1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
|
/*
* ecdsa.c
* -------
* Elliptic Curve Digital Signature Algorithm for NIST prime curves.
*
* At some point we may want to refactor this code to separate
* functionality that applies to all elliptic curve cryptography into
* a separate module from functions specific to ECDSA over the NIST
* prime curves, but it's simplest to keep this all in one place
* initially.
*
* Much of the code in this module is based, at least loosely, on Tom
* St Denis's libtomcrypt code. Algorithms for point addition and
* point doubling courtesy of the hyperelliptic.org formula database.
*
* Authors: Rob Austein
* Copyright (c) 2015, NORDUnet A/S
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* We use "Tom's Fast Math" library for our bignum implementation.
* This particular implementation has a couple of nice features:
*
* - The code is relatively readable, thus reviewable.
*
* - The bignum representation doesn't use dynamic memory, which
* simplifies things for us.
*
* The price tag for not using dynamic memory is that libtfm has to be
* configured to know about the largest bignum one wants it to be able
* to support at compile time. This should not be a serious problem.
*
* We use a lot of one-element arrays (fp_int[1] instead of plain
* fp_int) to avoid having to prefix every use of an fp_int with "&".
* Perhaps we should encapsulate this idiom in a typedef.
*
* Unfortunately, libtfm is bad about const-ification, but we want to
* hide that from our users, so our public API uses const as
* appropriate and we use inline functions to remove const constraints
* in a relatively type-safe manner before calling libtom.
*/
#include <stdint.h>
#include <assert.h>
#include "hal.h"
#include "hal_internal.h"
#include <tfm.h>
#include "asn1_internal.h"
/*
* Whether we're using static test vectors instead of the random
* number generator. Do NOT enable this in production (doh).
*/
#ifndef HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM
#define HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM 0
#endif
#if defined(RPC_CLIENT) && RPC_CLIENT != RPC_CLIENT_LOCAL
#define hal_get_random(core, buffer, length) hal_rpc_get_random(buffer, length)
#endif
/*
* Whether to use the Verilog point multipliers.
*/
#ifndef HAL_ECDSA_VERILOG_ECDSA256_MULTIPLIER
#define HAL_ECDSA_VERILOG_ECDSA256_MULTIPLIER 1
#endif
#ifndef HAL_ECDSA_VERILOG_ECDSA384_MULTIPLIER
#define HAL_ECDSA_VERILOG_ECDSA384_MULTIPLIER 1
#endif
/*
* Whether we want debug output.
*/
static int debug = 0;
void hal_ecdsa_set_debug(const int onoff)
{
debug = onoff;
}
/*
* ECDSA curve descriptor. We only deal with named curves; at the
* moment, we only deal with NIST prime curves where the elliptic
* curve's "a" parameter is always -3 and its "h" value (order of
* elliptic curve group divided by order of base point) is always 1.
*
* Since the Montgomery parameters we need for the point arithmetic
* depend only on the underlying field prime, we precompute them when
* we load the curve and store them in the field descriptor, even
* though they aren't really curve parameters per se.
*
* For similar reasons, we also include the ASN.1 OBJECT IDENTIFIERs
* used to name these curves.
*/
typedef struct {
fp_int q[1]; /* Modulus of underlying prime field */
fp_int b[1]; /* Curve's "b" parameter */
fp_int Gx[1]; /* x component of base point G */
fp_int Gy[1]; /* y component of base point G */
fp_int n[1]; /* Order of base point G */
fp_int mu[1]; /* Montgomery normalization factor */
fp_digit rho; /* Montgomery reduction value */
const uint8_t *oid; /* OBJECT IDENTIFIER */
size_t oid_len; /* Length of OBJECT IDENTIFIER */
hal_curve_name_t curve; /* Curve name */
} ecdsa_curve_t;
/*
* ECDSA key implementation. This structure type is private to this
* module, anything else that needs to touch one of these just gets a
* typed opaque pointer. We do, however, export the size, so that we
* can make memory allocation the caller's problem.
*
* EC points are stored in Jacobian format such that (x, y, z) =>
* (x/z**2, y/z**3, 1) when interpretted as affine coordinates.
*
* There are really three different representations in use here:
*
* 1) Plain affine representation (z == 1);
* 2) Montgomery form affine representation (z == curve->mu); and
* 3) Montgomery form Jacobian representation (whatever).
*
* Only form (1) is ever visible outside this module. We perform
* explicit conversions from form (1) to form (2) and from forms (2,3)
* to form (1). Form (3) only occurs as the result of compuation.
*
* In theory, we could shave some microscopic amount of time off of
* signature verification by supporting an explicit conversion from
* form (3) to form (2), but it's not worth the additional complexity.
*/
typedef struct {
fp_int x[1], y[1], z[1];
} ec_point_t;
struct hal_ecdsa_key {
hal_key_type_t type; /* Public or private */
hal_curve_name_t curve; /* Curve descriptor */
ec_point_t Q[1]; /* Public key */
fp_int d[1]; /* Private key */
};
const size_t hal_ecdsa_key_t_size = sizeof(struct hal_ecdsa_key);
/*
* Initializers. We want to be able to initialize automatic fp_int
* and ec_point_t variables to a sane value (less error prone), but
* picky compilers whine about the number of curly braces required.
* So we define macros which isolate that madness in one place, and
* use those macros everywhere.
*/
#define INIT_FP_INT {{{0}}}
#define INIT_EC_POINT_T {{INIT_FP_INT}}
/*
* Error handling.
*/
#define lose(_code_) do { err = _code_; goto fail; } while (0)
/*
* We can't (usefully) initialize fp_int variables to non-zero values
* at compile time, so instead we load all the curve parameters the
* first time anything asks for any of them.
*/
static const ecdsa_curve_t * const get_curve(const hal_curve_name_t curve)
{
static ecdsa_curve_t curve_p256, curve_p384, curve_p521;
static int initialized = 0;
if (!initialized) {
#include "ecdsa_curves.h"
fp_read_unsigned_bin(curve_p256.q, unconst_uint8_t(p256_q), sizeof(p256_q));
fp_read_unsigned_bin(curve_p256.b, unconst_uint8_t(p256_b), sizeof(p256_b));
fp_read_unsigned_bin(curve_p256.Gx, unconst_uint8_t(p256_Gx), sizeof(p256_Gx));
fp_read_unsigned_bin(curve_p256.Gy, unconst_uint8_t(p256_Gy), sizeof(p256_Gy));
fp_read_unsigned_bin(curve_p256.n, unconst_uint8_t(p256_n), sizeof(p256_n));
if (fp_montgomery_setup(curve_p256.q, &curve_p256.rho) != FP_OKAY)
return NULL;
fp_zero(curve_p256.mu);
fp_montgomery_calc_normalization(curve_p256.mu, curve_p256.q);
curve_p256.oid = p256_oid;
curve_p256.oid_len = sizeof(p256_oid);
curve_p256.curve = HAL_CURVE_P256;
fp_read_unsigned_bin(curve_p384.q, unconst_uint8_t(p384_q), sizeof(p384_q));
fp_read_unsigned_bin(curve_p384.b, unconst_uint8_t(p384_b), sizeof(p384_b));
fp_read_unsigned_bin(curve_p384.Gx, unconst_uint8_t(p384_Gx), sizeof(p384_Gx));
fp_read_unsigned_bin(curve_p384.Gy, unconst_uint8_t(p384_Gy), sizeof(p384_Gy));
fp_read_unsigned_bin(curve_p384.n, unconst_uint8_t(p384_n), sizeof(p384_n));
if (fp_montgomery_setup(curve_p384.q, &curve_p384.rho) != FP_OKAY)
return NULL;
fp_zero(curve_p384.mu);
fp_montgomery_calc_normalization(curve_p384.mu, curve_p384.q);
curve_p384.oid = p384_oid;
curve_p384.oid_len = sizeof(p384_oid);
curve_p384.curve = HAL_CURVE_P384;
fp_read_unsigned_bin(curve_p521.q, unconst_uint8_t(p521_q), sizeof(p521_q));
fp_read_unsigned_bin(curve_p521.b, unconst_uint8_t(p521_b), sizeof(p521_b));
fp_read_unsigned_bin(curve_p521.Gx, unconst_uint8_t(p521_Gx), sizeof(p521_Gx));
fp_read_unsigned_bin(curve_p521.Gy, unconst_uint8_t(p521_Gy), sizeof(p521_Gy));
fp_read_unsigned_bin(curve_p521.n, unconst_uint8_t(p521_n), sizeof(p521_n));
if (fp_montgomery_setup(curve_p521.q, &curve_p521.rho) != FP_OKAY)
return NULL;
fp_zero(curve_p521.mu);
fp_montgomery_calc_normalization(curve_p521.mu, curve_p521.q);
curve_p521.oid = p521_oid;
curve_p521.oid_len = sizeof(p521_oid);
curve_p521.curve = HAL_CURVE_P521;
initialized = 1;
}
switch (curve) {
case HAL_CURVE_P256: return &curve_p256;
case HAL_CURVE_P384: return &curve_p384;
case HAL_CURVE_P521: return &curve_p521;
default: return NULL;
}
}
static inline const ecdsa_curve_t * oid_to_curve(hal_curve_name_t *curve_name,
const uint8_t * const oid,
const size_t oid_len)
{
assert(curve_name != NULL && oid != NULL);
const ecdsa_curve_t *curve = NULL;
*curve_name = HAL_CURVE_NONE;
while ((curve = get_curve(++*curve_name)) != NULL)
if (oid_len == curve->oid_len && memcmp(oid, curve->oid, oid_len) == 0)
return curve;
return NULL;
}
/*
* Finite field operations (hence "ff_"). These are basically just
* the usual bignum operations, constrained by the field modulus.
*
* All of these are operations in the field underlying the specified
* curve, and assume that operands are already in Montgomery form.
*
* The ff_add() and ff_sub() are written a bit oddly, in an attempt to
* make them run in constant time. An optimizing compiler may be
* clever enough to defeat this. In the long run, we probably want to
* perform these field operations in Verilog anyway.
*
* We might be able to squeeze a bit more speed out of the point
* arithmetic by making using fp_mul_2d() when multiplying by a power
* of two. Skipping for now as a premature optimization, but if we do
* need this, it'd probably be simplest to add a ff_dbl() function
* which handles overflow in the same way that ff_add() does.
*/
static inline void ff_add(const ecdsa_curve_t * const curve,
const fp_int * const a,
const fp_int * const b,
fp_int *c)
{
fp_int t[2][1] = {INIT_FP_INT};
fp_add(unconst_fp_int(a), unconst_fp_int(b), t[0]);
fp_sub(t[0], unconst_fp_int(curve->q), t[1]);
fp_copy(t[fp_cmp_d(t[1], 0) != FP_LT], c);
memset(t, 0, sizeof(t));
}
static inline void ff_sub(const ecdsa_curve_t * const curve,
const fp_int * const a,
const fp_int * const b,
fp_int *c)
{
fp_int t[2][1] = {INIT_FP_INT};
fp_sub(unconst_fp_int(a), unconst_fp_int(b), t[0]);
fp_add(t[0], unconst_fp_int(curve->q), t[1]);
fp_copy(t[fp_cmp_d(t[0], 0) == FP_LT], c);
memset(t, 0, sizeof(t));
}
static inline void ff_mul(const ecdsa_curve_t * const curve,
const fp_int * const a,
const fp_int * const b,
fp_int *c)
{
fp_mul(unconst_fp_int(a), unconst_fp_int(b), c);
fp_montgomery_reduce(c, unconst_fp_int(curve->q), curve->rho);
}
static inline void ff_sqr(const ecdsa_curve_t * const curve,
const fp_int * const a,
fp_int *b)
{
fp_sqr(unconst_fp_int(a), b);
fp_montgomery_reduce(b, unconst_fp_int(curve->q), curve->rho);
}
/*
* Test whether a point is the point at infinity.
*
* In Jacobian projective coordinate, any point of the form
*
* (j ** 2, j **3, 0) for j in [1..q-1]
*
* is on the line at infinity, but for practical purposes simply
* checking the z coordinate is probably sufficient.
*/
static inline int point_is_infinite(const ec_point_t * const P)
{
assert(P != NULL);
return fp_iszero(P->z);
}
/*
* Set a point to be the point at infinity. For Jacobian projective
* coordinates, it's customary to use (1 : 1 : 0) as the
* representitive value.
*
* If a curve is supplied, we want the Montgomery form of the point at
* infinity for that curve.
*/
static inline void point_set_infinite(ec_point_t *P, const ecdsa_curve_t * const curve)
{
assert(P != NULL);
if (curve != NULL) {
fp_copy(unconst_fp_int(curve->mu), P->x);
fp_copy(unconst_fp_int(curve->mu), P->y);
fp_zero(P->z);
}
else {
fp_set(P->x, 1);
fp_set(P->y, 1);
fp_zero(P->z);
}
}
/*
* Copy a point.
*/
static inline void point_copy(const ec_point_t * const P, ec_point_t *R)
{
if (P != NULL && R != NULL && P != R)
*R = *P;
}
/**
* Convert a point into Montgomery form.
* @param P [in/out] The point to map
* @param curve The curve parameters structure
*/
static inline hal_error_t point_to_montgomery(ec_point_t *P,
const ecdsa_curve_t * const curve)
{
assert(P != NULL && curve != NULL);
if (fp_cmp_d(unconst_fp_int(P->z), 1) != FP_EQ)
return HAL_ERROR_BAD_ARGUMENTS;
if (fp_mulmod(P->x, unconst_fp_int(curve->mu), unconst_fp_int(curve->q), P->x) != FP_OKAY ||
fp_mulmod(P->y, unconst_fp_int(curve->mu), unconst_fp_int(curve->q), P->y) != FP_OKAY)
return HAL_ERROR_IMPOSSIBLE;
fp_copy(unconst_fp_int(curve->mu), P->z);
return HAL_OK;
}
/**
* Map a point in projective Jacbobian coordinates back to affine
* space. This also converts back from Montgomery to plain form.
* @param P [in/out] The point to map
* @param curve The curve parameters structure
*
* It's not possible to represent the point at infinity in plain
* affine coordinates, and the calling function will have to handle
* the point at infinity specially in any case, so we declare this to
* be the calling function's problem.
*/
static inline hal_error_t point_to_affine(ec_point_t *P,
const ecdsa_curve_t * const curve)
{
assert(P != NULL && curve != NULL);
if (point_is_infinite(P))
return HAL_ERROR_IMPOSSIBLE;
hal_error_t err = HAL_ERROR_IMPOSSIBLE;
fp_int t1[1] = INIT_FP_INT;
fp_int t2[1] = INIT_FP_INT;
fp_int * const q = unconst_fp_int(curve->q);
fp_montgomery_reduce(P->z, q, curve->rho);
if (fp_invmod (P->z, q, t1) != FP_OKAY || /* t1 = 1 / z */
fp_sqrmod (t1, q, t2) != FP_OKAY || /* t2 = 1 / z**2 */
fp_mulmod (t1, t2, q, t1) != FP_OKAY) /* t1 = 1 / z**3 */
goto fail;
fp_mul (P->x, t2, P->x); /* x = x / z**2 */
fp_mul (P->y, t1, P->y); /* y = y / z**3 */
fp_set (P->z, 1); /* z = 1 */
fp_montgomery_reduce(P->x, q, curve->rho);
fp_montgomery_reduce(P->y, q, curve->rho);
err = HAL_OK;
fail:
fp_zero(t1);
fp_zero(t2);
return err;
}
/**
* Double an EC point.
* @param P The point to double
* @param R [out] The destination of the double
* @param curve The curve parameters structure
*
* Algorithm is dbl-2001-b from
* http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html
*/
static inline void point_double(const ec_point_t * const P,
ec_point_t *R,
const ecdsa_curve_t * const curve)
{
assert(P != NULL && R != NULL && curve != NULL);
const int was_infinite = point_is_infinite(P);
fp_int alpha[1] = INIT_FP_INT;
fp_int beta[1] = INIT_FP_INT;
fp_int gamma[1] = INIT_FP_INT;
fp_int delta[1] = INIT_FP_INT;
fp_int t1[1] = INIT_FP_INT;
fp_int t2[1] = INIT_FP_INT;
ff_sqr (curve, P->z, delta); /* delta = Pz ** 2 */
ff_sqr (curve, P->y, gamma); /* gamma = Py ** 2 */
ff_mul (curve, P->x, gamma, beta); /* beta = Px * gamma */
ff_sub (curve, P->x, delta, t1); /* alpha = 3 * (Px - delta) * (Px + delta) */
ff_add (curve, P->x, delta, t2);
ff_mul (curve, t1, t2, t1);
ff_add (curve, t1, t1, t2);
ff_add (curve, t1, t2, alpha);
ff_sqr (curve, alpha, t1); /* Rx = (alpha ** 2) - (8 * beta) */
ff_add (curve, beta, beta, t2);
ff_add (curve, t2, t2, t2);
ff_add (curve, t2, t2, t2);
ff_sub (curve, t1, t2, R->x);
ff_add (curve, P->y, P->z, t1); /* Rz = ((Py + Pz) ** 2) - gamma - delta */
ff_sqr (curve, t1, t1);
ff_sub (curve, t1, gamma, t1);
ff_sub (curve, t1, delta, R->z);
ff_add (curve, beta, beta, t1); /* Ry = (((4 * beta) - Rx) * alpha) - (8 * (gamma ** 2)) */
ff_add (curve, t1, t1, t1);
ff_sub (curve, t1, R->x, t1);
ff_mul (curve, t1, alpha, t1);
ff_sqr (curve, gamma, t2);
ff_add (curve, t2, t2, t2);
ff_add (curve, t2, t2, t2);
ff_add (curve, t2, t2, t2);
ff_sub (curve, t1, t2, R->y);
assert(was_infinite == point_is_infinite(P));
fp_zero(alpha); fp_zero(beta); fp_zero(gamma); fp_zero(delta); fp_zero(t1); fp_zero(t2);
}
/**
* Add two EC points
* @param P The point to add
* @param Q The point to add
* @param R [out] The destination of the double
* @param curve The curve parameters structure
*
* Algorithm is madd-2007-bl from
* http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html
*
* The special cases are unfortunate, but are probably unavoidable for
* this type of curve. We do what we can to make this constant-time
* in spite of the special cases. The one we really can't do much
* about is P == Q, because in that case we have to switch to the
* point doubling algorithm.
*/
static inline void point_add(const ec_point_t * const P,
const ec_point_t * const Q,
ec_point_t *R,
const ecdsa_curve_t * const curve)
{
assert(P != NULL && Q != NULL && R != NULL && curve != NULL);
/*
* Q must be affine in Montgomery form.
*/
assert(fp_cmp(unconst_fp_int(Q->z), unconst_fp_int(curve->mu)) == FP_EQ);
#warning What happens here if P and Q are not equal but map to the same point in affine space?
const int same_xz = (fp_cmp(unconst_fp_int(P->z), unconst_fp_int(Q->z)) == FP_EQ &&
fp_cmp(unconst_fp_int(P->x), unconst_fp_int(Q->x)) == FP_EQ);
/*
* If P == Q, we must use point doubling instead of point addition,
* and there's nothing we can do to mask the timing differences.
* So just do it, right away.
*/
if (same_xz && fp_cmp(unconst_fp_int(P->y), unconst_fp_int(Q->y)) == FP_EQ)
return point_double(P, R, curve);
/*
* Check now for the other special cases, but defer handling them
* until the end, to mask timing differences.
*/
const int P_was_infinite = point_is_infinite(P);
fp_int Qy_neg[1] = INIT_FP_INT;
fp_sub(unconst_fp_int(curve->q), unconst_fp_int(Q->y), Qy_neg);
const int result_is_infinite = fp_cmp(unconst_fp_int(P->y), Qy_neg) == FP_EQ && same_xz;
fp_zero(Qy_neg);
/*
* Main point addition algorithm.
*/
fp_int Z1Z1[1] = INIT_FP_INT;
fp_int H[1] = INIT_FP_INT;
fp_int HH[1] = INIT_FP_INT;
fp_int I[1] = INIT_FP_INT;
fp_int J[1] = INIT_FP_INT;
fp_int r[1] = INIT_FP_INT;
fp_int V[1] = INIT_FP_INT;
fp_int t[1] = INIT_FP_INT;
ff_sqr (curve, P->z, Z1Z1); /* Z1Z1 = Pz ** 2 */
ff_mul (curve, Q->x, Z1Z1, H); /* H = (Qx * Z1Z1) - Px */
ff_sub (curve, H, P->x, H);
ff_sqr (curve, H, HH); /* HH = H ** 2 */
ff_add (curve, HH, HH, I); /* I = 4 * HH */
ff_add (curve, I, I, I);
ff_mul (curve, H, I, J); /* J = H * I */
ff_mul (curve, P->z, Z1Z1, r); /* r = 2 * ((Qy * Pz * Z1Z1) - Py) */
ff_mul (curve, Q->y, r, r);
ff_sub (curve, r, P->y, r);
ff_add (curve, r, r, r);
ff_mul (curve, P->x, I, V); /* V = Px * I */
ff_sqr (curve, r, R->x); /* Rx = (r ** 2) - J - (2 * V) */
ff_sub (curve, R->x, J, R->x);
ff_sub (curve, R->x, V, R->x);
ff_sub (curve, R->x, V, R->x);
ff_mul (curve, P->y, J, t); /* Ry = (r * (V - Rx)) - (2 * Py * J) */
ff_sub (curve, V, R->x, R->y);
ff_mul (curve, r, R->y, R->y);
ff_sub (curve, R->y, t, R->y);
ff_sub (curve, R->y, t, R->y);
ff_add (curve, P->z, H, R->z); /* Rz = ((Pz + H) ** 2) - Z1Z1 - HH */
ff_sqr (curve, R->z, R->z);
ff_sub (curve, R->z, Z1Z1, R->z);
ff_sub (curve, R->z, HH, R->z);
fp_zero(Z1Z1), fp_zero(H), fp_zero(HH), fp_zero(I), fp_zero(J), fp_zero(r), fp_zero(V), fp_zero(t);
/*
* Handle deferred special cases, then we're done.
*/
if (P_was_infinite)
point_copy(Q, R);
else if (result_is_infinite)
point_set_infinite(R, curve);
}
/**
* Perform a point multiplication.
* @param k The scalar to multiply by
* @param P The base point
* @param R [out] Destination for kP
* @param curve Curve parameters
* @return HAL_OK on success
*
* P must be in affine form.
*/
static hal_error_t point_scalar_multiply(const fp_int * const k,
const ec_point_t * const P_,
ec_point_t *R,
const ecdsa_curve_t * const curve)
{
assert(k != NULL && P_ != NULL && R != NULL && curve != NULL);
if (fp_iszero(k) || fp_cmp_d(unconst_fp_int(P_->z), 1) != FP_EQ)
return HAL_ERROR_BAD_ARGUMENTS;
hal_error_t err;
/*
* Convert P to Montgomery form.
*/
ec_point_t P[1];
point_copy(P_, P);
if ((err = point_to_montgomery(P, curve)) != HAL_OK) {
memset(P, 0, sizeof(P));
return err;
}
/*
* Initialize table.
* M[0] is a dummy for constant timing.
* M[1] is where we accumulate the result.
*/
ec_point_t M[2][1] = {INIT_EC_POINT_T};
point_set_infinite(M[0], curve);
point_set_infinite(M[1], curve);
/*
* Walk down bits of the scalar, performing dummy operations to mask
* timing.
*
* Note that, in order for the timing protection to work, the
* number of iterations in the loop has to depend on the order of
* the base point rather than on the scalar.
*/
for (int bit_index = fp_count_bits(unconst_fp_int(curve->n)) - 1; bit_index >= 0; bit_index--) {
const int digit_index = bit_index / DIGIT_BIT;
const fp_digit digit = digit_index < k->used ? k->dp[digit_index] : 0;
const fp_digit mask = ((fp_digit) 1) << (bit_index % DIGIT_BIT);
const int bit = (digit & mask) != 0;
point_double (M[1], M[1], curve);
point_add (M[bit], P, M[bit], curve);
}
/*
* Copy result, map back to affine, then done.
*/
point_copy(M[1], R);
err = point_to_affine(R, curve);
memset(P, 0, sizeof(P));
memset(M, 0, sizeof(M));
return err;
}
/*
* Testing only: ECDSA key generation and signature both have a
* critical dependency on random numbers, but we can't use the random
* number generator when testing against static test vectors. So add a
* wrapper around the random number generator calls, with a hook to
* let us override the generator for test purposes. Do NOT use this
* in production, kids.
*/
#if HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM
#warning hal_ecdsa random number generator overridden for test purposes
#warning DO NOT USE THIS IN PRODUCTION
typedef hal_error_t (*rng_override_test_function_t)(void *, const size_t);
static rng_override_test_function_t rng_test_override_function = 0;
rng_override_test_function_t hal_ecdsa_set_rng_override_test_function(rng_override_test_function_t new_func)
{
rng_override_test_function_t old_func = rng_test_override_function;
rng_test_override_function = new_func;
return old_func;
}
static inline hal_error_t get_random(void *buffer, const size_t length)
{
if (rng_test_override_function)
return rng_test_override_function(buffer, length);
else
return hal_get_random(NULL, buffer, length);
}
#else /* HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM */
static inline hal_error_t get_random(void *buffer, const size_t length)
{
return hal_get_random(NULL, buffer, length);
}
#endif /* HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM */
/*
* Use experimental Verilog base point multiplier cores to calculate
* public key given a private key. point_pick_random() has already
* selected a suitable private key for us, we just need to calculate
* the corresponding public key.
*/
#if HAL_ECDSA_VERILOG_ECDSA256_MULTIPLIER || HAL_ECDSA_VERILOG_ECDSA384_MULTIPLIER
typedef struct {
size_t bytes;
const char *name;
hal_addr_t k_addr;
hal_addr_t x_addr;
hal_addr_t y_addr;
} verilog_ecdsa_driver_t;
static hal_error_t verilog_point_pick_random(const verilog_ecdsa_driver_t * const driver,
fp_int *k,
ec_point_t *P)
{
assert(k != NULL && P != NULL);
const size_t len = fp_unsigned_bin_size(k);
uint8_t b[driver->bytes];
const uint8_t zero[4] = {0, 0, 0, 0};
hal_core_t *core = NULL;
hal_error_t err;
if (len > sizeof(b))
return HAL_ERROR_RESULT_TOO_LONG;
if ((err = hal_core_alloc(driver->name, &core)) != HAL_OK)
goto fail;
#define check(_x_) do { if ((err = (_x_)) != HAL_OK) goto fail; } while (0)
memset(b, 0, sizeof(b));
fp_to_unsigned_bin(k, b + sizeof(b) - len);
for (int i = 0; i < sizeof(b); i += 4)
check(hal_io_write(core, driver->k_addr + i/4, &b[sizeof(b) - 4 - i], 4));
check(hal_io_write(core, ADDR_CTRL, zero, sizeof(zero)));
check(hal_io_next(core));
check(hal_io_wait_valid(core));
for (int i = 0; i < sizeof(b); i += 4)
check(hal_io_read(core, driver->x_addr + i/4, &b[sizeof(b) - 4 - i], 4));
fp_read_unsigned_bin(P->x, b, sizeof(b));
for (int i = 0; i < sizeof(b); i += 4)
check(hal_io_read(core, driver->y_addr + i/4, &b[sizeof(b) - 4 - i], 4));
fp_read_unsigned_bin(P->y, b, sizeof(b));
fp_set(P->z, 1);
#undef check
err = HAL_OK;
fail:
hal_core_free(core);
memset(b, 0, sizeof(b));
return err;
}
#endif
static inline hal_error_t verilog_p256_point_pick_random(fp_int *k, ec_point_t *P)
{
#if HAL_ECDSA_VERILOG_ECDSA256_MULTIPLIER
static const verilog_ecdsa_driver_t p256_driver = {
.name = ECDSA256_NAME,
.bytes = ECDSA256_OPERAND_BITS / 8,
.k_addr = ECDSA256_ADDR_K,
.x_addr = ECDSA256_ADDR_X,
.y_addr = ECDSA256_ADDR_Y
};
return verilog_point_pick_random(&p256_driver, k, P);
#endif
return HAL_ERROR_CORE_NOT_FOUND;
}
static inline hal_error_t verilog_p384_point_pick_random(fp_int *k, ec_point_t *P)
{
#if HAL_ECDSA_VERILOG_ECDSA384_MULTIPLIER
static const verilog_ecdsa_driver_t p384_driver = {
.name = ECDSA384_NAME,
.bytes = ECDSA384_OPERAND_BITS / 8,
.k_addr = ECDSA384_ADDR_K,
.x_addr = ECDSA384_ADDR_X,
.y_addr = ECDSA384_ADDR_Y
};
return verilog_point_pick_random(&p384_driver, k, P);
#endif
return HAL_ERROR_CORE_NOT_FOUND;
}
/*
* Pick a random point on the curve, return random scalar and
* resulting point.
*/
static hal_error_t point_pick_random(const ecdsa_curve_t * const curve,
fp_int *k,
ec_point_t *P)
{
hal_error_t err;
assert(curve != NULL && k != NULL && P != NULL);
/*
* Pick a random scalar corresponding to a point on the curve. Per
* the NSA (gulp) Suite B guidelines, we ask the CSPRNG for 64 more
* bits than we need, which should be enough to mask any bias
* induced by the modular reduction.
*
* We're picking a point out of the subgroup generated by the base
* point on the elliptic curve, so the modulus for this calculation
* is the order of the base point.
*
* Zero is an excluded value, but the chance of a non-broken CSPRNG
* returning zero is so low that it would almost certainly indicate
* an undiagnosed bug in the CSPRNG.
*/
uint8_t k_buf[fp_unsigned_bin_size(unconst_fp_int(curve->n)) + 8];
do {
if ((err = get_random(k_buf, sizeof(k_buf))) != HAL_OK)
return err;
fp_read_unsigned_bin(k, k_buf, sizeof(k_buf));
if (fp_iszero(k) || fp_mod(k, unconst_fp_int(curve->n), k) != FP_OKAY)
return HAL_ERROR_IMPOSSIBLE;
} while (fp_iszero(k));
memset(k_buf, 0, sizeof(k_buf));
#if HAL_ECDSA_VERILOG_ECDSA256_MULTIPLIER || HAL_ECDSA_VERILOG_ECDSA384_MULTIPLIER
switch (curve->curve) {
case HAL_CURVE_P256:
if ((err = verilog_p256_point_pick_random(k, P)) != HAL_ERROR_CORE_NOT_FOUND)
return err;
break;
case HAL_CURVE_P384:
if ((err = verilog_p384_point_pick_random(k, P)) != HAL_ERROR_CORE_NOT_FOUND)
return err;
break;
default:
break;
}
#endif
/*
* Calculate P = kG and return.
*/
fp_copy(curve->Gx, P->x);
fp_copy(curve->Gy, P->y);
fp_set(P->z, 1);
return point_scalar_multiply(k, P, P, curve);
}
/*
* Test whether a point really is on a particular curve. This is
* called "validation" when applied to a public key, and is required
* before verifying a signature.
*/
static int point_is_on_curve(const ec_point_t * const P,
const ecdsa_curve_t * const curve)
{
assert(P != NULL && curve != NULL);
fp_int t1[1] = INIT_FP_INT;
fp_int t2[1] = INIT_FP_INT;
/*
* Compute y**2 - x**3 + 3*x.
*/
fp_sqr(unconst_fp_int(P->y), t1); /* t1 = y**2 */
fp_sqr(unconst_fp_int(P->x), t2); /* t2 = x**2 */
if (fp_mod(t2, unconst_fp_int(curve->q), t2) != FP_OKAY)
return 0;
fp_mul(unconst_fp_int(P->x), t2, t2); /* t2 = x**3 */
fp_sub(t1, t2, t1); /* t1 = y**2 - x**3 */
fp_add(t1, unconst_fp_int(P->x), t1); /* t1 = y**2 - x**3 + 1*x */
fp_add(t1, unconst_fp_int(P->x), t1); /* t1 = y**2 - x**3 + 2*x */
fp_add(t1, unconst_fp_int(P->x), t1); /* t1 = y**2 - x**3 + 3*x */
/*
* Normalize and test whether computed value matches b.
*/
if (fp_mod(t1, unconst_fp_int(curve->q), t1) != FP_OKAY)
return 0;
while (fp_cmp_d(t1, 0) == FP_LT)
fp_add(t1, unconst_fp_int(curve->q), t1);
while (fp_cmp(t1, unconst_fp_int(curve->q)) != FP_LT)
fp_sub(t1, unconst_fp_int(curve->q), t1);
return fp_cmp(t1, unconst_fp_int(curve->b)) == FP_EQ;
}
/*
* Generate a new ECDSA key.
*/
hal_error_t hal_ecdsa_key_gen(const hal_core_t *core,
hal_ecdsa_key_t **key_,
void *keybuf, const size_t keybuf_len,
const hal_curve_name_t curve_)
{
const ecdsa_curve_t * const curve = get_curve(curve_);
hal_ecdsa_key_t *key = keybuf;
hal_error_t err;
if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key) || curve == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
key->type = HAL_KEY_TYPE_EC_PRIVATE;
key->curve = curve_;
if ((err = point_pick_random(curve, key->d, key->Q)) != HAL_OK)
return err;
if (!point_is_on_curve(key->Q, curve))
return HAL_ERROR_KEY_NOT_ON_CURVE;
*key_ = key;
return HAL_OK;
}
/*
* Extract key type (public or private).
*/
hal_error_t hal_ecdsa_key_get_type(const hal_ecdsa_key_t * const key,
hal_key_type_t *key_type)
{
if (key == NULL || key_type == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
*key_type = key->type;
return HAL_OK;
}
/*
* Extract name of curve underlying a key.
*/
hal_error_t hal_ecdsa_key_get_curve(const hal_ecdsa_key_t * const key,
hal_curve_name_t *curve)
{
if (key == NULL || curve == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
*curve = key->curve;
return HAL_OK;
}
/*
* Extract public key components.
*/
hal_error_t hal_ecdsa_key_get_public(const hal_ecdsa_key_t * const key,
uint8_t *x, size_t *x_len, const size_t x_max,
uint8_t *y, size_t *y_len, const size_t y_max)
{
if (key == NULL || (x_len == NULL && x != NULL) || (y_len == NULL && y != NULL))
return HAL_ERROR_BAD_ARGUMENTS;
if (x_len != NULL)
*x_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->x));
if (y_len != NULL)
*y_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->y));
if ((x != NULL && *x_len > x_max) ||
(y != NULL && *y_len > y_max))
return HAL_ERROR_RESULT_TOO_LONG;
if (x != NULL)
fp_to_unsigned_bin(unconst_fp_int(key->Q->x), x);
if (y != NULL)
fp_to_unsigned_bin(unconst_fp_int(key->Q->y), y);
return HAL_OK;
}
/*
* Clear a key.
*/
void hal_ecdsa_key_clear(hal_ecdsa_key_t *key)
{
if (key != NULL)
memset(key, 0, sizeof(*key));
}
/*
* Load a public key from components, and validate that the public key
* really is on the named curve.
*/
hal_error_t hal_ecdsa_key_load_public(hal_ecdsa_key_t **key_,
void *keybuf, const size_t keybuf_len,
const hal_curve_name_t curve_,
const uint8_t * const x, const size_t x_len,
const uint8_t * const y, const size_t y_len)
{
const ecdsa_curve_t * const curve = get_curve(curve_);
hal_ecdsa_key_t *key = keybuf;
if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key) || curve == NULL || x == NULL || y == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
key->type = HAL_KEY_TYPE_EC_PUBLIC;
key->curve = curve_;
fp_read_unsigned_bin(key->Q->x, unconst_uint8_t(x), x_len);
fp_read_unsigned_bin(key->Q->y, unconst_uint8_t(y), y_len);
fp_set(key->Q->z, 1);
if (!point_is_on_curve(key->Q, curve))
return HAL_ERROR_KEY_NOT_ON_CURVE;
*key_ = key;
return HAL_OK;
}
/*
* Load a private key from components: does the same things as
* hal_ecdsa_key_load_public(), but also checks the private key, and
* generates the public key from the private key if necessary.
*/
hal_error_t hal_ecdsa_key_load_private(hal_ecdsa_key_t **key_,
void *keybuf, const size_t keybuf_len,
const hal_curve_name_t curve_,
const uint8_t * const x, const size_t x_len,
const uint8_t * const y, const size_t y_len,
const uint8_t * const d, const size_t d_len)
{
const ecdsa_curve_t * const curve = get_curve(curve_);
hal_ecdsa_key_t *key = keybuf;
hal_error_t err;
if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key) || curve == NULL ||
d == NULL || d_len == 0 || (x == NULL && x_len != 0) || (y == NULL && y_len != 0))
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
key->type = HAL_KEY_TYPE_EC_PRIVATE;
key->curve = curve_;
fp_read_unsigned_bin(key->d, unconst_uint8_t(d), d_len);
if (fp_iszero(key->d) || fp_cmp(key->d, unconst_fp_int(curve->n)) != FP_LT)
lose(HAL_ERROR_BAD_ARGUMENTS);
fp_set(key->Q->z, 1);
if (x_len != 0 || y_len != 0) {
fp_read_unsigned_bin(key->Q->x, unconst_uint8_t(x), x_len);
fp_read_unsigned_bin(key->Q->y, unconst_uint8_t(y), y_len);
}
else {
fp_copy(curve->Gx, key->Q->x);
fp_copy(curve->Gy, key->Q->y);
if ((err = point_scalar_multiply(key->d, key->Q, key->Q, curve)) != HAL_OK)
goto fail;
}
if (!point_is_on_curve(key->Q, curve))
lose(HAL_ERROR_KEY_NOT_ON_CURVE);
*key_ = key;
return HAL_OK;
fail:
memset(keybuf, 0, keybuf_len);
return err;
}
/*
* Write public key in X9.62 ECPoint format (ASN.1 OCTET STRING, first octet is compression flag).
*/
hal_error_t hal_ecdsa_key_to_ecpoint(const hal_ecdsa_key_t * const key,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (key == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
const ecdsa_curve_t * const curve = get_curve(key->curve);
if (curve == NULL)
return HAL_ERROR_IMPOSSIBLE;
const size_t q_len = fp_unsigned_bin_size(unconst_fp_int(curve->q));
const size_t Qx_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->x));
const size_t Qy_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->y));
assert(q_len >= Qx_len && q_len >= Qy_len);
const size_t vlen = q_len * 2 + 1;
size_t hlen;
hal_error_t err = hal_asn1_encode_header(ASN1_OCTET_STRING, vlen, der, &hlen, der_max);
if (der_len != NULL)
*der_len = hlen + vlen;
if (der == NULL || err != HAL_OK)
return err;
assert(hlen + vlen <= der_max);
uint8_t *d = der + hlen;
memset(d, 0, vlen);
*d++ = 0x04; /* uncompressed */
fp_to_unsigned_bin(unconst_fp_int(key->Q->x), d + q_len - Qx_len);
d += q_len;
fp_to_unsigned_bin(unconst_fp_int(key->Q->y), d + q_len - Qy_len);
d += q_len;
assert(d <= der + der_max);
return HAL_OK;
}
/*
* Convenience wrapper to return how many bytes a key would take if
* encoded as an ECPoint.
*/
size_t hal_ecdsa_key_to_ecpoint_len(const hal_ecdsa_key_t * const key)
{
size_t len;
return hal_ecdsa_key_to_ecpoint(key, NULL, &len, 0) == HAL_OK ? len : 0;
}
/*
* Read public key in X9.62 ECPoint format (ASN.1 OCTET STRING, first octet is compression flag).
* ECPoint format doesn't include a curve identifier, so caller has to supply one.
*/
hal_error_t hal_ecdsa_key_from_ecpoint(hal_ecdsa_key_t **key_,
void *keybuf, const size_t keybuf_len,
const uint8_t * const der, const size_t der_len,
const hal_curve_name_t curve)
{
hal_ecdsa_key_t *key = keybuf;
if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key) || get_curve(curve) == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
key->type = HAL_KEY_TYPE_EC_PUBLIC;
key->curve = curve;
size_t hlen, vlen;
hal_error_t err;
if ((err = hal_asn1_decode_header(ASN1_OCTET_STRING, der, der_len, &hlen, &vlen)) != HAL_OK)
return err;
const uint8_t * const der_end = der + hlen + vlen;
const uint8_t *d = der + hlen;
if (vlen < 3 || (vlen & 1) == 0 || *d++ != 0x04)
lose(HAL_ERROR_ASN1_PARSE_FAILED);
vlen /= 2;
fp_read_unsigned_bin(key->Q->x, unconst_uint8_t(d), vlen);
d += vlen;
fp_read_unsigned_bin(key->Q->y, unconst_uint8_t(d), vlen);
d += vlen;
fp_set(key->Q->z, 1);
if (d != der_end)
lose(HAL_ERROR_ASN1_PARSE_FAILED);
*key_ = key;
return HAL_OK;
fail:
memset(keybuf, 0, keybuf_len);
return err;
}
/*
* Write private key in RFC 5915 ASN.1 DER format.
*
* This is hand-coded, and is approaching the limit where one should
* probably be using an ASN.1 compiler like asn1c instead.
*/
hal_error_t hal_ecdsa_private_key_to_der(const hal_ecdsa_key_t * const key,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (key == NULL || key->type != HAL_KEY_TYPE_EC_PRIVATE)
return HAL_ERROR_BAD_ARGUMENTS;
const ecdsa_curve_t * const curve = get_curve(key->curve);
if (curve == NULL)
return HAL_ERROR_IMPOSSIBLE;
const size_t q_len = fp_unsigned_bin_size(unconst_fp_int(curve->q));
const size_t d_len = fp_unsigned_bin_size(unconst_fp_int(key->d));
const size_t Qx_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->x));
const size_t Qy_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->y));
assert(q_len >= d_len && q_len >= Qx_len && q_len >= Qy_len);
fp_int version[1] = INIT_FP_INT;
fp_set(version, 1);
hal_error_t err;
size_t version_len, hlen, hlen_oct, hlen_oid, hlen_exp0, hlen_bit, hlen_exp1;
if ((err = hal_asn1_encode_integer(version, NULL, &version_len, 0)) != HAL_OK ||
(err = hal_asn1_encode_header(ASN1_OCTET_STRING, q_len, NULL, &hlen_oct, 0)) != HAL_OK ||
(err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, curve->oid_len, NULL, &hlen_oid, 0)) != HAL_OK ||
(err = hal_asn1_encode_header(ASN1_EXPLICIT_0, hlen_oid + curve->oid_len, NULL, &hlen_exp0, 0)) != HAL_OK ||
(err = hal_asn1_encode_header(ASN1_BIT_STRING, (q_len + 1) * 2, NULL, &hlen_bit, 0)) != HAL_OK ||
(err = hal_asn1_encode_header(ASN1_EXPLICIT_1, hlen_bit + (q_len + 1) * 2, NULL, &hlen_exp1, 0)) != HAL_OK)
return err;
const size_t vlen = (version_len +
hlen_oct + q_len +
hlen_oid + hlen_exp0 + curve->oid_len +
hlen_bit + hlen_exp1 + (q_len + 1) * 2);
err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max);
if (der_len != NULL)
*der_len = hlen + vlen;
if (der == NULL || err != HAL_OK)
return err;
uint8_t *d = der + hlen;
memset(d, 0, vlen);
if ((err = hal_asn1_encode_integer(version, d, NULL, der + der_max - d)) != HAL_OK)
return err;
d += version_len;
if ((err = hal_asn1_encode_header(ASN1_OCTET_STRING, q_len, d, &hlen, der + der_max - d)) != HAL_OK)
return err;
d += hlen;
fp_to_unsigned_bin(unconst_fp_int(key->d), d + q_len - d_len);
d += q_len;
if ((err = hal_asn1_encode_header(ASN1_EXPLICIT_0, hlen_oid + curve->oid_len, d, &hlen, der + der_max - d)) != HAL_OK)
return err;
d += hlen;
if ((err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, curve->oid_len, d, &hlen, der + der_max - d)) != HAL_OK)
return err;
d += hlen;
memcpy(d, curve->oid, curve->oid_len);
d += curve->oid_len;
if ((err = hal_asn1_encode_header(ASN1_EXPLICIT_1, hlen_bit + (q_len + 1) * 2, d, &hlen, der + der_max - d)) != HAL_OK)
return err;
d += hlen;
if ((err = hal_asn1_encode_header(ASN1_BIT_STRING, (q_len + 1) * 2, d, &hlen, der + der_max - d)) != HAL_OK)
return err;
d += hlen;
*d++ = 0x00;
*d++ = 0x04;
fp_to_unsigned_bin(unconst_fp_int(key->Q->x), d + q_len - Qx_len);
d += q_len;
fp_to_unsigned_bin(unconst_fp_int(key->Q->y), d + q_len - Qy_len);
d += q_len;
assert(d <= der + der_max);
return HAL_OK;
}
/*
* Convenience wrapper to return how many bytes a private key would
* take if encoded as DER.
*/
size_t hal_ecdsa_private_key_to_der_len(const hal_ecdsa_key_t * const key)
{
size_t len;
return hal_ecdsa_private_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0;
}
/*
* Read private key in RFC 5915 ASN.1 DER format.
*
* This is hand-coded, and is approaching the limit where one should
* probably be using an ASN.1 compiler like asn1c instead.
*/
hal_error_t hal_ecdsa_private_key_from_der(hal_ecdsa_key_t **key_,
void *keybuf, const size_t keybuf_len,
const uint8_t * const der, const size_t der_len)
{
hal_ecdsa_key_t *key = keybuf;
if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key))
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
key->type = HAL_KEY_TYPE_EC_PRIVATE;
size_t hlen, vlen;
hal_error_t err;
if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, der, der_len, &hlen, &vlen)) != HAL_OK)
return err;
const uint8_t * const der_end = der + hlen + vlen;
const uint8_t *d = der + hlen;
const ecdsa_curve_t *curve = NULL;
fp_int version[1] = INIT_FP_INT;
if ((err = hal_asn1_decode_integer(version, d, &hlen, vlen)) != HAL_OK)
goto fail;
if (fp_cmp_d(version, 1) != FP_EQ)
lose(HAL_ERROR_ASN1_PARSE_FAILED);
d += hlen;
if ((err = hal_asn1_decode_header(ASN1_OCTET_STRING, d, der_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
fp_read_unsigned_bin(key->d, unconst_uint8_t(d), vlen);
d += vlen;
if ((err = hal_asn1_decode_header(ASN1_EXPLICIT_0, d, der_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
if (vlen > der_end - d)
lose(HAL_ERROR_ASN1_PARSE_FAILED);
if ((err = hal_asn1_decode_header(ASN1_OBJECT_IDENTIFIER, d, vlen, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
if ((curve = oid_to_curve(&key->curve, d, vlen)) == NULL)
lose(HAL_ERROR_ASN1_PARSE_FAILED);
d += vlen;
if ((err = hal_asn1_decode_header(ASN1_EXPLICIT_1, d, der_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
if (vlen > der_end - d)
lose(HAL_ERROR_ASN1_PARSE_FAILED);
if ((err = hal_asn1_decode_header(ASN1_BIT_STRING, d, vlen, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
if (vlen < 4 || (vlen & 1) != 0 || *d++ != 0x00 || *d++ != 0x04)
lose(HAL_ERROR_ASN1_PARSE_FAILED);
vlen = vlen/2 - 1;
fp_read_unsigned_bin(key->Q->x, unconst_uint8_t(d), vlen);
d += vlen;
fp_read_unsigned_bin(key->Q->y, unconst_uint8_t(d), vlen);
d += vlen;
fp_set(key->Q->z, 1);
if (d != der_end)
lose(HAL_ERROR_ASN1_PARSE_FAILED);
*key_ = key;
return HAL_OK;
fail:
memset(keybuf, 0, keybuf_len);
return err;
}
/*
* Write public key in SubjectPublicKeyInfo format, see RFCS 5280 and 5480.
*/
static const uint8_t oid_ecPublicKey[] = { 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x02, 0x01 };
hal_error_t hal_ecdsa_public_key_to_der(const hal_ecdsa_key_t * const key,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (key == NULL || (key->type != HAL_KEY_TYPE_EC_PRIVATE &&
key->type != HAL_KEY_TYPE_EC_PUBLIC))
return HAL_ERROR_BAD_ARGUMENTS;
const ecdsa_curve_t * const curve = get_curve(key->curve);
if (curve == NULL)
return HAL_ERROR_IMPOSSIBLE;
const size_t q_len = fp_unsigned_bin_size(unconst_fp_int(curve->q));
const size_t Qx_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->x));
const size_t Qy_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->y));
const size_t ecpoint_len = q_len * 2 + 1;
assert(q_len >= Qx_len && q_len >= Qy_len);
if (der != NULL && ecpoint_len < der_max) {
memset(der, 0, ecpoint_len);
uint8_t *d = der;
*d++ = 0x04; /* Uncompressed */
fp_to_unsigned_bin(unconst_fp_int(key->Q->x), d + q_len - Qx_len);
d += q_len;
fp_to_unsigned_bin(unconst_fp_int(key->Q->y), d + q_len - Qy_len);
d += q_len;
assert(d < der + der_max);
}
return hal_asn1_encode_spki(oid_ecPublicKey, sizeof(oid_ecPublicKey),
curve->oid, curve->oid_len,
der, ecpoint_len,
der, der_len, der_max);
}
/*
* Convenience wrapper to return how many bytes a public key would
* take if encoded as DER.
*/
size_t hal_ecdsa_public_key_to_der_len(const hal_ecdsa_key_t * const key)
{
size_t len;
return hal_ecdsa_public_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0;
}
/*
* Read public key in SubjectPublicKeyInfo format, see RFCS 5280 and 5480.
*/
hal_error_t hal_ecdsa_public_key_from_der(hal_ecdsa_key_t **key_,
void *keybuf, const size_t keybuf_len,
const uint8_t * const der, const size_t der_len)
{
hal_ecdsa_key_t *key = keybuf;
if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key))
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
key->type = HAL_KEY_TYPE_EC_PUBLIC;
const uint8_t *alg_oid = NULL, *curve_oid = NULL, *pubkey = NULL;
size_t alg_oid_len, curve_oid_len, pubkey_len;
const ecdsa_curve_t *curve;
hal_error_t err;
if ((err = hal_asn1_decode_spki(&alg_oid, &alg_oid_len, &curve_oid, &curve_oid_len, &pubkey, &pubkey_len,
der, der_len)) != HAL_OK)
return err;
if (alg_oid == NULL || curve_oid == NULL || pubkey == NULL ||
alg_oid_len != sizeof(oid_ecPublicKey) || memcmp(alg_oid, oid_ecPublicKey, alg_oid_len) != 0 ||
(curve = oid_to_curve(&key->curve, curve_oid, curve_oid_len)) == NULL ||
pubkey_len < 3 || (pubkey_len & 1) == 0 || pubkey[0] != 0x04 ||
pubkey_len / 2 != fp_unsigned_bin_size(unconst_fp_int(curve->q)))
return HAL_ERROR_ASN1_PARSE_FAILED;
const uint8_t * const Qx = pubkey + 1;
const uint8_t * const Qy = Qx + pubkey_len / 2;
fp_read_unsigned_bin(key->Q->x, unconst_uint8_t(Qx), pubkey_len / 2);
fp_read_unsigned_bin(key->Q->y, unconst_uint8_t(Qy), pubkey_len / 2);
fp_set(key->Q->z, 1);
*key_ = key;
return HAL_OK;
}
/*
* Encode a signature in PKCS #11 format: an octet string consisting
* of concatenated values for r and s, each padded (if necessary) out
* to the byte length of the order of the base point.
*/
static hal_error_t encode_signature_pkcs11(const ecdsa_curve_t * const curve,
const fp_int * const r, const fp_int * const s,
uint8_t *signature, size_t *signature_len, const size_t signature_max)
{
assert(curve != NULL && r != NULL && s != NULL);
const size_t n_len = fp_unsigned_bin_size(unconst_fp_int(curve->n));
const size_t r_len = fp_unsigned_bin_size(unconst_fp_int(r));
const size_t s_len = fp_unsigned_bin_size(unconst_fp_int(s));
if (n_len < r_len || n_len < s_len)
return HAL_ERROR_IMPOSSIBLE;
if (signature_len != NULL)
*signature_len = n_len * 2;
if (signature == NULL)
return HAL_OK;
if (signature_max < n_len * 2)
return HAL_ERROR_RESULT_TOO_LONG;
memset(signature, 0, n_len * 2);
fp_to_unsigned_bin(unconst_fp_int(r), signature + 1 * n_len - r_len);
fp_to_unsigned_bin(unconst_fp_int(s), signature + 2 * n_len - s_len);
return HAL_OK;
}
/*
* Decode a signature from PKCS #11 format: an octet string consisting
* of concatenated values for r and s, each of which occupies half of
* the octet string (which must therefore be of even length).
*/
static hal_error_t decode_signature_pkcs11(const ecdsa_curve_t * const curve,
fp_int *r, fp_int *s,
const uint8_t * const signature, const size_t signature_len)
{
assert(curve != NULL && r != NULL && s != NULL);
if (signature == NULL || (signature_len & 1) != 0)
return HAL_ERROR_BAD_ARGUMENTS;
const size_t n_len = signature_len / 2;
if (n_len > fp_unsigned_bin_size(unconst_fp_int(curve->n)))
return HAL_ERROR_BAD_ARGUMENTS;
fp_read_unsigned_bin(r, unconst_uint8_t(signature) + 0 * n_len, n_len);
fp_read_unsigned_bin(s, unconst_uint8_t(signature) + 1 * n_len, n_len);
return HAL_OK;
}
/*
* Sign a caller-supplied hash.
*/
hal_error_t hal_ecdsa_sign(const hal_core_t *core,
const hal_ecdsa_key_t * const key,
const uint8_t * const hash, const size_t hash_len,
uint8_t *signature, size_t *signature_len, const size_t signature_max)
{
if (key == NULL || hash == NULL || signature == NULL || signature_len == NULL || key->type != HAL_KEY_TYPE_EC_PRIVATE)
return HAL_ERROR_BAD_ARGUMENTS;
const ecdsa_curve_t * const curve = get_curve(key->curve);
if (curve == NULL)
return HAL_ERROR_IMPOSSIBLE;
fp_int k[1] = INIT_FP_INT;
fp_int r[1] = INIT_FP_INT;
fp_int s[1] = INIT_FP_INT;
fp_int e[1] = INIT_FP_INT;
fp_int * const n = unconst_fp_int(curve->n);
fp_int * const d = unconst_fp_int(key->d);
ec_point_t R[1] = INIT_EC_POINT_T;
hal_error_t err;
fp_read_unsigned_bin(e, unconst_uint8_t(hash), hash_len);
do {
/*
* Pick random curve point R, then calculate r = Rx % n.
* If r == 0, we can't use this point, so go try again.
*/
if ((err = point_pick_random(curve, k, R)) != HAL_OK)
goto fail;
if (!point_is_on_curve(R, curve))
lose(HAL_ERROR_IMPOSSIBLE);
if (fp_mod(R->x, n, r) != FP_OKAY)
lose(HAL_ERROR_IMPOSSIBLE);
if (fp_iszero(r))
continue;
/*
* Calculate s = ((e + dr)/k) % n.
* If s == 0, we can't use this point, so go try again.
*/
if (fp_mulmod (d, r, n, s) != FP_OKAY)
lose(HAL_ERROR_IMPOSSIBLE);
fp_add (e, s, s);
if (fp_mod (s, n, s) != FP_OKAY ||
fp_invmod (k, n, k) != FP_OKAY ||
fp_mulmod (s, k, n, s) != FP_OKAY)
lose(HAL_ERROR_IMPOSSIBLE);
} while (fp_iszero(s));
/*
* Encode the signature, then we're done.
*/
if ((err = encode_signature_pkcs11(curve, r, s, signature, signature_len, signature_max)) != HAL_OK)
goto fail;
err = HAL_OK;
fail:
fp_zero(k); fp_zero(r); fp_zero(s); fp_zero(e);
memset(R, 0, sizeof(R));
return err;
}
/*
* Verify a signature using a caller-supplied hash.
*/
hal_error_t hal_ecdsa_verify(const hal_core_t *core,
const hal_ecdsa_key_t * const key,
const uint8_t * const hash, const size_t hash_len,
const uint8_t * const signature, const size_t signature_len)
{
assert(key != NULL && hash != NULL && signature != NULL);
const ecdsa_curve_t * const curve = get_curve(key->curve);
if (curve == NULL)
return HAL_ERROR_IMPOSSIBLE;
if (!point_is_on_curve(key->Q, curve))
return HAL_ERROR_KEY_NOT_ON_CURVE;
fp_int * const n = unconst_fp_int(curve->n);
hal_error_t err;
fp_int r[1] = INIT_FP_INT;
fp_int s[1] = INIT_FP_INT;
fp_int e[1] = INIT_FP_INT;
fp_int w[1] = INIT_FP_INT;
fp_int u1[1] = INIT_FP_INT;
fp_int u2[1] = INIT_FP_INT;
fp_int v[1] = INIT_FP_INT;
ec_point_t u1G[1] = INIT_EC_POINT_T;
ec_point_t u2Q[1] = INIT_EC_POINT_T;
ec_point_t R[1] = INIT_EC_POINT_T;
/*
* Start by decoding the signature.
*/
if ((err = decode_signature_pkcs11(curve, r, s, signature, signature_len)) != HAL_OK)
return err;
/*
* Check that r and s are in the allowed range, read the hash, then
* compute:
*
* w = 1 / s
* u1 = e * w
* u2 = r * w
* R = u1 * G + u2 * Q.
*/
if (fp_cmp_d(r, 1) == FP_LT || fp_cmp(r, n) != FP_LT ||
fp_cmp_d(s, 1) == FP_LT || fp_cmp(s, n) != FP_LT)
return HAL_ERROR_INVALID_SIGNATURE;
fp_read_unsigned_bin(e, unconst_uint8_t(hash), hash_len);
if (fp_invmod(s, n, w) != FP_OKAY ||
fp_mulmod(e, w, n, u1) != FP_OKAY ||
fp_mulmod(r, w, n, u2) != FP_OKAY)
return HAL_ERROR_IMPOSSIBLE;
fp_copy(unconst_fp_int(curve->Gx), u1G->x);
fp_copy(unconst_fp_int(curve->Gy), u1G->y);
fp_set(u1G->z, 1);
if ((err = point_scalar_multiply(u1, u1G, u1G, curve)) != HAL_OK ||
(err = point_scalar_multiply(u2, key->Q, u2Q, curve)) != HAL_OK)
return err;
if (point_is_infinite(u1G))
point_copy(u2Q, R);
else if (point_is_infinite(u2Q))
point_copy(u1G, R);
else if ((err = point_to_montgomery(u1G, curve)) != HAL_OK ||
(err = point_to_montgomery(u2Q, curve)) != HAL_OK)
return err;
else
point_add(u1G, u2Q, R, curve);
/*
* Signature is OK if
* R is not the point at infinity, and
* Rx is congruent to r mod n.
*/
if (point_is_infinite(R))
return HAL_ERROR_INVALID_SIGNATURE;
if ((err = point_to_affine(R, curve)) != HAL_OK)
return err;
if (fp_mod(R->x, n, v) != FP_OKAY)
return HAL_ERROR_IMPOSSIBLE;
return fp_cmp(v, r) == FP_EQ ? HAL_OK : HAL_ERROR_INVALID_SIGNATURE;
}
/*
* Local variables:
* indent-tabs-mode: nil
* End:
*/
|