curve_t * const curve = get_curve(curve_);
  hal_ecdsa_key_t *key = keybuf;

  if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key) || curve == NULL || x == NULL || y == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  memset(keybuf, 0, keybuf_len);

  key->type = HAL_KEY_TYPE_EC_PUBLIC;
  key->curve = curve_;

  fp_read_unsigned_bin(key->Q->x, unconst_uint8_t(x), x_len);
  fp_read_unsigned_bin(key->Q->y, unconst_uint8_t(y), y_len);
  fp_set(key->Q->z, 1);

  if (!point_is_on_curve(key->Q, curve))
    return HAL_ERROR_KEY_NOT_ON_CURVE;

  *key_ = key;

  return HAL_OK;
}

/*
 * Load a private key from components; does all the same things as
 * hal_ecdsa_key_load_public(), then loads the private key itself and
 * adjusts the key type.
 *
 * For extra paranoia, we could check Q == dG.
 */

hal_error_t hal_ecdsa_key_load_private(hal_ecdsa_key_t **key_,
                                       void *keybuf, const size_t keybuf_len,
                                       const hal_curve_name_t curve_,
                                       const uint8_t * const x, const size_t x_len,
                                       const uint8_t * const y, const size_t y_len,
                                       const uint8_t * const d, const size_t d_len)
{
  hal_ecdsa_key_t *key = keybuf;
  hal_error_t err;

  if (d == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  if ((err = hal_ecdsa_key_load_public(key_, keybuf, keybuf_len, curve_, x, x_len, y, y_len)) != HAL_OK)
    return err;

  key->type = HAL_KEY_TYPE_EC_PRIVATE;
  fp_read_unsigned_bin(key->d, unconst_uint8_t(d), d_len);
  return HAL_OK;
}

/*
 * Write public key in X9.62 ECPoint format (ASN.1 OCTET STRING, first octet is compression flag).
 */

hal_error_t hal_ecdsa_key_to_ecpoint(const hal_ecdsa_key_t * const key,
                                     uint8_t *der, size_t *der_len, const size_t der_max)
{
  if (key == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  const ecdsa_curve_t * const curve = get_curve(key->curve);
  if (curve == NULL)
    return HAL_ERROR_IMPOSSIBLE;

  const size_t q_len  = fp_unsigned_bin_size(unconst_fp_int(curve->q));
  const size_t Qx_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->x));
  const size_t Qy_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->y));
  assert(q_len >= Qx_len && q_len >= Qy_len);

  const size_t vlen = q_len * 2 + 1;
  size_t hlen;

  hal_error_t err = hal_asn1_encode_header(ASN1_OCTET_STRING, vlen, der, &hlen, der_max);

  if (der_len != NULL)
    *der_len = hlen + vlen;

  if (der == NULL || err != HAL_OK)
    return err;

  assert(hlen + vlen <= der_max);

  uint8_t *d = der + hlen;
  memset(d, 0, vlen);

  *d++ = 0x04;                  /* uncompressed */

  fp_to_unsigned_bin(unconst_fp_int(key->Q->x), d + q_len - Qx_len);
  d += q_len;

  fp_to_unsigned_bin(unconst_fp_int(key->Q->y), d + q_len - Qy_len);
  d += q_len;

  assert(d <= der + der_max);

  return HAL_OK;
}

/*
 * Convenience wrapper to return how many bytes a key would take if
 * encoded as an ECPoint.
 */

size_t hal_ecdsa_key_to_ecpoint_len(const hal_ecdsa_key_t * const key)
{
  size_t len;
  return hal_ecdsa_key_to_ecpoint(key, NULL, &len, 0) == HAL_OK ? len : 0;
}

/*
 * Read public key in X9.62 ECPoint format (ASN.1 OCTET STRING, first octet is compression flag).
 * ECPoint format doesn't include a curve identifier, so caller has to supply one.
 */

hal_error_t hal_ecdsa_key_from_ecpoint(hal_ecdsa_key_t **key_,
                                       void *keybuf, const size_t keybuf_len,
                                       const uint8_t * const der, const size_t der_len,
                                       const hal_curve_name_t curve)
{
  hal_ecdsa_key_t *key = keybuf;

  if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key) || get_curve(curve) == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  memset(keybuf, 0, keybuf_len);
  key->type = HAL_KEY_TYPE_EC_PUBLIC;
  key->curve = curve;

  size_t hlen, vlen;
  hal_error_t err;

  if ((err = hal_asn1_decode_header(ASN1_OCTET_STRING, der, der_len, &hlen, &vlen)) != HAL_OK)
    return err;

  const uint8_t * const der_end = der + hlen + vlen;
  const uint8_t *d = der + hlen;

  if (vlen < 3 || (vlen & 1) == 0 || *d++ != 0x04)
    lose(HAL_ERROR_ASN1_PARSE_FAILED);

  vlen /= 2;

  fp_read_unsigned_bin(key->Q->x, unconst_uint8_t(d), vlen);
  d += vlen;

  fp_read_unsigned_bin(key->Q->y, unconst_uint8_t(d), vlen);
  d += vlen;

  fp_set(key->Q->z, 1);

  if (d != der_end)
    lose(HAL_ERROR_ASN1_PARSE_FAILED);

  *key_ = key;
  return HAL_OK;

 fail:
  memset(keybuf, 0, keybuf_len);
  return err;
}

/*
 * Write private key in RFC 5915 ASN.1 DER format.
 *
 * This is hand-coded, and is approaching the limit where one should
 * probably be using an ASN.1 compiler like asn1c instead.
 */

hal_error_t hal_ecdsa_private_key_to_der(const hal_ecdsa_key_t * const key,
                                         uint8_t *der, size_t *der_len, const size_t der_max)
{
  if (key == NULL || key->type != HAL_KEY_TYPE_EC_PRIVATE)
    return HAL_ERROR_BAD_ARGUMENTS;

  const ecdsa_curve_t * const curve = get_curve(key->curve);
  if (curve == NULL)
    return HAL_ERROR_IMPOSSIBLE;

  const size_t q_len  = fp_unsigned_bin_size(unconst_fp_int(curve->q));
  const size_t d_len  = fp_unsigned_bin_size(unconst_fp_int(key->d));
  const size_t Qx_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->x));
  const size_t Qy_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->y));
  assert(q_len >= d_len && q_len >= Qx_len && q_len >= Qy_len);

  fp_int version[1] = INIT_FP_INT;
  fp_set(version, 1);

  hal_error_t err;

  size_t version_len, hlen, hlen_oct, hlen_oid, hlen_exp0, hlen_bit, hlen_exp1;

  if ((err = hal_asn1_encode_integer(version,                                    NULL, &version_len, 0)) != HAL_OK ||
      (err = hal_asn1_encode_header(ASN1_OCTET_STRING,          q_len,           NULL, &hlen_oct,    0)) != HAL_OK ||
      (err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER,     curve->oid_len,  NULL, &hlen_oid,    0)) != HAL_OK ||
      (err = hal_asn1_encode_header(ASN1_EXPLICIT_0, hlen_oid + curve->oid_len,  NULL, &hlen_exp0,   0)) != HAL_OK ||
      (err = hal_asn1_encode_header(ASN1_BIT_STRING,            (q_len + 1) * 2, NULL, &hlen_bit,    0)) != HAL_OK ||
      (err = hal_asn1_encode_header(ASN1_EXPLICIT_1, hlen_bit + (q_len + 1) * 2, NULL, &hlen_exp1,   0)) != HAL_OK)
    return err;

  const size_t vlen = (version_len   +
                       hlen_oct + q_len +
                       hlen_oid + hlen_exp0 + curve->oid_len +
                       hlen_bit + hlen_exp1 + (q_len + 1) * 2);

  err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max);

  if (der_len != NULL)
    *der_len = hlen + vlen;

  if (der == NULL || err != HAL_OK)
    return err;

  uint8_t *d = der + hlen;
  memset(d, 0, vlen);

  if ((err = hal_asn1_encode_integer(version, d, NULL, der + der_max - d)) != HAL_OK)
    return err;
  d += version_len;

  if ((err = hal_asn1_encode_header(ASN1_OCTET_STRING, q_len, d, &hlen, der + der_max - d)) != HAL_OK)
    return err;
  d += hlen;
  fp_to_unsigned_bin(unconst_fp_int(key->d), d + q_len - d_len);
  d += q_len;

  if ((err = hal_asn1_encode_header(ASN1_EXPLICIT_0, hlen_oid + curve->oid_len, d, &hlen, der + der_max - d)) != HAL_OK)
    return err;
  d += hlen;
  if ((err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, curve->oid_len, d, &hlen, der + der_max - d)) != HAL_OK)
    return err;
  d += hlen;
  memcpy(d, curve->oid, curve->oid_len);
  d += curve->oid_len;

  if ((err = hal_asn1_encode_header(ASN1_EXPLICIT_1, hlen_bit + (q_len + 1) * 2, d, &hlen, der + der_max - d)) != HAL_OK)
    return err;
  d += hlen;
  if ((err = hal_asn1_encode_header(ASN1_BIT_STRING, (q_len + 1) * 2, d, &hlen, der + der_max - d)) != HAL_OK)
    return err;
  d += hlen;
  *d++ = 0x00;
  *d++ = 0x04;
  fp_to_unsigned_bin(unconst_fp_int(key->Q->x), d + q_len - Qx_len);
  d += q_len;
  fp_to_unsigned_bin(unconst_fp_int(key->Q->y), d + q_len - Qy_len);
  d += q_len;

  assert(d <= der + der_max);

  return HAL_OK;
}

/*
 * Convenience wrapper to return how many bytes a private key would
 * take if encoded as DER.
 */

size_t hal_ecdsa_private_key_to_der_len(const hal_ecdsa_key_t * const key)
{
  size_t len;
  return hal_ecdsa_private_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0;
}

/*
 * Read private key in RFC 5915 ASN.1 DER format.
 *
 * This is hand-coded, and is approaching the limit where one should
 * probably be using an ASN.1 compiler like asn1c instead.
 */

hal_error_t hal_ecdsa_private_key_from_der(hal_ecdsa_key_t **key_,
                                           void *keybuf, const size_t keybuf_len,
                                           const uint8_t * const der, const size_t der_len)
{
  hal_ecdsa_key_t *key = keybuf;

  if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key))
    return HAL_ERROR_BAD_ARGUMENTS;

  memset(keybuf, 0, keybuf_len);
  key->type = HAL_KEY_TYPE_EC_PRIVATE;

  size_t hlen, vlen;
  hal_error_t err;

  if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, der, der_len, &hlen, &vlen)) != HAL_OK)
    return err;

  const uint8_t * const der_end = der + hlen + vlen;
  const uint8_t *d = der + hlen;
  const ecdsa_curve_t *curve = NULL;
  fp_int version[1] = INIT_FP_INT;

  if ((err = hal_asn1_decode_integer(version, d, &hlen, vlen)) != HAL_OK)
    goto fail;
  if (fp_cmp_d(version, 1) != FP_EQ)
    lose(HAL_ERROR_ASN1_PARSE_FAILED);
  d += hlen;

  if ((err = hal_asn1_decode_header(ASN1_OCTET_STRING, d, der_end - d, &hlen, &vlen)) != HAL_OK)
    return err;
  d += hlen;
  fp_read_unsigned_bin(key->d, unconst_uint8_t(d), vlen);
  d += vlen;

  if ((err = hal_asn1_decode_header(ASN1_EXPLICIT_0, d, der_end - d, &hlen, &vlen)) != HAL_OK)
    return err;
  d += hlen;
  if (vlen > der_end - d)
    lose(HAL_ERROR_ASN1_PARSE_FAILED);
  if ((err = hal_asn1_decode_header(ASN1_OBJECT_IDENTIFIER, d, vlen, &hlen, &vlen)) != HAL_OK)
    return err;
  d += hlen;
  if ((curve = oid_to_curve(&key->curve, d, vlen)) == NULL)
    lose(HAL_ERROR_ASN1_PARSE_FAILED);
  d += vlen;

  if ((err = hal_asn1_decode_header(ASN1_EXPLICIT_1, d, der_end - d, &hlen, &vlen)) != HAL_OK)
    return err;
  d += hlen;
  if (vlen > der_end - d)
    lose(HAL_ERROR_ASN1_PARSE_FAILED);
  if ((err = hal_asn1_decode_header(ASN1_BIT_STRING, d, vlen, &hlen, &vlen)) != HAL_OK)
    return err;
  d += hlen;
  if (vlen < 4 || (vlen & 1) != 0 || *d++ != 0x00 || *d++ != 0x04)
    lose(HAL_ERROR_ASN1_PARSE_FAILED);
  vlen = vlen/2 - 1;
  fp_read_unsigned_bin(key->Q->x, unconst_uint8_t(d), vlen);
  d += vlen;
  fp_read_unsigned_bin(key->Q->y, unconst_uint8_t(d), vlen);
  d += vlen;
  fp_set(key->Q->z, 1);

  if (d != der_end)
    lose(HAL_ERROR_ASN1_PARSE_FAILED);

  *key_ = key;
  return HAL_OK;

 fail:
  memset(keybuf, 0, keybuf_len);
  return err;
}

/*
 * Write public key in SubjectPublicKeyInfo format, see RFCS 5280 and 5480.
 */

static const uint8_t oid_ecPublicKey[] = { 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x02, 0x01 };

hal_error_t hal_ecdsa_public_key_to_der(const hal_ecdsa_key_t * const key,
                                        uint8_t *der, size_t *der_len, const size_t der_max)
{
  if (key == NULL || (key->type != HAL_KEY_TYPE_EC_PRIVATE &&
                      key->type != HAL_KEY_TYPE_EC_PUBLIC))
    return HAL_ERROR_BAD_ARGUMENTS;

  const ecdsa_curve_t * const curve = get_curve(key->curve);
  if (curve == NULL)
    return HAL_ERROR_IMPOSSIBLE;

  const size_t q_len  = fp_unsigned_bin_size(unconst_fp_int(curve->q));
  const size_t Qx_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->x));
  const size_t Qy_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->y));
  const size_t ecpoint_len = q_len * 2 + 1;
  assert(q_len >= Qx_len && q_len >= Qy_len);

  if (der != NULL && ecpoint_len < der_max) {
    memset(der, 0, ecpoint_len);

    uint8_t *d = der;
    *d++ = 0x04;                /* Uncompressed */

    fp_to_unsigned_bin(unconst_fp_int(key->Q->x), d + q_len - Qx_len);
    d += q_len;

    fp_to_unsigned_bin(unconst_fp_int(key->Q->y), d + q_len - Qy_len);
    d += q_len;

    assert(d < der + der_max);
  }

  return hal_asn1_encode_spki(oid_ecPublicKey, sizeof(oid_ecPublicKey),
                              curve->oid, curve->oid_len,
                              der, ecpoint_len,
                              der, der_len, der_max);
}

/*
 * Convenience wrapper to return how many bytes a public key would
 * take if encoded as DER.
 */

size_t hal_ecdsa_public_key_to_der_len(const hal_ecdsa_key_t * const key)
{
  size_t len;
  return hal_ecdsa_public_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0;
}

/*
 * Read public key in SubjectPublicKeyInfo format, see RFCS 5280 and 5480.
 */

hal_error_t hal_ecdsa_public_key_from_der(hal_ecdsa_key_t **key_,
                                           void *keybuf, const size_t keybuf_len,
                                           const uint8_t * const der, const size_t der_len)
{
  hal_ecdsa_key_t *key = keybuf;

  if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key))
    return HAL_ERROR_BAD_ARGUMENTS;

  memset(keybuf, 0, keybuf_len);
  key->type = HAL_KEY_TYPE_EC_PUBLIC;

  const uint8_t *alg_oid = NULL, *curve_oid = NULL, *pubkey = NULL;
  size_t         alg_oid_len,     curve_oid_len,     pubkey_len;
  const ecdsa_curve_t *curve;
  hal_error_t err;

  if ((err = hal_asn1_decode_spki(&alg_oid, &alg_oid_len, &curve_oid, &curve_oid_len, &pubkey, &pubkey_len,
                                  der, der_len)) != HAL_OK)
    return err;

  if (alg_oid == NULL || curve_oid == NULL || pubkey == NULL ||
      alg_oid_len != sizeof(oid_ecPublicKey) || memcmp(alg_oid, oid_ecPublicKey, alg_oid_len) != 0 ||
      (curve = oid_to_curve(&key->curve, curve_oid, curve_oid_len)) == NULL ||
      pubkey_len < 3 || (pubkey_len & 1) == 0 || pubkey[0] != 0x04 ||
      pubkey_len / 2 != fp_unsigned_bin_size(unconst_fp_int(curve->q)))
    return HAL_ERROR_ASN1_PARSE_FAILED;

  const uint8_t * const Qx = pubkey + 1;
  const uint8_t * const Qy = Qx + pubkey_len / 2;

  fp_read_unsigned_bin(key->Q->x, unconst_uint8_t(Qx), pubkey_len / 2);
  fp_read_unsigned_bin(key->Q->y, unconst_uint8_t(Qy), pubkey_len / 2);
  fp_set(key->Q->z, 1);

  *key_ = key;
  return HAL_OK;
}

/*
 * Encode a signature in PKCS #11 format: an octet string consisting
 * of concatenated values for r and s, each padded (if necessary) out
 * to the byte length of the order of the base point.
 */

static hal_error_t encode_signature_pkcs11(const ecdsa_curve_t * const curve,
                                           const fp_int * const r, const fp_int * const s,
                                           uint8_t *signature, size_t *signature_len, const size_t signature_max)
{
  assert(curve != NULL && r != NULL && s != NULL);

  const size_t n_len = fp_unsigned_bin_size(unconst_fp_int(curve->n));
  const size_t r_len = fp_unsigned_bin_size(unconst_fp_int(r));
  const size_t s_len = fp_unsigned_bin_size(unconst_fp_int(s));

  if (n_len < r_len || n_len < s_len)
    return HAL_ERROR_IMPOSSIBLE;

  if (signature_len != NULL)
    *signature_len = n_len * 2;

  if (signature == NULL)
    return HAL_OK;

  if (signature_max < n_len * 2)
    return HAL_ERROR_RESULT_TOO_LONG;

  memset(signature, 0, n_len * 2);
  fp_to_unsigned_bin(unconst_fp_int(r), signature + 1 * n_len - r_len);
  fp_to_unsigned_bin(unconst_fp_int(s), signature + 2 * n_len - s_len);

  return HAL_OK;
}

/*
 * Decode a signature from PKCS #11 format: an octet string consisting
 * of concatenated values for r and s, each of which occupies half of
 * the octet string (which must therefore be of even length).
 */

static hal_error_t decode_signature_pkcs11(const ecdsa_curve_t * const curve,
                                           fp_int *r, fp_int *s,
                                           const uint8_t * const signature, const size_t signature_len)
{
  assert(curve != NULL && r != NULL && s != NULL);

  if (signature == NULL || (signature_len & 1) != 0)
    return HAL_ERROR_BAD_ARGUMENTS;

  const size_t n_len = signature_len / 2;

  if (n_len > fp_unsigned_bin_size(unconst_fp_int(curve->n)))
    return HAL_ERROR_BAD_ARGUMENTS;

  fp_read_unsigned_bin(r, unconst_uint8_t(signature) + 0 * n_len, n_len);
  fp_read_unsigned_bin(s, unconst_uint8_t(signature) + 1 * n_len, n_len);

  return HAL_OK;
}

/*
 * Sign a caller-supplied hash.
 */

hal_error_t hal_ecdsa_sign(const hal_core_t *core,
                           const hal_ecdsa_key_t * const key,
                           const uint8_t * const hash, const size_t hash_len,
                           uint8_t *signature, size_t *signature_len, const size_t signature_max)
{
  if (key == NULL || hash == NULL || signature == NULL || signature_len == NULL || key->type != HAL_KEY_TYPE_EC_PRIVATE)
    return HAL_ERROR_BAD_ARGUMENTS;

  const ecdsa_curve_t * const curve = get_curve(key->curve);
  if (curve == NULL)
    return HAL_ERROR_IMPOSSIBLE;

  fp_int k[1] = INIT_FP_INT;
  fp_int r[1] = INIT_FP_INT;
  fp_int s[1] = INIT_FP_INT;
  fp_int e[1] = INIT_FP_INT;

  fp_int * const n = unconst_fp_int(curve->n);
  fp_int * const d = unconst_fp_int(key->d);

  ec_point_t R[1] = INIT_EC_POINT_T;

  hal_error_t err;

  fp_read_unsigned_bin(e, unconst_uint8_t(hash), hash_len);

  do {

    /*
     * Pick random curve point R, then calculate r = Rx % n.
     * If r == 0, we can't use this point, so go try again.
     */

    if ((err = point_pick_random(curve, k, R)) != HAL_OK)
      goto fail;

    assert(point_is_on_curve(R, curve));

    if (fp_mod(R->x, n, r) != FP_OKAY)
      lose(HAL_ERROR_IMPOSSIBLE);

    if (fp_iszero(r))
      continue;

    /*
     * Calculate s = ((e + dr)/k) % n.
     * If s == 0, we can't use this point, so go try again.
     */

    if (fp_mulmod (d, r, n, s) != FP_OKAY)
      lose(HAL_ERROR_IMPOSSIBLE);

    fp_add        (e, s, s);

    if (fp_mod    (s, n, s)    != FP_OKAY ||
        fp_invmod (k, n, k)    != FP_OKAY ||
        fp_mulmod (s, k, n, s) != FP_OKAY)
      lose(HAL_ERROR_IMPOSSIBLE);

  } while (fp_iszero(s));

  /*
   * Encode the signature, then we're done.
   */

  if ((err = encode_signature_pkcs11(curve, r, s, signature, signature_len, signature_max)) != HAL_OK)
    goto fail;

  err = HAL_OK;

 fail:
  fp_zero(k); fp_zero(r); fp_zero(s); fp_zero(e);
  memset(R, 0, sizeof(R));
  return err;
}

/*
 * Verify a signature using a caller-supplied hash.
 */

hal_error_t hal_ecdsa_verify(const hal_core_t *core,
                             const hal_ecdsa_key_t * const key,
                             const uint8_t * const hash, const size_t hash_len,
                             const uint8_t * const signature, const size_t signature_len)
{
  assert(key != NULL && hash != NULL && signature != NULL);

  const ecdsa_curve_t * const curve = get_curve(key->curve);

  if (curve == NULL)
    return HAL_ERROR_IMPOSSIBLE;

  if (!point_is_on_curve(key->Q, curve))
    return HAL_ERROR_KEY_NOT_ON_CURVE;

  fp_int * const n = unconst_fp_int(curve->n);

  hal_error_t err;

  fp_int r[1]  = INIT_FP_INT;
  fp_int s[1]  = INIT_FP_INT;
  fp_int e[1]  = INIT_FP_INT;
  fp_int w[1]  = INIT_FP_INT;
  fp_int u1[1] = INIT_FP_INT;
  fp_int u2[1] = INIT_FP_INT;
  fp_int v[1]  = INIT_FP_INT;

  ec_point_t u1G[1] = INIT_EC_POINT_T;
  ec_point_t u2Q[1] = INIT_EC_POINT_T;
  ec_point_t R[1]   = INIT_EC_POINT_T;

  /*
   * Start by decoding the signature.
   */

  if ((err = decode_signature_pkcs11(curve, r, s, signature, signature_len)) != HAL_OK)
    return err;

  /*
   * Check that r and s are in the allowed range, read the hash, then
   * compute:
   *
   * w  = 1 / s
   * u1 = e * w
   * u2 = r * w
   * R  = u1 * G + u2 * Q.
   */

  if (fp_cmp_d(r, 1) == FP_LT || fp_cmp(r, n) != FP_LT ||
      fp_cmp_d(s, 1) == FP_LT || fp_cmp(s, n) != FP_LT)
    return HAL_ERROR_INVALID_SIGNATURE;

  fp_read_unsigned_bin(e, unconst_uint8_t(hash), hash_len);

  if (fp_invmod(s, n, w)     != FP_OKAY ||
      fp_mulmod(e, w, n, u1) != FP_OKAY ||
      fp_mulmod(r, w, n, u2) != FP_OKAY)
    return HAL_ERROR_IMPOSSIBLE;

  fp_copy(unconst_fp_int(curve->Gx), u1G->x);
  fp_copy(unconst_fp_int(curve->Gy), u1G->y);
  fp_set(u1G->z, 1);

  if ((err = point_scalar_multiply(u1, u1G,    u1G, curve)) != HAL_OK ||
      (err = point_scalar_multiply(u2, key->Q, u2Q, curve)) != HAL_OK)
    return err;

  if (point_is_infinite(u1G))
    point_copy(u2Q, R);
  else if (point_is_infinite(u2Q))
    point_copy(u1G, R);
  else if ((err = point_to_montgomery(u1G, curve)) != HAL_OK ||
           (err = point_to_montgomery(u2Q, curve)) != HAL_OK)
    return err;
  else
    point_add(u1G, u2Q, R, curve);

  /*
   * Signature is OK if
   *   R is not the point at infinity, and
   *   Rx is congruent to r mod n.
   */

  if (point_is_infinite(R))
    return HAL_ERROR_INVALID_SIGNATURE;

  if ((err = point_to_affine(R, curve)) != HAL_OK)
    return err;

  if (fp_mod(R->x, n, v) != FP_OKAY)
    return HAL_ERROR_IMPOSSIBLE;

  return fp_cmp(v, r) == FP_EQ ? HAL_OK : HAL_ERROR_INVALID_SIGNATURE;
}

/*
 * Local variables:
 * indent-tabs-mode: nil
 * End:
 */