aboutsummaryrefslogtreecommitdiff
path: root/Makefile
blob: 890d275afd7d3ab0f1f367b0a6efb2c99d256d78 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# Copyright (c) 2015-2017, NORDUnet A/S
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
# - Redistributions of source code must retain the above copyright notice,
#   this list of conditions and the following disclaimer.
#
# - Redistributions in binary form must reproduce the above copyright
#   notice, this list of conditions and the following disclaimer in the
#   documentation and/or other materials provided with the distribution.
#
# - Neither the name of the NORDUnet nor the names of its contributors may
#   be used to endorse or promote products derived from this software
#   without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
# TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
# TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

# Number of various kinds of static state blocks to allocate.
# Numbers pulled out of a hat, tune as we go.

STATIC_CORE_STATE_BLOCKS = 32
STATIC_HASH_STATE_BLOCKS = 32
STATIC_HMAC_STATE_BLOCKS = 16
STATIC_PKEY_STATE_BLOCKS = 256
STATIC_KS_VOLATILE_SLOTS = 128

INC		= hal.h hal_internal.h
LIB		= libhal.a

# Error checking on known control options, some of which allow the user entirely too much rope.

USAGE := "usage: ${MAKE} [IO_BUS=eim|i2c|fmc] [RPC_MODE=none|server|client-simple|client-mixed] [KS=mmap|flash] [RPC_TRANSPORT=none|loopback|serial|daemon] [MODEXP_CORE=no|yes] [HASH_CORES=no|yes] [ECDSA_CORES=no|yes]"

IO_BUS		?= none
KS		?= flash
RPC_MODE	?= none
RPC_TRANSPORT	?= none
MODEXP_CORE	?= no
HASH_CORES	?= no
ECDSA_CORES	?= yes

ifeq (,$(and \
	$(filter	none eim i2c fmc			,${IO_BUS}),\
	$(filter	none server client-simple client-mixed	,${RPC_MODE}),\
	$(filter	mmap flash				,${KS}),\
	$(filter	none loopback serial daemon		,${RPC_TRANSPORT}),\
	$(filter	no yes					,${MODEXP_CORE}),\
	$(filter	no yes					,${HASH_CORES}),\
	$(filter	no yes					,${ECDSA_CORES})))
  $(error ${USAGE})
endif

$(info Building libhal with configuration IO_BUS=${IO_BUS} RPC_MODE=${RPC_MODE} KS=${KS} RPC_TRANSPORT=${RPC_TRANSPORT} MODEXP_CORE=${MODEXP_CORE} HASH_CORES=${HASH_CORES} ECDSA_CORES=${ECDSA_CORES})

# Whether the RSA code should use the ModExp | ModExpS6 | ModExpA7 core.

ifeq "${MODEXP_CORE}" "yes"
  RSA_USE_MODEXP_CORE := 1
else
  RSA_USE_MODEXP_CORE := 0
endif

# Whether the hash code should use the SHA-1 / SHA-256 / SHA-512 cores.

ifeq "${HASH_CORES}" "yes"
  HASH_ONLY_USE_SOFT_CORES := 0
else
  HASH_ONLY_USE_SOFT_CORES := 1
endif

# Whether the ECDSA code should use the ECDSA256 and ECDSA384 cores.

ifeq "${ECDSA_CORES}" "yes"
  ECDSA_USE_ECDSA256_CORE := 1
  ECDSA_USE_ECDSA384_CORE := 1
else
  ECDSA_USE_ECDSA256_CORE := 0
  ECDSA_USE_ECDSA384_CORE := 0
endif

# Object files to build, initialized with ones we always want.
# There's a balance here between skipping files we don't strictly
# need and reducing the number of unnecessary conditionals in this
# makefile, so the working definition of "always want" is sometimes
# just "building this is harmless even if we don't use it."

OBJ += errorstrings.o hash.o asn1.o ecdsa.o rsa.o xdr.o slip.o
OBJ += rpc_api.o rpc_hash.o uuid.o rpc_pkcs1.o crc32.o locks.o

# Object files to build when we're on a platform with direct access
# to our hardware (Verilog) cores.

CORE_OBJ = core.o csprng.o pbkdf2.o aes_keywrap.o modexp.o mkmif.o ${IO_OBJ}

# I/O bus to the FPGA
#
# IO_BUS = none | eim | i2c | fmc
#  none:	No FPGA I/O bus
#   eim:	EIM bus from Novena
#   i2c:	Older I2C bus from Novena
#   fmc:	FMC bus from dev-bridge and alpha boards

ifeq "${IO_BUS}" "eim"
  IO_OBJ = hal_io_eim.o novena-eim.o
else ifeq "${IO_BUS}" "i2c"
  IO_OBJ = hal_io_i2c.o
else ifeq "${IO_BUS}" "fmc"
  IO_OBJ = hal_io_fmc.o
endif

# If we're building for STM32, position-independent code leads to some
# hard-to-debug function pointer errors. OTOH, if we're building for Linux
# (even on the Novena), we want to make it possible to build a shared library.

ifneq "${IO_BUS}" "fmc"
  CFLAGS += -fPIC
endif

# The keystore code has mutated a bit with the new API, and the Makefile,
# probably needs more extensive changes to track that.
#
# In the old world, the volatile keystore was for the client side,
# while the flash and mmap keystores were for the server side (on the
# Alpha and the Novena, respectively).
#
# In the new world, all keystores are on the server side, and the
# volatile keystore is always present, to support things like PKCS #11
# "session" objects.
#
# The mmap keystore hasn't been rewritten for the new API yet.

KS_OBJ = ks_index.o ks_attribute.o ks_volatile.o

ifeq "${KS}" "mmap"
  KS_OBJ += ks_mmap.o
else ifeq "${KS}" "flash"
  KS_OBJ += ks_flash.o mkm.o
endif

# RPC_MODE = none | server | client-simple | client-mixed
#   none:		Build without RPC client, use cores directly.
#   server:		Build for server side of RPC (HSM), use cores directly.
#   client-simple:	Build for other host, communicate with cores via RPC server.
#   client-mixed:	Like client-simple but do hashing locally in software and
#			support a local keystore (for PKCS #11 public keys, etc)
#
# RPC_TRANSPORT = none | loopback | serial | daemon
#   loopback:		Communicate over loopback socket on Novena
#   serial:		Communicate over USB in serial pass-through mode
#   daemon:		Communicate over USB via a daemon, to arbitrate multiple clients
#
# Note that RPC_MODE setting also controls the RPC_CLIENT setting passed to the C
# preprocessor via CFLAGS.  Whatever we pass here must evaluate to an integer in
# the C preprocessor: we can use symbolic names so long as they're defined as macros
# in the C code, but we can't use things like C enum symbols.

RPC_CLIENT_OBJ = rpc_client.o

ifeq "${RPC_TRANSPORT}" "loopback"
  RPC_CLIENT_OBJ += rpc_client_loopback.o
else ifeq "${RPC_TRANSPORT}" "serial"
  RPC_CLIENT_OBJ += rpc_serial.o rpc_client_serial.o
else ifeq "${RPC_TRANSPORT}" "daemon"
  RPC_CLIENT_OBJ += rpc_client_daemon.o
endif

RPC_SERVER_OBJ = ${KS_OBJ} rpc_misc.o rpc_pkey.o rpc_server.o

ifeq "${RPC_TRANSPORT}" "loopback"
  RPC_SERVER_OBJ += rpc_server_loopback.o
else ifeq "${RPC_TRANSPORT}" "serial"
  RPC_SERVER_OBJ += rpc_server_serial.o
endif

ifeq "${RPC_MODE}" "none"
  OBJ += ${CORE_OBJ}
  CFLAGS += -DHAL_RSA_USE_MODEXP=${RSA_USE_MODEXP_CORE}
  CFLAGS += -DHAL_ONLY_USE_SOFTWARE_HASH_CORES=${HASH_ONLY_USE_SOFT_CORES}
  CFLAGS += -DHAL_ECDSA_VERILOG_ECDSA256_MULTIPLIER=${ECDSA_USE_ECDSA256_CORE}
  CFLAGS += -DHAL_ECDSA_VERILOG_ECDSA384_MULTIPLIER=${ECDSA_USE_ECDSA384_CORE}
else ifeq "${RPC_MODE}" "server"
  OBJ += ${CORE_OBJ} ${RPC_SERVER_OBJ}
  CFLAGS += -DRPC_CLIENT=RPC_CLIENT_LOCAL
  CFLAGS += -DHAL_RSA_USE_MODEXP=${RSA_USE_MODEXP_CORE}
  CFLAGS += -DHAL_ONLY_USE_SOFTWARE_HASH_CORES=${HASH_ONLY_USE_SOFT_CORES}
  CFLAGS += -DHAL_ECDSA_VERILOG_ECDSA256_MULTIPLIER=${ECDSA_USE_ECDSA256_CORE}
  CFLAGS += -DHAL_ECDSA_VERILOG_ECDSA384_MULTIPLIER=${ECDSA_USE_ECDSA384_CORE}
else ifeq "${RPC_MODE}" "client-simple"
  OBJ += ${RPC_CLIENT_OBJ}
  CFLAGS += -DRPC_CLIENT=RPC_CLIENT_REMOTE
  CFLAGS += -DHAL_RSA_USE_MODEXP=0
  CFLAGS += -DHAL_ONLY_USE_SOFTWARE_HASH_CORES=1
  CFLAGS += -DHAL_ECDSA_VERILOG_ECDSA256_MULTIPLIER=0
  CFLAGS += -DHAL_ECDSA_VERILOG_ECDSA384_MULTIPLIER=0
else ifeq "${RPC_MODE}" "client-mixed"
  OBJ += ${RPC_CLIENT_OBJ}
  CFLAGS += -DRPC_CLIENT=RPC_CLIENT_MIXED
  CFLAGS += -DHAL_RSA_USE_MODEXP=0
  CFLAGS += -DHAL_ONLY_USE_SOFTWARE_HASH_CORES=1
  CFLAGS += -DHAL_ECDSA_VERILOG_ECDSA256_MULTIPLIER=0
  CFLAGS += -DHAL_ECDSA_VERILOG_ECDSA384_MULTIPLIER=0
endif

ifndef CRYPTECH_ROOT
  CRYPTECH_ROOT := $(abspath ../..)
endif

LIBTFM_SRC	?= ${CRYPTECH_ROOT}/sw/thirdparty/libtfm
LIBTFM_BLD	?= ${LIBTFM_SRC}

# tfm.h is a generated file, because our Makefile customizes a few
# settings from the upstream libtfm distribution.  Because of this, we
# need to search the libtfm build directory, not the libtfm source
# directory.

CFLAGS		+= -g3 -Wall -std=c99 -Wno-strict-aliasing
CFLAGS		+= -DHAL_STATIC_CORE_STATE_BLOCKS=${STATIC_CORE_STATE_BLOCKS}
CFLAGS		+= -DHAL_STATIC_HASH_STATE_BLOCKS=${STATIC_HASH_STATE_BLOCKS}
CFLAGS		+= -DHAL_STATIC_HMAC_STATE_BLOCKS=${STATIC_HMAC_STATE_BLOCKS}
CFLAGS		+= -DHAL_STATIC_PKEY_STATE_BLOCKS=${STATIC_PKEY_STATE_BLOCKS}
CFLAGS		+= -I${CRYPTECH_ROOT}/sw/libhal
CFLAGS		+= -I${LIBTFM_BLD}

# Enable software hash cores everywhere for now.  In theory, there might be situations
# where we don't want them on the HSM, but they're relatively harmless, and the bootstrap
# sequence on new hardware works a lot better when we can log in before loading the FPGA.

CFLAGS		+= -DHAL_ENABLE_SOFTWARE_HASH_CORES=1

# We used to "export CFLAGS" here, but for some reason that causes GNU
# make to duplicate its value, sometimes with conflicting settings.
# Weird, but this is complicated enough already, so we just pass
# CFLAGS explicitly in the small number of cases where we run a
# sub-make, below.

#export CFLAGS

export RPC_MODE

all: ${LIB}
	${MAKE} -C tests $@ CFLAGS='${CFLAGS}'
	${MAKE} -C utils $@ CFLAGS='${CFLAGS}'

client:
	${MAKE} RPC_MODE=client-simple RPC_TRANSPORT=daemon

mixed:
	${MAKE} RPC_MODE=client-mixed RPC_TRANSPORT=daemon

server:
	${MAKE} RPC_MODE=server RPC_TRANSPORT=serial IO_BUS=fmc

serial:
	${MAKE} RPC_MODE=client-mixed RPC_TRANSPORT=serial

daemon: mixed

.PHONY: client mixed server serial daemon

${OBJ}: ${INC}

${LIB}: ${OBJ}
	${AR} rcs $@ $^

asn1.o rsa.o ecdsa.o:				asn1_internal.h
ecdsa.o:					ecdsa_curves.h
novena-eim.o hal_io_eim.o:			novena-eim.h
slip.o rpc_client_serial.o rpc_server_serial.o:	slip_internal.h
ks_flash.o:					last_gasp_pin_internal.h

last_gasp_pin_internal.h:
	./utils/last_gasp_default_pin >$@

test: all
	${MAKE} -C tests -k $@ CFLAGS='${CFLAGS}'

clean:
	rm -f *.o ${LIB}
	${MAKE} -C tests $@ CFLAGS='${CFLAGS}'
	${MAKE} -C utils $@ CFLAGS='${CFLAGS}'

distclean: clean
	rm -f TAGS

tags: TAGS

TAGS: *.[ch] tests/*.[ch] utils/*.[ch]
	etags $^

help usage:
	@echo ${USAGE}
w"> sizeof(hal_asn1_oid_aesKeyWrap); #endif #if KEK_LENGTH == (bitsToBytes(256)) const uint8_t hal_asn1_oid_aesKeyWrap[] = { 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x30 }; const size_t hal_asn1_oid_aesKeyWrap_len = sizeof(hal_asn1_oid_aesKeyWrap); #endif /* * From draft-housley-cms-mts-hash-sig Use of the Hash-based Merkle Tree Signature (MTS) Algorithm in the Cryptographic Message Syntax (CMS) * * id-alg-mts-hashsig OBJECT IDENTIFIER ::= { iso(1) member-body(2) * us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) alg(3) 17 } */ const uint8_t hal_asn1_oid_mts_hashsig[] = { 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x09, 0x10, 0x03, 0x11 }; const size_t hal_asn1_oid_mts_hashsig_len = sizeof(hal_asn1_oid_mts_hashsig); /* * Encode tag and length fields of an ASN.1 object. * * Sets *der_len to the size of of the ASN.1 header (tag and length * fields); caller supplied length of value field, so presumably * already knows it. * * If der is NULL, just return the size of the header that would be * encoded and returns HAL_OK. * * If der isn't NULL, returns HAL_ERROR_RESULT_TOO_LONG unless full * header plus value will fit; this is a bit weird, but is useful when * using this to construct encoders for complte ASN.1 objects. */ hal_error_t hal_asn1_encode_header(const uint8_t tag, const size_t value_len, uint8_t *der, size_t *der_len, const size_t der_max) { size_t header_len = 2; /* Shortest encoding is one octet each for tag and length */ if (value_len >= 128) /* Add octets for longer length encoding as needed */ for (size_t n = value_len; n > 0; n >>= 8) ++header_len; if (der_len != NULL) *der_len = header_len; if (der == NULL) /* If caller just wanted the length, we're done */ return HAL_OK; /* * Make sure there's enough room for header + value, then encode. */ if (value_len + header_len > der_max) return HAL_ERROR_RESULT_TOO_LONG; *der++ = tag; if (value_len < 128) { *der = (uint8_t) value_len; } else { *der = 0x80 | (uint8_t) (header_len -= 2); for (size_t n = value_len; n > 0 && header_len > 0; n >>= 8) der[header_len--] = (uint8_t) (n & 0xFF); } return HAL_OK; } /* * Encode an unsigned ASN.1 INTEGER from a libtfm bignum. If der is * NULL, just return the length of what we would have encoded. */ hal_error_t hal_asn1_encode_integer(const fp_int * const bn, uint8_t *der, size_t *der_len, const size_t der_max) { if (bn == NULL) return HAL_ERROR_BAD_ARGUMENTS; /* * We only handle unsigned INTEGERs, so we need to pad data with a * leading zero if the most significant bit is set, to avoid * flipping the ASN.1 sign bit. Conveniently, this also handles the * difference between libtfm's and ASN.1's encoding of zero. */ if (fp_cmp_d(unconst_fp_int(bn), 0) == FP_LT) return HAL_ERROR_BAD_ARGUMENTS; const int leading_zero = fp_iszero(bn) || (fp_count_bits(unconst_fp_int(bn)) & 7) == 0; const size_t vlen = fp_unsigned_bin_size(unconst_fp_int(bn)) + leading_zero; hal_error_t err; size_t hlen; err = hal_asn1_encode_header(ASN1_INTEGER, vlen, der, &hlen, der_max); if (der_len != NULL) *der_len = hlen + vlen; if (der == NULL || err != HAL_OK) return err; hal_assert(hlen + vlen <= der_max); der += hlen; if (leading_zero) *der++ = 0x00; fp_to_unsigned_bin(unconst_fp_int(bn), der); return HAL_OK; } /* * Encode an unsigned ASN.1 INTEGER from a uint32_t. If der is * NULL, just return the length of what we would have encoded. */ hal_error_t hal_asn1_encode_uint32(const uint32_t n, uint8_t *der, size_t *der_len, const size_t der_max) { /* * We only handle unsigned INTEGERs, so we need to pad data with a * leading zero if the most significant bit is set, to avoid * flipping the ASN.1 sign bit. */ size_t vlen; hal_error_t err; size_t hlen; /* DER says to use the minimum number of octets */ if (n < 0x80) vlen = 1; else if (n < 0x8000) vlen = 2; else if (n < 0x800000) vlen = 3; else if (n < 0x80000000) vlen = 4; else vlen = 5; err = hal_asn1_encode_header(ASN1_INTEGER, vlen, der, &hlen, der_max); if (der_len != NULL) *der_len = hlen + vlen; if (der == NULL || err != HAL_OK) return err; hal_assert(hlen + vlen <= der_max); der += hlen; uint32_t m = n; for (size_t i = vlen; i > 0; --i) { der[i - 1] = m & 0xff; m >>= 8; } return HAL_OK; } /* * Encode an ASN.1 OCTET STRING. If der is NULL, just return the length * of what we would have encoded. */ hal_error_t hal_asn1_encode_octet_string(const uint8_t * const data, const size_t data_len, uint8_t *der, size_t *der_len, const size_t der_max) { if (data_len == 0 || (der != NULL && data == NULL)) return HAL_ERROR_BAD_ARGUMENTS; size_t hlen; hal_error_t err; if ((err = hal_asn1_encode_header(ASN1_OCTET_STRING, data_len, NULL, &hlen, 0)) != HAL_OK) return err; if (der_len != NULL) *der_len = hlen + data_len; if (der == NULL) return HAL_OK; hal_assert(hlen + data_len <= der_max); /* * Handle data early, in case it was staged into our output buffer. */ memmove(der + hlen, data, data_len); if ((err = hal_asn1_encode_header(ASN1_OCTET_STRING, data_len, der, &hlen, der_max)) != HAL_OK) return err; return HAL_OK; } /* * Encode a public key into a X.509 SubjectPublicKeyInfo (RFC 5280). */ hal_error_t hal_asn1_encode_spki(const uint8_t * const alg_oid, const size_t alg_oid_len, const uint8_t * const curve_oid, const size_t curve_oid_len, const uint8_t * const pubkey, const size_t pubkey_len, uint8_t *der, size_t *der_len, const size_t der_max) { if (alg_oid == NULL || alg_oid_len == 0 || pubkey_len == 0 || (der != NULL && pubkey == NULL) || (curve_oid == NULL && curve_oid_len != 0)) return HAL_ERROR_BAD_ARGUMENTS; const uint8_t curve_oid_tag = curve_oid == NULL ? ASN1_NULL : ASN1_OBJECT_IDENTIFIER; hal_error_t err; size_t hlen, hlen_spki, hlen_algid, hlen_alg, hlen_curve, hlen_bit; if ((err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, alg_oid_len, NULL, &hlen_alg, 0)) != HAL_OK || (err = hal_asn1_encode_header(curve_oid_tag, curve_oid_len, NULL, &hlen_curve, 0)) != HAL_OK || (err = hal_asn1_encode_header(ASN1_BIT_STRING, 1 + pubkey_len, NULL, &hlen_bit, 0)) != HAL_OK) return err; const size_t algid_len = hlen_alg + alg_oid_len + hlen_curve + curve_oid_len; if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, algid_len, NULL, &hlen_algid, 0)) != HAL_OK) return err; const size_t vlen = hlen_algid + hlen_alg + alg_oid_len + hlen_curve + curve_oid_len + hlen_bit + 1 + pubkey_len; if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen_spki, 0)) != HAL_OK) return err; /* * Handle pubkey early, in case it was staged into our output buffer. */ if (der != NULL && hlen_spki + vlen <= der_max) memmove(der + hlen_spki + vlen - pubkey_len, pubkey, pubkey_len); err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max); if (der_len != NULL) *der_len = hlen + vlen; if (der == NULL || err != HAL_OK) return err; uint8_t *d = der + hlen; memset(d, 0, vlen - pubkey_len); if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, algid_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; if ((err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, alg_oid_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; memcpy(d, alg_oid, alg_oid_len); d += alg_oid_len; if ((err = hal_asn1_encode_header(curve_oid_tag, curve_oid_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; if (curve_oid != NULL) memcpy(d, curve_oid, curve_oid_len); d += curve_oid_len; if ((err = hal_asn1_encode_header(ASN1_BIT_STRING, 1 + pubkey_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; *d++ = 0x00; d += pubkey_len; /* pubkey handled early, above. */ hal_assert(d == der + hlen_spki + vlen); hal_assert(d <= der + der_max); return HAL_OK; } /* * Encode a PKCS #8 PrivateKeyInfo (RFC 5208). */ hal_error_t hal_asn1_encode_pkcs8_privatekeyinfo(const uint8_t * const alg_oid, const size_t alg_oid_len, const uint8_t * const curve_oid, const size_t curve_oid_len, const uint8_t * const privkey, const size_t privkey_len, uint8_t *der, size_t *der_len, const size_t der_max) { if (alg_oid == NULL || alg_oid_len == 0 || privkey_len == 0 || (der != NULL && privkey == NULL) || (curve_oid == NULL && curve_oid_len != 0)) return HAL_ERROR_BAD_ARGUMENTS; const uint8_t curve_oid_tag = curve_oid == NULL ? ASN1_NULL : ASN1_OBJECT_IDENTIFIER; fp_int version[1] = INIT_FP_INT; hal_error_t err; size_t version_len, hlen, hlen_algid, hlen_alg, hlen_curve, hlen_oct; if ((err = hal_asn1_encode_integer(version, NULL, &version_len, 0)) != HAL_OK || (err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, alg_oid_len, NULL, &hlen_alg, 0)) != HAL_OK || (err = hal_asn1_encode_header(curve_oid_tag, curve_oid_len, NULL, &hlen_curve, 0)) != HAL_OK || (err = hal_asn1_encode_header(ASN1_OCTET_STRING, privkey_len, NULL, &hlen_oct, 0)) != HAL_OK) return err; const size_t algid_len = hlen_alg + alg_oid_len + hlen_curve + curve_oid_len; if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, algid_len, NULL, &hlen_algid, 0)) != HAL_OK) return err; const size_t vlen = version_len + hlen_algid + hlen_alg + alg_oid_len + hlen_curve + curve_oid_len + hlen_oct + privkey_len; if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen, 0)) != HAL_OK) return err; if (der_len != NULL) *der_len = hlen + vlen; if (der == NULL) return HAL_OK; uint8_t * const der_end = der + hlen + vlen; /* * Handle privkey early, in case it was staged into our output buffer. */ if (der_end <= der + der_max) memmove(der_end - privkey_len, privkey, privkey_len); uint8_t *d = der; memset(d, 0, hlen + vlen - privkey_len); if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; if ((err = hal_asn1_encode_integer(version, d, NULL, der + der_max - d)) != HAL_OK) return err; d += version_len; if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, algid_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; if ((err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, alg_oid_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; memcpy(d, alg_oid, alg_oid_len); d += alg_oid_len; if ((err = hal_asn1_encode_header(curve_oid_tag, curve_oid_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; if (curve_oid != NULL) memcpy(d, curve_oid, curve_oid_len); d += curve_oid_len; if ((err = hal_asn1_encode_header(ASN1_OCTET_STRING, privkey_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; d += privkey_len; /* privkey handled early, above. */ hal_assert(d == der_end); hal_assert(d <= der + der_max); return HAL_OK; } /* * Encode a PKCS #8 EncryptedPrivateKeyInfo (RFC 5208). */ hal_error_t hal_asn1_encode_pkcs8_encryptedprivatekeyinfo(const uint8_t * const alg_oid, const size_t alg_oid_len, const uint8_t * const data, const size_t data_len, uint8_t *der, size_t *der_len, const size_t der_max) { if (alg_oid == NULL || alg_oid_len == 0 || data_len == 0 || (der != NULL && data == NULL)) return HAL_ERROR_BAD_ARGUMENTS; hal_error_t err; size_t hlen, hlen_pkcs8, hlen_algid, hlen_alg, hlen_oct; if ((err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, alg_oid_len, NULL, &hlen_alg, 0)) != HAL_OK || (err = hal_asn1_encode_header(ASN1_OCTET_STRING, data_len, NULL, &hlen_oct, 0)) != HAL_OK) return err; const size_t algid_len = hlen_alg + alg_oid_len; if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, algid_len, NULL, &hlen_algid, 0)) != HAL_OK) return err; const size_t vlen = hlen_algid + hlen_alg + alg_oid_len + hlen_oct + data_len; if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen_pkcs8, 0)) != HAL_OK) return err; /* * Handle data early, in case it was staged into our output buffer. */ if (der != NULL && hlen_pkcs8 + vlen <= der_max) memmove(der + hlen_pkcs8 + vlen - data_len, data, data_len); err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max); if (der_len != NULL) *der_len = hlen + vlen; if (der == NULL || err != HAL_OK) return err; uint8_t *d = der + hlen; memset(d, 0, vlen - data_len); if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, algid_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; if ((err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, alg_oid_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; memcpy(d, alg_oid, alg_oid_len); d += alg_oid_len; if ((err = hal_asn1_encode_header(ASN1_OCTET_STRING, data_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; d += data_len; /* data handled early, above. */ hal_assert(d == der + hlen_pkcs8 + vlen); hal_assert(d <= der + der_max); return HAL_OK; } /* * Parse tag and length of an ASN.1 object. Tag must match value * specified by the caller. On success, sets hlen and vlen to lengths * of header and value, respectively. */ hal_error_t hal_asn1_decode_header(const uint8_t tag, const uint8_t * const der, size_t der_max, size_t *hlen, size_t *vlen) { hal_assert(der != NULL && hlen != NULL && vlen != NULL); if (der_max < 2 || der[0] != tag) return HAL_ERROR_ASN1_PARSE_FAILED; if ((der[1] & 0x80) == 0) { *hlen = 2; *vlen = der[1]; } else { *hlen = 2 + (der[1] & 0x7F); *vlen = 0; if (*hlen > der_max) return HAL_ERROR_ASN1_PARSE_FAILED; for (size_t i = 2; i < *hlen; i++) *vlen = (*vlen << 8) + der[i]; } if (*hlen + *vlen > der_max) return HAL_ERROR_ASN1_PARSE_FAILED; return HAL_OK; } /* * Decode an ASN.1 INTEGER into a libtfm bignum. Since we only * support (or need to support, or expect to see) unsigned integers, * we return failure if the sign bit is set in the ASN.1 INTEGER. */ hal_error_t hal_asn1_decode_integer(fp_int *bn, const uint8_t * const der, size_t *der_len, const size_t der_max) { if (bn == NULL || der == NULL) return HAL_ERROR_BAD_ARGUMENTS; hal_error_t err; size_t hlen, vlen; if ((err = hal_asn1_decode_header(ASN1_INTEGER, der, der_max, &hlen, &vlen)) != HAL_OK) return err; if (der_len != NULL) *der_len = hlen + vlen; if (vlen < 1 || (der[hlen] & 0x80) != 0x00) return HAL_ERROR_ASN1_PARSE_FAILED; fp_init(bn); fp_read_unsigned_bin(bn, (uint8_t *) der + hlen, vlen); return HAL_OK; } /* * Decode an ASN.1 INTEGER into a uint32_t. Since we only * support (or need to support, or expect to see) unsigned integers, * we return failure if the sign bit is set in the ASN.1 INTEGER. */ hal_error_t hal_asn1_decode_uint32(uint32_t *np, const uint8_t * const der, size_t *der_len, const size_t der_max) { if (np == NULL || der == NULL) return HAL_ERROR_BAD_ARGUMENTS; hal_error_t err; size_t hlen, vlen; if ((err = hal_asn1_decode_header(ASN1_INTEGER, der, der_max, &hlen, &vlen)) != HAL_OK) return err; if (der_len != NULL) *der_len = hlen + vlen; if (vlen < 1 || vlen > 5 || (der[hlen] & 0x80) != 0x00 || (vlen == 5 && der[hlen] != 0)) return HAL_ERROR_ASN1_PARSE_FAILED; uint32_t n = 0; for (size_t i = 0; i < vlen; ++i) { n <<= 8; // slightly inefficient for the first octet n += der[hlen + i]; } *np = n; return HAL_OK; } /* * Decode an ASN.1 OCTET STRING. */ hal_error_t hal_asn1_decode_octet_string(uint8_t *data, const size_t data_len, const uint8_t * const der, size_t *der_len, const size_t der_max) { if (der == NULL) return HAL_ERROR_BAD_ARGUMENTS; size_t hlen, vlen; hal_error_t err; if ((err = hal_asn1_decode_header(ASN1_OCTET_STRING, der, der_max, &hlen, &vlen)) != HAL_OK) return err; if (der_len != NULL) *der_len = hlen + vlen; if (data != NULL) { if (data_len != vlen) return HAL_ERROR_ASN1_PARSE_FAILED; memmove(data, der + hlen, vlen); } return HAL_OK; } /* * Decode a public key from a X.509 SubjectPublicKeyInfo (RFC 5280). */ hal_error_t hal_asn1_decode_spki(const uint8_t **alg_oid, size_t *alg_oid_len, const uint8_t **curve_oid, size_t *curve_oid_len, const uint8_t **pubkey, size_t *pubkey_len, const uint8_t *const der, const size_t der_len) { if (der == NULL) return HAL_ERROR_BAD_ARGUMENTS; const uint8_t * const der_end = der + der_len; const uint8_t *d = der; size_t hlen, vlen; hal_error_t err; if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, d, der_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (hlen + vlen != der_len) return HAL_ERROR_ASN1_PARSE_FAILED; if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, d, der_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; const uint8_t * const algid_end = d + vlen; if ((err = hal_asn1_decode_header(ASN1_OBJECT_IDENTIFIER, d, algid_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen > (size_t)(algid_end - d)) return HAL_ERROR_ASN1_PARSE_FAILED; if (alg_oid != NULL) *alg_oid = d; if (alg_oid_len != NULL) *alg_oid_len = vlen; d += vlen; if (curve_oid != NULL) *curve_oid = NULL; if (curve_oid_len != NULL) *curve_oid_len = 0; if (d < algid_end) { switch (*d) { case ASN1_OBJECT_IDENTIFIER: if ((err = hal_asn1_decode_header(ASN1_OBJECT_IDENTIFIER, d, algid_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen > (size_t)(algid_end - d)) return HAL_ERROR_ASN1_PARSE_FAILED; if (curve_oid != NULL) *curve_oid = d; if (curve_oid_len != NULL) *curve_oid_len = vlen; d += vlen; break; case ASN1_NULL: if ((err = hal_asn1_decode_header(ASN1_NULL, d, algid_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen == 0) break; /* fall through */ default: return HAL_ERROR_ASN1_PARSE_FAILED; } } if (d != algid_end) return HAL_ERROR_ASN1_PARSE_FAILED; if ((err = hal_asn1_decode_header(ASN1_BIT_STRING, d, der_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen >= (size_t)(algid_end - d) || vlen == 0 || *d != 0x00) return HAL_ERROR_ASN1_PARSE_FAILED; ++d; --vlen; if (pubkey != NULL) *pubkey = d; if (pubkey_len != NULL) *pubkey_len = vlen; d += vlen; if (d != der_end) return HAL_ERROR_ASN1_PARSE_FAILED; return HAL_OK; } /* * Decode a private key from a PKCS #8 PrivateKeyInfo (RFC 5208). */ hal_error_t hal_asn1_decode_pkcs8_privatekeyinfo(const uint8_t **alg_oid, size_t *alg_oid_len, const uint8_t **curve_oid, size_t *curve_oid_len, const uint8_t **privkey, size_t *privkey_len, const uint8_t *const der, const size_t der_len) { if (der == NULL) return HAL_ERROR_BAD_ARGUMENTS; const uint8_t * const der_end = der + der_len; const uint8_t *d = der; fp_int version[1] = INIT_FP_INT; size_t hlen, vlen; hal_error_t err; if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, d, der_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (hlen + vlen != der_len) return HAL_ERROR_ASN1_PARSE_FAILED; if ((err = hal_asn1_decode_integer(version, d, &hlen, der_end - d)) != HAL_OK) return err; if (!fp_iszero(version)) return HAL_ERROR_ASN1_PARSE_FAILED; d += hlen; if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, d, der_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; const uint8_t * const algid_end = d + vlen; if ((err = hal_asn1_decode_header(ASN1_OBJECT_IDENTIFIER, d, algid_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen > (size_t)(algid_end - d)) return HAL_ERROR_ASN1_PARSE_FAILED; if (alg_oid != NULL) *alg_oid = d; if (alg_oid_len != NULL) *alg_oid_len = vlen; d += vlen; if (curve_oid != NULL) *curve_oid = NULL; if (curve_oid_len != NULL) *curve_oid_len = 0; if (d < algid_end) { switch (*d) { case ASN1_OBJECT_IDENTIFIER: if ((err = hal_asn1_decode_header(ASN1_OBJECT_IDENTIFIER, d, algid_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen > (size_t)(algid_end - d)) return HAL_ERROR_ASN1_PARSE_FAILED; if (curve_oid != NULL) *curve_oid = d; if (curve_oid_len != NULL) *curve_oid_len = vlen; d += vlen; break; case ASN1_NULL: if ((err = hal_asn1_decode_header(ASN1_NULL, d, algid_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen == 0) break; /* fall through */ default: return HAL_ERROR_ASN1_PARSE_FAILED; } } if (d != algid_end) return HAL_ERROR_ASN1_PARSE_FAILED; if ((err = hal_asn1_decode_header(ASN1_OCTET_STRING, d, der_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen >= (size_t)(algid_end - d)) return HAL_ERROR_ASN1_PARSE_FAILED; if (privkey != NULL) *privkey = d; if (privkey_len != NULL) *privkey_len = vlen; d += vlen; if (d != der_end) return HAL_ERROR_ASN1_PARSE_FAILED; return HAL_OK; } /* * Decode a private key from a PKCS #8 EncryptedPrivateKeyInfo (RFC 5208). */ hal_error_t hal_asn1_decode_pkcs8_encryptedprivatekeyinfo(const uint8_t **alg_oid, size_t *alg_oid_len, const uint8_t **data, size_t *data_len, const uint8_t *const der, const size_t der_len) { if (alg_oid == NULL || alg_oid_len == NULL || data == NULL || data_len == NULL || der == NULL) return HAL_ERROR_BAD_ARGUMENTS; const uint8_t * const der_end = der + der_len; const uint8_t *d = der; size_t hlen, vlen; hal_error_t err; if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, d, der_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (hlen + vlen != der_len) return HAL_ERROR_ASN1_PARSE_FAILED; if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, d, der_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; const uint8_t * const algid_end = d + vlen; if ((err = hal_asn1_decode_header(ASN1_OBJECT_IDENTIFIER, d, algid_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen > (size_t)(algid_end - d)) return HAL_ERROR_ASN1_PARSE_FAILED; if (alg_oid != NULL) *alg_oid = d; if (alg_oid_len != NULL) *alg_oid_len = vlen; d += vlen; if (d < algid_end) { if ((err = hal_asn1_decode_header(ASN1_NULL, d, algid_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen != 0) return HAL_ERROR_ASN1_PARSE_FAILED; } if (d != algid_end) return HAL_ERROR_ASN1_PARSE_FAILED; if ((err = hal_asn1_decode_header(ASN1_OCTET_STRING, d, der_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen >= (size_t)(algid_end - d)) return HAL_ERROR_ASN1_PARSE_FAILED; if (data != NULL) *data = d; if (data_len != NULL) *data_len = vlen; d += vlen; if (d != der_end) return HAL_ERROR_ASN1_PARSE_FAILED; return HAL_OK; } /* * Attempt to guess what kind of key we're looking at. */ hal_error_t hal_asn1_guess_key_type(hal_key_type_t *type, hal_curve_name_t *curve, const uint8_t *const der, const size_t der_len) { if (type == NULL || curve == NULL || der == NULL) return HAL_ERROR_BAD_ARGUMENTS; const uint8_t *alg_oid, *curve_oid; size_t alg_oid_len, curve_oid_len; hal_error_t err; int public = 0; err = hal_asn1_decode_pkcs8_privatekeyinfo(&alg_oid, &alg_oid_len, &curve_oid, &curve_oid_len, NULL, 0, der, der_len); if (err == HAL_ERROR_ASN1_PARSE_FAILED && (err = hal_asn1_decode_spki(&alg_oid, &alg_oid_len, &curve_oid, &curve_oid_len, NULL, 0, der, der_len)) == HAL_OK) public = 1; if (err != HAL_OK) return err; if (alg_oid_len == hal_asn1_oid_rsaEncryption_len && memcmp(alg_oid, hal_asn1_oid_rsaEncryption, alg_oid_len) == 0) { *type = public ? HAL_KEY_TYPE_RSA_PUBLIC : HAL_KEY_TYPE_RSA_PRIVATE; *curve = HAL_CURVE_NONE; return HAL_OK; } if (alg_oid_len == hal_asn1_oid_ecPublicKey_len && memcmp(alg_oid, hal_asn1_oid_ecPublicKey, alg_oid_len) == 0) { *type = public ? HAL_KEY_TYPE_EC_PUBLIC : HAL_KEY_TYPE_EC_PRIVATE; if ((err = hal_ecdsa_oid_to_curve(curve, curve_oid, curve_oid_len)) != HAL_OK) *curve = HAL_CURVE_NONE; return err; } if (alg_oid_len == hal_asn1_oid_mts_hashsig_len && memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) == 0) { *type = public ? HAL_KEY_TYPE_HASHSIG_PUBLIC : HAL_KEY_TYPE_HASHSIG_PRIVATE; *curve = HAL_CURVE_NONE; return HAL_OK; } *type = HAL_KEY_TYPE_NONE; *curve = HAL_CURVE_NONE; return HAL_ERROR_UNSUPPORTED_KEY; } /* * Local variables: * indent-tabs-mode: nil * End: */