aboutsummaryrefslogtreecommitdiff
path: root/csprng.c
blob: 8ba4fa5235d3c1934404fc56e76f9223f10cb199 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
/*
 * csprng.c
 * --------
 * HAL interface to Cryptech CSPRNG.
 *
 * Authors: Joachim Strömbergson, Paul Selkirk, Rob Austein
 * Copyright (c) 2014-2015, NORDUnet A/S
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * - Redistributions of source code must retain the above copyright notice,
 *   this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 *
 * - Neither the name of the NORDUnet nor the names of its contributors may
 *   be used to endorse or promote products derived from this software
 *   without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdint.h>

#include "hal.h"
#include "hal_internal.h"

#ifndef WAIT_FOR_CSPRNG_VALID
#define WAIT_FOR_CSPRNG_VALID   1
#endif

hal_error_t hal_get_random(hal_core_t *core, void *buffer, const size_t length)
{
  uint8_t temp[4], ior = 0, * const buf = buffer;
  hal_error_t err;

  if ((err = hal_core_alloc(CSPRNG_NAME, &core)) != HAL_OK)
    return err;

  for (size_t i = 0; i < length; i += 4) {
    const int last = (length - i) < 4;

    if (WAIT_FOR_CSPRNG_VALID && (err = hal_io_wait_valid(core)) != HAL_OK)
      break;

    if ((err = hal_io_read(core, CSPRNG_ADDR_RANDOM, (last ? temp : &buf[i]), 4)) != HAL_OK)
      break;

    if (last)
      for (; i < length; i++)
        buf[i] = temp[i&3];
  }

  if (err == HAL_OK) {
    for (size_t i = 0; i < length; i++)
      ior |= buf[i];

    if (ior == 0 && length > 0)
      err = HAL_ERROR_CSPRNG_BROKEN;
  }

  hal_core_free(core);
  return err;
}

/*
 * "Any programmer who fails to comply with the standard naming, formatting,
 *  or commenting conventions should be shot.  If it so happens that it is
 *  inconvenient to shoot him, then he is to be politely requested to recode
 *  his program in adherence to the above standard."
 *                      -- Michael Spier, Digital Equipment Corporation
 *
 * Local variables:
 * indent-tabs-mode: nil
 * End:
 */
='n593' href='#n593'>593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
# Copyright (c) 2016, NORDUnet A/S
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
# - Redistributions of source code must retain the above copyright notice,
#   this list of conditions and the following disclaimer.
#
# - Redistributions in binary form must reproduce the above copyright
#   notice, this list of conditions and the following disclaimer in the
#   documentation and/or other materials provided with the distribution.
#
# - Neither the name of the NORDUnet nor the names of its contributors may
#   be used to endorse or promote products derived from this software
#   without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
# TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
# TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

"""
A Python interface to the Cryptech libhal RPC API.
"""

# A lot of this is hand-generated XDR data structure encoding.  If and
# when we ever convert the C library to use data structures processed
# by rpcgen, we may want to rewrite this code to use the output of
# something like https://github.com/floodlight/xdr.git -- in either
# case the generated code would just be for the data structures, we're
# not likely to want to use the full ONC RPC mechanism.

import os
import uuid
import xdrlib
import socket
import logging
import contextlib

logger = logging.getLogger(__name__)


SLIP_END     = chr(0300)        # indicates end of packet
SLIP_ESC     = chr(0333)        # indicates byte stuffing
SLIP_ESC_END = chr(0334)        # ESC ESC_END means END data byte
SLIP_ESC_ESC = chr(0335)        # ESC ESC_ESC means ESC data byte


def slip_encode(buffer):
    return SLIP_END + buffer.replace(SLIP_ESC, SLIP_ESC + SLIP_ESC_ESC).replace(SLIP_END, SLIP_ESC + SLIP_ESC_END) + SLIP_END

def slip_decode(buffer):
    return buffer.strip(SLIP_END).replace(SLIP_ESC + SLIP_ESC_END, SLIP_END).replace(SLIP_ESC + SLIP_ESC_ESC, SLIP_ESC)


HAL_OK = 0

class HALError(Exception):
    "LibHAL error"

    table = [None]

    @classmethod
    def define(cls, **kw):
        assert len(kw) == 1
        name, text = kw.items()[0]
        e = type(name, (cls,), dict(__doc__ = text))
        cls.table.append(e)
        globals()[name] = e

HALError.define(HAL_ERROR_BAD_ARGUMENTS             = "Bad arguments given")
HALError.define(HAL_ERROR_UNSUPPORTED_KEY           = "Unsupported key type or key length")
HALError.define(HAL_ERROR_IO_SETUP_FAILED           = "Could not set up I/O with FPGA")
HALError.define(HAL_ERROR_IO_TIMEOUT                = "I/O with FPGA timed out")
HALError.define(HAL_ERROR_IO_UNEXPECTED             = "Unexpected response from FPGA")
HALError.define(HAL_ERROR_IO_OS_ERROR               = "Operating system error talking to FPGA")
HALError.define(HAL_ERROR_IO_BAD_COUNT              = "Bad byte count")
HALError.define(HAL_ERROR_CSPRNG_BROKEN             = "CSPRNG is returning nonsense")
HALError.define(HAL_ERROR_KEYWRAP_BAD_MAGIC         = "Bad magic number while unwrapping key")
HALError.define(HAL_ERROR_KEYWRAP_BAD_LENGTH        = "Length out of range while unwrapping key")
HALError.define(HAL_ERROR_KEYWRAP_BAD_PADDING       = "Non-zero padding detected unwrapping key")
HALError.define(HAL_ERROR_IMPOSSIBLE                = "\"Impossible\" error")
HALError.define(HAL_ERROR_ALLOCATION_FAILURE        = "Memory allocation failed")
HALError.define(HAL_ERROR_RESULT_TOO_LONG           = "Result too long for buffer")
HALError.define(HAL_ERROR_ASN1_PARSE_FAILED         = "ASN.1 parse failed")
HALError.define(HAL_ERROR_KEY_NOT_ON_CURVE          = "EC key is not on its purported curve")
HALError.define(HAL_ERROR_INVALID_SIGNATURE         = "Invalid signature")
HALError.define(HAL_ERROR_CORE_NOT_FOUND            = "Requested core not found")
HALError.define(HAL_ERROR_CORE_BUSY                 = "Requested core busy")
HALError.define(HAL_ERROR_KEYSTORE_ACCESS           = "Could not access keystore")
HALError.define(HAL_ERROR_KEY_NOT_FOUND             = "Key not found")
HALError.define(HAL_ERROR_KEY_NAME_IN_USE           = "Key name in use")
HALError.define(HAL_ERROR_NO_KEY_SLOTS_AVAILABLE    = "No key slots available")
HALError.define(HAL_ERROR_PIN_INCORRECT             = "PIN incorrect")
HALError.define(HAL_ERROR_NO_CLIENT_SLOTS_AVAILABLE = "No client slots available")
HALError.define(HAL_ERROR_FORBIDDEN                 = "Forbidden")
HALError.define(HAL_ERROR_XDR_BUFFER_OVERFLOW       = "XDR buffer overflow")
HALError.define(HAL_ERROR_RPC_TRANSPORT             = "RPC transport error")
HALError.define(HAL_ERROR_RPC_PACKET_OVERFLOW       = "RPC packet overflow")
HALError.define(HAL_ERROR_RPC_BAD_FUNCTION          = "Bad RPC function number")
HALError.define(HAL_ERROR_KEY_NAME_TOO_LONG         = "Key name too long")
HALError.define(HAL_ERROR_MASTERKEY_NOT_SET         = "Master key (Key Encryption Key) not set")
HALError.define(HAL_ERROR_MASTERKEY_FAIL            = "Master key generic failure")
HALError.define(HAL_ERROR_MASTERKEY_BAD_LENGTH      = "Master key of unacceptable length")
HALError.define(HAL_ERROR_KS_DRIVER_NOT_FOUND       = "Keystore driver not found")
HALError.define(HAL_ERROR_KEYSTORE_BAD_CRC          = "Bad CRC in keystore")
HALError.define(HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE   = "Unsupported keystore block type")
HALError.define(HAL_ERROR_KEYSTORE_LOST_DATA        = "Keystore appears to have lost data")
HALError.define(HAL_ERROR_BAD_ATTRIBUTE_LENGTH      = "Bad attribute length")
HALError.define(HAL_ERROR_ATTRIBUTE_NOT_FOUND       = "Attribute not found")
HALError.define(HAL_ERROR_NO_KEY_INDEX_SLOTS        = "No key index slots available")
HALError.define(HAL_ERROR_KS_INDEX_UUID_MISORDERED  = "Key index UUID misordered")
HALError.define(HAL_ERROR_KEYSTORE_WRONG_BLOCK_TYPE = "Wrong block type in keystore")
HALError.define(HAL_ERROR_RPC_PROTOCOL_ERROR        = "RPC protocol error")
HALError.define(HAL_ERROR_NOT_IMPLEMENTED           = "Not implemented")


class Enum(int):

    def __new__(cls, name, value):
        self = int.__new__(cls, value)
        self._name = name
        setattr(self.__class__, name, self)
        return self

    def __str__(self):
        return self._name

    def __repr__(self):
        return "<Enum:{0.__class__.__name__} {0._name}:{0:d}>".format(self)

    _counter = 0

    @classmethod
    def define(cls, names):
        symbols = []
        for name in names.translate(None, "{}").split(","):
            if "=" in name:
                name, sep, expr = name.partition("=")
                cls._counter = eval(expr.strip())
            if not isinstance(cls._counter, int):
                raise TypeError
            symbols.append(cls(name.strip(), cls._counter))
            cls._counter += 1
        cls.index = dict((int(symbol),  symbol) for symbol in symbols)
        globals().update((symbol._name, symbol) for symbol in symbols)

    def xdr_packer(self, packer):
        packer.pack_uint(self)


class RPCFunc(Enum): pass

RPCFunc.define('''
    RPC_FUNC_GET_VERSION,
    RPC_FUNC_GET_RANDOM,
    RPC_FUNC_SET_PIN,
    RPC_FUNC_LOGIN,
    RPC_FUNC_LOGOUT,
    RPC_FUNC_LOGOUT_ALL,
    RPC_FUNC_IS_LOGGED_IN,
    RPC_FUNC_HASH_GET_DIGEST_LEN,
    RPC_FUNC_HASH_GET_DIGEST_ALGORITHM_ID,
    RPC_FUNC_HASH_GET_ALGORITHM,
    RPC_FUNC_HASH_INITIALIZE,
    RPC_FUNC_HASH_UPDATE,
    RPC_FUNC_HASH_FINALIZE,
    RPC_FUNC_PKEY_LOAD,
    RPC_FUNC_PKEY_OPEN,
    RPC_FUNC_PKEY_GENERATE_RSA,
    RPC_FUNC_PKEY_GENERATE_EC,
    RPC_FUNC_PKEY_CLOSE,
    RPC_FUNC_PKEY_DELETE,
    RPC_FUNC_PKEY_GET_KEY_TYPE,
    RPC_FUNC_PKEY_GET_KEY_FLAGS,
    RPC_FUNC_PKEY_GET_PUBLIC_KEY_LEN,
    RPC_FUNC_PKEY_GET_PUBLIC_KEY,
    RPC_FUNC_PKEY_SIGN,
    RPC_FUNC_PKEY_VERIFY,
    RPC_FUNC_PKEY_MATCH,
    RPC_FUNC_PKEY_GET_KEY_CURVE,
    RPC_FUNC_PKEY_SET_ATTRIBUTES,
    RPC_FUNC_PKEY_GET_ATTRIBUTES,
    RPC_FUNC_PKEY_EXPORT,
    RPC_FUNC_PKEY_IMPORT,
''')

class HALDigestAlgorithm(Enum): pass

HALDigestAlgorithm.define('''
    HAL_DIGEST_ALGORITHM_NONE,
    HAL_DIGEST_ALGORITHM_SHA1,
    HAL_DIGEST_ALGORITHM_SHA224,
    HAL_DIGEST_ALGORITHM_SHA256,
    HAL_DIGEST_ALGORITHM_SHA512_224,
    HAL_DIGEST_ALGORITHM_SHA512_256,
    HAL_DIGEST_ALGORITHM_SHA384,
    HAL_DIGEST_ALGORITHM_SHA512
''')

class HALKeyType(Enum): pass

HALKeyType.define('''
    HAL_KEY_TYPE_NONE,
    HAL_KEY_TYPE_RSA_PRIVATE,
    HAL_KEY_TYPE_RSA_PUBLIC,
    HAL_KEY_TYPE_EC_PRIVATE,
    HAL_KEY_TYPE_EC_PUBLIC
''')

class HALCurve(Enum): pass

HALCurve.define('''
    HAL_CURVE_NONE,
    HAL_CURVE_P256,
    HAL_CURVE_P384,
    HAL_CURVE_P521
''')

class HALUser(Enum): pass

HALUser.define('''
    HAL_USER_NONE,
    HAL_USER_NORMAL,
    HAL_USER_SO,
    HAL_USER_WHEEL
''')

HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE     = (1 << 0)
HAL_KEY_FLAG_USAGE_KEYENCIPHERMENT      = (1 << 1)
HAL_KEY_FLAG_USAGE_DATAENCIPHERMENT     = (1 << 2)
HAL_KEY_FLAG_TOKEN                      = (1 << 3)
HAL_KEY_FLAG_PUBLIC                     = (1 << 4)
HAL_KEY_FLAG_EXPORTABLE                 = (1 << 5)

HAL_PKEY_ATTRIBUTE_NIL                  = (0xFFFFFFFF)


class UUID(uuid.UUID):

    def xdr_packer(self, packer):
        packer.pack_bytes(self.bytes)


def cached_property(func):

    attr_name = "_" + func.__name__

    def wrapped(self):
        try:
            value = getattr(self, attr_name)
        except AttributeError:
            value = func(self)
            setattr(self, attr_name, value)
        return value

    wrapped.__name__ = func.__name__

    return property(wrapped)


class Handle(object):

    def __int__(self):
        return self.handle

    def __cmp__(self, other):
        return cmp(self.handle, int(other))

    def xdr_packer(self, packer):
        packer.pack_uint(self.handle)


class Digest(Handle):

    def __init__(self, hsm, handle, algorithm):
        self.hsm       = hsm
        self.handle    = handle
        self.algorithm = algorithm

    def update(self, data):
        self.hsm.hash_update(self, data)

    def finalize(self, length = None):
        return self.hsm.hash_finalize(self, length or self.digest_length)

    @cached_property
    def algorithm_id(self):
        return self.hsm.hash_get_digest_algorithm_id(self.algorithm)

    @cached_property
    def digest_length(self):
        return self.hsm.hash_get_digest_length(self.algorithm)


class LocalDigest(object):
    """
    Implements same interface as Digest class, but using PyCrypto, to
    support mixed-mode PKey operations.  This only supports algorithms
    that PyCrypto supports, so no SHA512/224 or SHA512/256, sorry.
    """

    def __init__(self, hsm, handle, algorithm, key):
        from Crypto.Hash import HMAC, SHA, SHA224, SHA256, SHA384, SHA512
        self.hsm       = hsm
        self.handle    = handle
        self.algorithm = algorithm
        try:
            h = self._algorithms[algorithm]
        except AttributeError:
            self._algorithms = {
                HAL_DIGEST_ALGORITHM_SHA1   : SHA.SHA1Hash,
                HAL_DIGEST_ALGORITHM_SHA224 : SHA224.SHA224Hash,
                HAL_DIGEST_ALGORITHM_SHA256 : SHA256.SHA256Hash,
                HAL_DIGEST_ALGORITHM_SHA384 : SHA384.SHA384Hash,
                HAL_DIGEST_ALGORITHM_SHA512 : SHA512.SHA512Hash
            }
            h = self._algorithms[algorithm]
        self.digest_length = h.digest_size
        self.algorithm_id  = chr(0x30) + chr(2 + len(h.oid)) + h.oid
        self._context = HMAC.HMAC(key = key, digestmod = h) if key else h()

    def update(self, data):
        self._context.update(data)

    def finalize(self, length = None):
        return self._context.digest()

    def finalize_padded(self, pkey):
        if pkey.key_type not in (HAL_KEY_TYPE_RSA_PRIVATE, HAL_KEY_TYPE_RSA_PUBLIC):
            return self.finalize()
        # PKCS #1.5 requires the digest to be wrapped up in an ASN.1 DigestInfo object.
        from Crypto.Util.asn1 import DerSequence, DerNull, DerOctetString
        return DerSequence([DerSequence([self._context.oid, DerNull().encode()]).encode(),
                            DerOctetString(self.finalize()).encode()]).encode()


class PKey(Handle):

    def __init__(self, hsm, handle, uuid):
        self.hsm     = hsm
        self.handle  = handle
        self.uuid    = uuid
        self.deleted = False

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.deleted:
            self.close()

    def close(self):
        self.hsm.pkey_close(self)

    def delete(self):
        self.hsm.pkey_delete(self)
        self.deleted = True

    @cached_property
    def key_type(self):
        return self.hsm.pkey_get_key_type(self)

    @cached_property
    def key_curve(self):
        return self.hsm.pkey_get_key_curve(self)

    @cached_property
    def key_flags(self):
        return self.hsm.pkey_get_key_flags(self)

    @cached_property
    def public_key_len(self):
        return self.hsm.pkey_get_public_key_len(self)

    @cached_property
    def public_key(self):
        return self.hsm.pkey_get_public_key(self, self.public_key_len)

    def sign(self, hash = 0, data = "", length = 1024):
        return self.hsm.pkey_sign(self, hash = hash, data = data, length = length)

    def verify(self, hash = 0, data = "", signature = None):
        self.hsm.pkey_verify(self, hash = hash, data = data, signature = signature)

    def set_attributes(self, attributes = None, **kwargs):
        assert attributes is None or not kwargs
        self.hsm.pkey_set_attributes(self, attributes or kwargs)

    def get_attributes(self, attributes):
        attrs = self.hsm.pkey_get_attributes(self, attributes, 0)
        attrs = dict((k, v) for k, v in attrs.iteritems() if v != HAL_PKEY_ATTRIBUTE_NIL)
        result = dict((a, None) for a in attributes)
        result.update(self.hsm.pkey_get_attributes(self, attrs.iterkeys(), sum(attrs.itervalues())))
        return result

    def export_pkey(self, pkey):
        return self.hsm.pkey_export(pkey = pkey, kekek = self, pkcs8_max = 2560, kek_max = 512)

    def import_pkey(self, pkcs8, kek, flags = 0):
        return self.hsm.pkey_import(kekek = self, pkcs8 = pkcs8, kek = kek, flags = flags)

class HSM(object):

    mixed_mode = False
    debug_io = False

    def _raise_if_error(self, status):
        if status != 0:
            raise HALError.table[status]()

    def __init__(self, sockname = os.getenv("CRYPTECH_RPC_CLIENT_SOCKET_NAME",
                                            "/tmp/.cryptech_muxd.rpc")):
        self.socket = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
        self.socket.connect(sockname)
        self.sockfile = self.socket.makefile("rb")

    def _send(self, msg):       # Expects an xdrlib.Packer
        msg = slip_encode(msg.get_buffer())
        if self.debug_io:
            logger.debug("send: %s", ":".join("{:02x}".format(ord(c)) for c in msg))
        self.socket.sendall(msg)

    def _recv(self, code):      # Returns an xdrlib.Unpacker
        closed = False
        while True:
            msg = [self.sockfile.read(1)]
            while msg[-1] != SLIP_END:
                if msg[-1] == "":
                    raise HAL_ERROR_RPC_TRANSPORT()
                msg.append(self.sockfile.read(1))
            if self.debug_io:
                logger.debug("recv: %s", ":".join("{:02x}".format(ord(c)) for c in msg))
            msg = slip_decode("".join(msg))
            if not msg:
                continue
            msg = xdrlib.Unpacker("".join(msg))
            if msg.unpack_uint() != code:
                continue
            return msg

    _pack_builtin = (((int, long),        "_pack_uint"),
                     (str,                "_pack_bytes"),
                     ((list, tuple, set), "_pack_array"),
                     (dict,               "_pack_items"))

    def _pack_arg(self, packer, arg):
        if hasattr(arg, "xdr_packer"):
            return arg.xdr_packer(packer)
        for cls, method in self._pack_builtin:
            if isinstance(arg, cls):
                return getattr(self, method)(packer, arg)
        raise RuntimeError("Don't know how to pack {!r} ({!r})".format(arg, type(arg)))

    def _pack_args(self, packer, args):
        for arg in args:
            self._pack_arg(packer, arg)

    def _pack_uint(self, packer, arg):
        packer.pack_uint(arg)

    def _pack_bytes(self, packer, arg):
        packer.pack_bytes(arg)

    def _pack_array(self, packer, arg):
        packer.pack_uint(len(arg))
        self._pack_args(packer, arg)

    def _pack_items(self, packer, arg):
        packer.pack_uint(len(arg))
        for name, value in arg.iteritems():
            self._pack_arg(packer, name)
            self._pack_arg(packer, HAL_PKEY_ATTRIBUTE_NIL if value is None else value)

    @contextlib.contextmanager
    def rpc(self, code, *args, **kwargs):
        client = kwargs.get("client", 0)
        packer = xdrlib.Packer()
        packer.pack_uint(code)
        packer.pack_uint(client)
        self._pack_args(packer, args)
        self._send(packer)
        unpacker = self._recv(code)
        client = unpacker.unpack_uint()
        self._raise_if_error(unpacker.unpack_uint())
        yield unpacker
        unpacker.done()

    def get_version(self):
        with self.rpc(RPC_FUNC_GET_VERSION) as r:
            return r.unpack_uint()

    def get_random(self, n):
        with self.rpc(RPC_FUNC_GET_RANDOM, n) as r:
            return r.unpack_bytes()

    def set_pin(self, user, pin, client = 0):
        with self.rpc(RPC_FUNC_SET_PIN, user, pin, client = client):
            return

    def login(self, user, pin, client = 0):
        with self.rpc(RPC_FUNC_LOGIN, user, pin, client = client):
            return

    def logout(self, client = 0):
        with self.rpc(RPC_FUNC_LOGOUT, client = client):
            return

    def logout_all(self):
        with self.rpc(RPC_FUNC_LOGOUT_ALL):
            return

    def is_logged_in(self, user, client = 0):
        with self.rpc(RPC_FUNC_IS_LOGGED_IN, user, client = client):
            return

    def hash_get_digest_length(self, alg):
        with self.rpc(RPC_FUNC_HASH_GET_DIGEST_LEN, alg) as r:
            return r.unpack_uint()

    def hash_get_digest_algorithm_id(self, alg, max_len = 256):
        with self.rpc(RPC_FUNC_HASH_GET_DIGEST_ALGORITHM_ID, alg, max_len) as r:
            return r.unpack_bytes()

    def hash_get_algorithm(self, handle):
        with self.rpc(RPC_FUNC_HASH_GET_ALGORITHM, handle) as r:
            return HALDigestAlgorithm.index[r.unpack_uint()]

    def hash_initialize(self, alg, key = "", client = 0, session = 0, mixed_mode = None):
        if mixed_mode is None:
            mixed_mode = self.mixed_mode
        if mixed_mode:
            return LocalDigest(self, 0, alg, key)
        else:
            with self.rpc(RPC_FUNC_HASH_INITIALIZE, session, alg, key, client = client) as r:
                return Digest(self, r.unpack_uint(), alg)

    def hash_update(self, handle, data):
        with self.rpc(RPC_FUNC_HASH_UPDATE, handle, data):
            return

    def hash_finalize(self, handle, length = None):
        if length is None:
            length = self.hash_get_digest_length(self.hash_get_algorithm(handle))
        with self.rpc(RPC_FUNC_HASH_FINALIZE, handle, length) as r:
            return r.unpack_bytes()

    def pkey_load(self, der, flags = 0, client = 0, session = 0):
        with self.rpc(RPC_FUNC_PKEY_LOAD, session, der, flags, client = client) as r:
            pkey = PKey(self, r.unpack_uint(), UUID(bytes = r.unpack_bytes()))
            logger.debug("Loaded pkey %s", pkey.uuid)
            return pkey

    def pkey_open(self, uuid, client = 0, session = 0):
        with self.rpc(RPC_FUNC_PKEY_OPEN, session, uuid, client = client) as r:
            pkey = PKey(self, r.unpack_uint(), uuid)
            logger.debug("Opened pkey %s", pkey.uuid)
            return pkey

    def pkey_generate_rsa(self, keylen, flags = 0, exponent = "\x01\x00\x01", client = 0, session = 0):
        with self.rpc(RPC_FUNC_PKEY_GENERATE_RSA, session, keylen, exponent, flags, client = client) as r:
            pkey = PKey(self, r.unpack_uint(), UUID(bytes = r.unpack_bytes()))
            logger.debug("Generated RSA pkey %s", pkey.uuid)
            return pkey

    def pkey_generate_ec(self, curve, flags = 0, client = 0, session = 0):
        with self.rpc(RPC_FUNC_PKEY_GENERATE_EC, session, curve, flags, client = client) as r:
            pkey = PKey(self, r.unpack_uint(), UUID(bytes = r.unpack_bytes()))
            logger.debug("Generated EC pkey %s", pkey.uuid)
            return pkey

    def pkey_close(self, pkey):
        try:
            logger.debug("Closing pkey %s", pkey.uuid)
        except AttributeError:
            pass
        with self.rpc(RPC_FUNC_PKEY_CLOSE, pkey):
            return

    def pkey_delete(self, pkey):
        try:
            logger.debug("Deleting pkey %s", pkey.uuid)
        except AttributeError:
            pass
        with self.rpc(RPC_FUNC_PKEY_DELETE, pkey):
            return

    def pkey_get_key_type(self, pkey):
        with self.rpc(RPC_FUNC_PKEY_GET_KEY_TYPE, pkey) as r:
            return HALKeyType.index[r.unpack_uint()]

    def pkey_get_key_curve(self, pkey):
        with self.rpc(RPC_FUNC_PKEY_GET_KEY_CURVE, pkey) as r:
            return HALCurve.index[r.unpack_uint()]

    def pkey_get_key_flags(self, pkey):
        with self.rpc(RPC_FUNC_PKEY_GET_KEY_FLAGS, pkey) as r:
            return r.unpack_uint()

    def pkey_get_public_key_len(self, pkey):
        with self.rpc(RPC_FUNC_PKEY_GET_PUBLIC_KEY_LEN, pkey) as r:
            return r.unpack_uint()

    def pkey_get_public_key(self, pkey, length = None):
        if length is None:
            length = self.pkey_get_public_key_len(pkey)
        with self.rpc(RPC_FUNC_PKEY_GET_PUBLIC_KEY, pkey, length) as r:
            return r.unpack_bytes()

    def pkey_sign(self, pkey, hash = 0, data = "", length = 1024):
        assert not hash or not data
        if isinstance(hash, LocalDigest):
            hash, data = 0, hash.finalize_padded(pkey)
        with self.rpc(RPC_FUNC_PKEY_SIGN, pkey, hash, data, length) as r:
            return r.unpack_bytes()

    def pkey_verify(self, pkey, hash = 0, data = "", signature = None):
        assert not hash or not data
        if isinstance(hash, LocalDigest):
            hash, data = 0, hash.finalize_padded(pkey)
        with self.rpc(RPC_FUNC_PKEY_VERIFY, pkey, hash, data, signature):
            return

    def pkey_match(self, type = 0, curve = 0, mask = 0, flags = 0,
                   attributes = {}, length = 64, client = 0, session = 0):
        u = UUID(int = 0)
        n = length
        s = 0
        while n == length:
            with self.rpc(RPC_FUNC_PKEY_MATCH, session, type, curve, mask, flags,
                          attributes, s, length, u, client = client) as r:
                s = r.unpack_uint()
                n = r.unpack_uint()
                for i in xrange(n):
                    u = UUID(bytes = r.unpack_bytes())
                    yield u

    def pkey_set_attributes(self, pkey, attributes):
        with self.rpc(RPC_FUNC_PKEY_SET_ATTRIBUTES, pkey, attributes):
            return

    def pkey_get_attributes(self, pkey, attributes, attributes_buffer_len = 2048):
        attributes = tuple(attributes)
        with self.rpc(RPC_FUNC_PKEY_GET_ATTRIBUTES, pkey, attributes, attributes_buffer_len) as r:
            n = r.unpack_uint()
            if n != len(attributes):
                raise HAL_ERROR_RPC_PROTOCOL_ERROR
            if attributes_buffer_len > 0:
                return dict((r.unpack_uint(), r.unpack_bytes()) for i in xrange(n))
            else:
                return dict((r.unpack_uint(), r.unpack_uint()) for i in xrange(n))

    def pkey_export(self, pkey, kekek, pkcs8_max = 2560, kek_max = 512):
        with self.rpc(RPC_FUNC_PKEY_EXPORT, pkey, kekek, pkcs8_max, kek_max) as r:
            pkcs8, kek = r.unpack_bytes(), r.unpack_bytes()
            logger.debug("Exported pkey %s", pkey.uuid)
            return pkcs8, kek

    def pkey_import(self, kekek, pkcs8, kek, flags = 0, client = 0, session = 0):
        with self.rpc(RPC_FUNC_PKEY_IMPORT, session, kekek, pkcs8, kek, flags, client = client) as r:
            pkey = PKey(self, r.unpack_uint(), UUID(bytes = r.unpack_bytes()))
            logger.debug("Imported pkey %s", pkey.uuid)
            return pkey