/* * ks_index.c * ---------- * Keystore index API. This is internal within libhal. * * Copyright (c) 2016-2017, NORDUnet A/S All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the NORDUnet nor the names of its contributors may * be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include "hal.h" #include "hal_internal.h" #include "ks.h" /* * Find a block in the index, return true (found) or false (not found). * "where" indicates the name's position, or the position of the first free block. * * NB: This does NOT return a block number, it returns an index into * ks->index[]. */ static int ks_find(const hal_ks_t * const ks, const hal_uuid_t * const uuid, const int * const hint, int *where) { if (ks == NULL || ks->index == NULL || ks->names == NULL || uuid == NULL || where == NULL) return 0; if (hint != NULL && *hint >= 0 && *hint < (int)ks->used && hal_uuid_cmp(uuid, &ks->names[ks->index[*hint]]) == 0) { *where = *hint; return 1; } int lo = -1; int hi = ks->used; for (;;) { int m = (lo + hi) / 2; if (hi == 0 || m == lo) { *where = hi; return 0; } const int cmp = hal_uuid_cmp(uuid, &ks->names[ks->index[m]]); if (cmp < 0) hi = m; else if (cmp > 0) lo = m; else { *where = m; return 1; } } } /* * Heapsort the index. We only need to do this on setup, for other * operations we're just inserting or deleting a single entry in an * already-ordered array, which is just a search problem. If we were * really crunched for space, we could use an insertion sort here, but * heapsort is easy and works well with data already in place. */ static inline hal_error_t ks_heapsift(hal_ks_t *ks, int parent, const int end) { if (ks == NULL || ks->index == NULL || ks->names == NULL || parent < 0 || end < parent) return HAL_ERROR_IMPOSSIBLE; for (;;) { const int left_child = parent * 2 + 1; const int right_child = parent * 2 + 2; int biggest = parent; if (left_child <= end && hal_uuid_cmp(&ks->names[ks->index[biggest]], &ks->names[ks->index[left_child]]) < 0) biggest = left_child; if (right_child <= end && hal_uuid_cmp(&ks->names[ks->index[biggest]], &ks->names[ks->index[right_child]]) < 0) biggest = right_child; if (biggest == parent) return HAL_OK; const uint16_t tmp = ks->index[biggest]; ks->index[biggest] = ks->index[parent]; ks->index[parent] = tmp; parent = biggest; } } hal_error_t hal_ks_index_heapsort(hal_ks_t *ks) { if (ks == NULL || ks->index == NULL || ks->names == NULL) return HAL_ERROR_IMPOSSIBLE; if (ks->used < 2) return HAL_OK; hal_error_t err; for (int i = (ks->used - 2) / 2; i >= 0; i--) if ((err = ks_heapsift(ks, i, ks->used - 1)) != HAL_OK) return err; for (int i = ks->used - 1; i > 0; i--) { const uint16_t tmp = ks->index[i]; ks->index[i] = ks->index[0]; ks->index[0] = tmp; if ((err = ks_heapsift(ks, 0, i - 1)) != HAL_OK) return err; } return HAL_OK; } /* * Perform a consistency check on the index. */ #define fsck(_ks) \ do { hal_error_t _err = hal_ks_index_fsck(_ks); if (_err != HAL_OK) return _err; } while (0) hal_error_t hal_ks_index_fsck(hal_ks_t *ks) { if (ks == NULL || ks->index == NULL || ks->names == NULL || ks->size == 0 || ks->used > ks->size) return HAL_ERROR_BAD_ARGUMENTS; for (unsigned i = 1; i < ks->used; i++) if (hal_uuid_cmp(&ks->names[ks->index[i - 1]], &ks->names[ks->index[i]]) >= 0) return HAL_ERROR_KS_INDEX_UUID_MISORDERED; return HAL_OK; } /* * Find a single block by name. */ hal_error_t hal_ks_index_find(hal_ks_t *ks, const hal_uuid_t * const name, unsigned *blockno, int *hint) { if (ks == NULL || ks->index == NULL || ks->names == NULL || ks->size == 0 || ks->used > ks->size || name == NULL) return HAL_ERROR_BAD_ARGUMENTS; int where; fsck(ks); int ok = ks_find(ks, name, hint, &where); if (blockno != NULL) *blockno = ks->index[where]; if (hint != NULL) *hint = where; return ok ? HAL_OK : HAL_ERROR_KEY_NOT_FOUND; } /* * Add a single block to the index. */ hal_error_t hal_ks_index_add(hal_ks_t *ks, const hal_uuid_t * const name, unsigned *blockno, int *hint) { if (ks == NULL || ks->index == NULL || ks->names == NULL || ks->size == 0 || ks->used > ks->size || name == NULL) return HAL_ERROR_BAD_ARGUMENTS; if (ks->used == ks->size) return HAL_ERROR_NO_KEY_INDEX_SLOTS; int where; fsck(ks); if (ks_find(ks, name, hint, &where)) return HAL_ERROR_KEY_NAME_IN_USE; /* * Grab first block on free list, which makes room to slide the * index up by one slot so we can insert the new block number. */ const size_t len = (ks->used - where) * sizeof(*ks->index); const uint16_t b = ks->index[ks->used++]; memmove(&ks->index[where + 1], &ks->index[where], len); ks->index[where] = b; ks->names[b] = *name; if (blockno != NULL) *blockno = b; if (hint != NULL) *hint = where; fsck(ks); return HAL_OK; } /* * Delete a single block from the index. */ hal_error_t hal_ks_index_delete(hal_ks_t *ks, const hal_uuid_t * const name, unsigned *blockno, int *hint) { if (ks == NULL || ks->index == NULL || ks->names == NULL || ks->size == 0 || ks->used > ks->size || name == NULL) return HAL_ERROR_BAD_ARGUMENTS; int where; fsck(ks); if (ks->used == 0 || !ks_find(ks, name, hint, &where)) return HAL_ERROR_KEY_NOT_FOUND; /* * Free the block and stuff it at the end of the free list. */ const size_t len = (ks->size - where - 1) * sizeof(*ks->index); const uint16_t b = ks->index[where]; memmove(&ks->index[where], &ks->index[where + 1], len); ks->index[ks->size - 1] = b; ks->used--; memset(&ks->names[b], 0, sizeof(ks->names[b])); if (blockno != NULL) *blockno = b; if (hint != NULL) *hint = where; fsck(ks); return HAL_OK; } /* * Replace a single block with a new one, return new block number. * Name of block does not change. This is an optimization of a delete * immediately followed by an add for the same name. */ hal_error_t hal_ks_index_replace(hal_ks_t *ks, const hal_uuid_t * const name, unsigned *blockno, int *hint) { if (ks == NULL || ks->index == NULL || ks->names == NULL || ks->size == 0 || ks->used > ks->size || name == NULL) return HAL_ERROR_BAD_ARGUMENTS; if (ks->used == ks->size) return HAL_ERROR_NO_KEY_INDEX_SLOTS; int where; fsck(ks); if (ks->used == 0 || !ks_find(ks, name, hint, &where)) return HAL_ERROR_KEY_NOT_FOUND; /* * Grab first block from free list, slide free list down, put old * block at end of free list and replace old block with new block. */ const size_t len = (ks->size - ks->used - 1) * sizeof(*ks->index); const uint16_t b1 = ks->index[where]; const uint16_t b2 = ks->index[ks->used]; memmove(&ks->index[ks->used], &ks->index[ks->used + 1], len); ks->index[ks->size - 1] = b1; ks->index[where] = b2; ks->names[b2] = *name; memset(&ks->names[b1], 0, sizeof(ks->names[b1])); if (blockno != NULL) *blockno = b2; if (hint != NULL) *hint = where; fsck(ks); return HAL_OK; } /* * Local variables: * indent-tabs-mode: nil * End: */ ='#n185'>185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
#!/usr/bin/env python
#
# Copyright (c) 2016-2017, NORDUnet A/S All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
# - Redistributions of source code must retain the above copyright notice,
#   this list of conditions and the following disclaimer.
#
# - Redistributions in binary form must reproduce the above copyright
#   notice, this list of conditions and the following disclaimer in the
#   documentation and/or other materials provided with the distribution.
#
# - Neither the name of the NORDUnet nor the names of its contributors may
#   be used to endorse or promote products derived from this software
#   without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
# TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
# TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

"""
Implementation of Cryptech RPC protocol multiplexer in Python.

Unlike the original C implementation, this uses SLIP encapsulation
over a SOCK_STREAM channel, because support for SOCK_SEQPACKET is not
what we might wish.  We outsource all the heavy lifting for serial and
network I/O to the PySerial and Tornado libraries, respectively.
"""

import os
import sys
import time
import struct
import atexit
import weakref
import logging
import argparse

import serial

import tornado.tcpserver
import tornado.iostream
import tornado.netutil
import tornado.ioloop
import tornado.queues
import tornado.locks
import tornado.gen


logger = logging.getLogger("cryptech_muxd")


SLIP_END     = chr(0300)        # Indicates end of SLIP packet
SLIP_ESC     = chr(0333)        # Indicates byte stuffing
SLIP_ESC_END = chr(0334)        # ESC ESC_END means END data byte
SLIP_ESC_ESC = chr(0335)        # ESC ESC_ESC means ESC data byte


def slip_encode(buffer):
    "Encode a buffer using SLIP encapsulation."
    return SLIP_END + buffer.replace(SLIP_ESC, SLIP_ESC + SLIP_ESC_ESC).replace(SLIP_END, SLIP_ESC + SLIP_ESC_END) + SLIP_END

def slip_decode(buffer):
    "Decode a SLIP-encapsulated buffer."
    return buffer.strip(SLIP_END).replace(SLIP_ESC + SLIP_ESC_END, SLIP_END).replace(SLIP_ESC + SLIP_ESC_ESC, SLIP_ESC)


def client_handle_get(msg):
    "Extract client_handle field from a Cryptech RPC message."
    return struct.unpack(">L", msg[4:8])[0]

def client_handle_set(msg, handle):
    "Replace client_handle field in a Cryptech RPC message."
    return msg[:4] + struct.pack(">L", handle) + msg[8:]


class SerialIOStream(tornado.iostream.BaseIOStream):
    """
    Implementation of a Tornado IOStream over a PySerial device.
    """

    def __init__(self, device, baudrate = 921600, *pargs, **kwargs):
        self.serial = serial.Serial(device, baudrate, timeout = 0, write_timeout = 0)
        super(SerialIOStream, self).__init__(*pargs, **kwargs)

    def fileno(self):
        return self.serial.fileno()

    def close_fd(self):
        self.serial.close()

    def write_to_fd(self, data):
        return self.serial.write(data)

    def read_from_fd(self):
        return self.serial.read(self.read_chunk_size) or None


class PFUnixServer(tornado.tcpserver.TCPServer):
    """
    Variant on tornado.tcpserver.TCPServer, listening on a PF_UNIX
    (aka PF_LOCAL) socket instead of a TCP socket.
    """

    def listen(self, filename, mode = 0600):
        self.socket_filename = filename
        self.add_socket(tornado.netutil.bind_unix_socket(filename, mode))
        atexit.register(self.atexit_unlink)

    def atexit_unlink(self):
        try:
            os.unlink(self.socket_filename)
        except:
            pass


class RPCIOStream(SerialIOStream):
    """
    Tornado IOStream for a serial RPC channel.
    """

    def __init__(self, *pargs, **kwargs):
        super(RPCIOStream, self).__init__(*pargs, **kwargs)
        self.queues = weakref.WeakValueDictionary()
        self.rpc_input_lock = tornado.locks.Lock()

    @tornado.gen.coroutine
    def rpc_input(self, query, handle, queue):
        "Send a query to the HSM."
        logger.debug("rpc send: %s", ":".join("{:02x}".format(ord(c)) for c in query))
        self.queues[handle] = queue
        with (yield self.rpc_input_lock.acquire()):
            yield self.write(query)

    @tornado.gen.coroutine
    def rpc_output_loop(self):
        "Handle reply stream HSM -> network."
        while True:
            try:
                reply = yield self.read_until(SLIP_END)
            except tornado.iostream.StreamClosedError:
                logger.info("rpc uart closed")
                for q in self.queues.itervalues():
                    q.put_nowait(None)
                return
            logger.debug("rpc recv: %s", ":".join("{:02x}".format(ord(c)) for c in reply))
            try:
                handle = client_handle_get(slip_decode(reply))
            except:
                continue
            self.queues[handle].put_nowait(reply)


class QueuedStreamClosedError(tornado.iostream.StreamClosedError):
    "Deferred StreamClosedError passed throught a Queue."


class RPCServer(PFUnixServer):
    """
    Serve multiplexed Cryptech RPC over a PF_UNIX socket.
    """

    def set_serial(self, serial_stream):
        self.serial = serial_stream

    @tornado.gen.coroutine
    def handle_stream(self, stream, address):
        "Handle one network connection."
        logger.info("rpc connected %r", stream)
        handle = stream.socket.fileno()
        queue  = tornado.queues.Queue()
        while True:
            try:
                query = yield stream.read_until(SLIP_END)
                if len(query) < 9:
                    continue
                query = slip_encode(client_handle_set(slip_decode(query), handle))
                yield self.serial.rpc_input(query, handle, queue)
                reply = yield queue.get()
                if reply is None:
                    raise QueuedStreamClosedError()
                yield stream.write(SLIP_END + reply)
            except tornado.iostream.StreamClosedError:
                logger.info("rpc closing %r", stream)
                stream.close()
                return

class CTYIOStream(SerialIOStream):
    """
    Tornado IOStream for a serial console channel.
    """

    def __init__(self, *pargs, **kwargs):
        super(CTYIOStream, self).__init__(*pargs, **kwargs)
        self.attached_cty = None

    @tornado.gen.coroutine
    def cty_output_loop(self):
        while True:
            try:
                buffer = yield self.read_bytes(1024, partial = True)
            except tornado.iostream.StreamClosedError:
                logger.info("cty uart closed")
                if self.attached_cty is not None:
                    self.attached_cty.close()
                return
            try:
                if self.attached_cty is not None:
                    yield self.attached_cty.write(buffer)
            except tornado.iostream.StreamClosedError:
                pass


class CTYServer(PFUnixServer):
    """
    Serve Cryptech console over a PF_UNIX socket.
    """

    def set_serial(self, serial_stream):
        self.serial = serial_stream

    @tornado.gen.coroutine
    def handle_stream(self, stream, address):
        "Handle one network connection."

        if self.serial.attached_cty is not None:
            yield stream.write("[Console already in use, sorry]\n")
            stream.close()
            return

        logger.info("cty connected to %r", stream)

        try:
            self.serial.attached_cty = stream
            while self.serial.attached_cty is stream:
                yield self.serial.write((yield stream.read_bytes(1024, partial = True)))
        except tornado.iostream.StreamClosedError:
            stream.close()
        finally:
            logger.info("cty disconnecting from %r", stream)
            if self.serial.attached_cty is stream:
                self.serial.attached_cty = None


@tornado.gen.coroutine
def main():
    parser = argparse.ArgumentParser(formatter_class = argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument("-v", "--verbose",  action = "store_true",  help = "produce human-readable output")
    parser.add_argument("-d", "--debug",    action = "store_true",  help = "blather about what we're doing")

    parser.add_argument("--rpc-device",            help = "RPC serial device name",
                        default = os.getenv("CRYPTECH_RPC_CLIENT_SERIAL_DEVICE", "/dev/ttyUSB0"))
    parser.add_argument("--rpc-socket",            help = "RPC PF_UNIX socket name",
                        default = os.getenv("CRYPTECH_RPC_CLIENT_SOCKET_NAME", "/tmp/.cryptech_muxd.rpc"))

    parser.add_argument("--cty-device",            help = "CTY serial device name",
                        default = os.getenv("CRYPTECH_CTY_CLIENT_SERIAL_DEVICE", "/dev/ttyUSB0"))
    parser.add_argument("--cty-socket",            help = "CTY PF_UNIX socket name",
                        default = os.getenv("CRYPTECH_CTY_CLIENT_SOCKET_NAME", "/tmp/.cryptech_muxd.cty"))

    args = parser.parse_args()

    futures = []

    rpc_stream = RPCIOStream(device = args.rpc_device)
    rpc_server = RPCServer()
    rpc_server.set_serial(rpc_stream)
    rpc_server.listen(args.rpc_socket)
    futures.append(rpc_stream.rpc_output_loop())

    cty_stream = CTYIOStream(device = args.cty_device)
    cty_server = CTYServer()
    cty_server.set_serial(cty_stream)
    cty_server.listen(args.cty_socket)
    futures.append(cty_stream.cty_output_loop())

    # Might want to use WaitIterator(dict(...)) here so we can
    # diagnose and restart output loops if they fail.  Worry about
    # that when we get to automatic device probing.

    yield futures

if __name__ == "__main__":
    try:
        #logging.basicConfig(level = logging.DEBUG)
        tornado.ioloop.IOLoop.current().run_sync(main)
    except KeyboardInterrupt:
        pass