/* * test-rsa.c * ---------- * Test harness for RSA using Cryptech ModExp core. * * Authors: Rob Austein * Copyright (c) 2015, NORDUnet A/S * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the NORDUnet nor the names of its contributors may * be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include "test-rsa.h" /* * Run one modexp test. */ static int test_modexp(hal_core_t *core, const char * const kind, const rsa_tc_t * const tc, const rsa_tc_bn_t * const msg, /* Input message */ const rsa_tc_bn_t * const exp, /* Exponent */ const rsa_tc_bn_t * const val) /* Expected result */ { uint8_t result[tc->n.len]; printf("%s test for %lu-bit RSA key\n", kind, (unsigned long) tc->size); if (hal_modexp(core, msg->val, msg->len, exp->val, exp->len, tc->n.val, tc->n.len, result, sizeof(result)) != HAL_OK) return printf("ModExp failed\n"), 0; if (memcmp(result, val->val, val->len)) return printf("MISMATCH\n"), 0; return 1; } /* * Run one RSA CRT test. */ static int test_decrypt(hal_core_t *core, const char * const kind, const rsa_tc_t * const tc) { printf("%s test for %lu-bit RSA key\n", kind, (unsigned long) tc->size); uint8_t keybuf[hal_rsa_key_t_size]; hal_rsa_key_t *key = NULL; hal_error_t err = HAL_OK; if ((err = hal_rsa_key_load_private(&key, keybuf, sizeof(keybuf), tc->n.val, tc->n.len, tc->e.val, tc->e.len, tc->d.val, tc->d.len, tc->p.val, tc->p.len, tc->q.val, tc->q.len, tc->u.val, tc->u.len, tc->dP.val, tc->dP.len, tc->dQ.val, tc->dQ.len)) != HAL_OK) return printf("RSA CRT key load failed: %s\n", hal_error_string(err)), 0; uint8_t result[tc->n.len]; if ((err = hal_rsa_decrypt(core, key, tc->m.val, tc->m.len, result, sizeof(result))) != HAL_OK) printf("RSA CRT failed: %s\n", hal_error_string(err)); const int mismatch = (err == HAL_OK && memcmp(result, tc->s.val, tc->s.len) != 0); if (mismatch) printf("MISMATCH\n"); hal_rsa_key_clear(key); return err == HAL_OK && !mismatch; } /* * Run one RSA key generation + CRT test. */ static int test_gen(hal_core_t *core, const char * const kind, const rsa_tc_t * const tc) { printf("%s test for %lu-bit RSA key\n", kind, (unsigned long) tc->size); char fn[sizeof("test-rsa-private-key-xxxxxx.der")]; uint8_t keybuf1[hal_rsa_key_t_size], keybuf2[hal_rsa_key_t_size]; hal_rsa_key_t *key1 = NULL, *key2 = NULL; hal_error_t err = HAL_OK; FILE *f; const uint8_t f4[] = { 0x01, 0x00, 0x01 }; if ((err = hal_rsa_key_gen(core, &key1, keybuf1, sizeof(keybuf1), bitsToBytes(tc->size), f4, sizeof(f4))) != HAL_OK) return printf("RSA key generation failed: %s\n", hal_error_string(err)), 0; size_t der_len = 0; if ((err = hal_rsa_private_key_to_der(key1, NULL, &der_len, 0)) != HAL_OK) return printf("Getting DER length of RSA key failed: %s\n", hal_error_string(err)), 0; uint8_t der[der_len]; err = hal_rsa_private_key_to_der(key1, der, &der_len, sizeof(der)); snprintf(fn, sizeof(fn), "test-rsa-private-key-%04lu.der", (unsigned long) tc->size); printf("Writing %s\n", fn); if ((f = fopen(fn, "wb")) == NULL) return printf("Couldn't open %s: %s\n", fn, strerror(errno)), 0; if (fwrite(der, der_len, 1, f) != 1) return printf("Length mismatch writing %s\n", fn), 0; if (fclose(f) == EOF) return printf("Couldn't close %s: %s\n", fn, strerror(errno)), 0; /* Deferred error from hal_rsa_private_key_to_der() */ if (err != HAL_OK) return printf("Converting RSA private key to DER failed: %s\n", hal_error_string(err)), 0; if ((err = hal_rsa_private_key_from_der(&key2, keybuf2, sizeof(keybuf2), der, sizeof(der))) != HAL_OK) return printf("Converting RSA key back from DER failed: %s\n", hal_error_string(err)), 0; if (memcmp(keybuf1, keybuf2, hal_rsa_key_t_size) != 0) return printf("RSA private key mismatch after conversion to and back from DER\n"), 0; uint8_t result[tc->n.len]; if ((err = hal_rsa_decrypt(core, key1, tc->m.val, tc->m.len, result, sizeof(result))) != HAL_OK) printf("RSA CRT failed: %s\n", hal_error_string(err)); snprintf(fn, sizeof(fn), "test-rsa-sig-%04lu.der", (unsigned long) tc->size); printf("Writing %s\n", fn); if ((f = fopen(fn, "wb")) == NULL) return printf("Couldn't open %s: %s\n", fn, strerror(errno)), 0; if (fwrite(result, sizeof(result), 1, f) != 1) return printf("Length mismatch writing %s\n", fn), 0; if (fclose(f) == EOF) return printf("Couldn't close %s: %s\n", fn, strerror(errno)), 0; if (err != HAL_OK) /* Deferred failure from hal_rsa_decrypt(), above */ return 0; if ((err = hal_rsa_encrypt(core, key1, result, sizeof(result), result, sizeof(result))) != HAL_OK) printf("First RSA signature check failed: %s\n", hal_error_string(err)); int mismatch = 0; if (err == HAL_OK && memcmp(result, tc->m.val, tc->m.len) != 0) mismatch = (printf("MISMATCH\n"), 1); hal_rsa_key_clear(key2); key2 = NULL; if ((f = fopen(fn, "rb")) == NULL) return printf("Couldn't open %s: %s\n", fn, strerror(errno)), 0; if (fread(result, sizeof(result), 1, f) != 1) return printf("Length mismatch reading %s\n", fn), 0; if (fclose(f) == EOF) return printf("Couldn't close %s: %s\n", fn, strerror(errno)), 0; err = hal_rsa_public_key_to_der(key1, der, &der_len, sizeof(der)); snprintf(fn, sizeof(fn), "test-rsa-public-key-%04lu.der", (unsigned long) tc->size); printf("Writing %s\n", fn); if ((f = fopen(fn, "wb")) == NULL) return printf("Couldn't open %s: %s\n", fn, strerror(errno)), 0; if (fwrite(der, der_len, 1, f) != 1) return printf("Length mismatch writing %s\n", fn), 0; if (fclose(f) == EOF) return printf("Couldn't close %s: %s\n", fn, strerror(errno)), 0; /* Deferred error from hal_rsa_public_key_to_der() */ if (err != HAL_OK) return printf("Converting RSA public key to DER failed: %s\n", hal_error_string(err)), 0; if ((err = hal_rsa_public_key_from_der(&key2, keybuf2, sizeof(keybuf2), der, der_len)) != HAL_OK) return printf("Converting RSA public key back from DER failed: %s\n", hal_error_string(err)), 0; /* * Can't directly compare private key with public key. We could * extract and compare the public key components, not much point if * the public key passes the signature verification test below. */ if ((err = hal_rsa_encrypt(core, key2, result, sizeof(result), result, sizeof(result))) != HAL_OK) return printf("Second RSA signature check failed: %s\n", hal_error_string(err)), 0; if (err == HAL_OK && memcmp(result, tc->m.val, tc->m.len) != 0) mismatch = (printf("MISMATCH\n"), 1); hal_rsa_key_clear(key1); hal_rsa_key_clear(key2); return err == HAL_OK && !mismatch; } /* * Time a test. */ static void _time_check(const struct timeval t0, const int ok) { struct timeval t; gettimeofday(&t, NULL); t.tv_sec -= t0.tv_sec; t.tv_usec = t0.tv_usec; if (t.tv_usec < 0) { t.tv_usec += 1000000; t.tv_sec -= 1; } printf("Elapsed time %lu.%06lu seconds, %s\n", (unsigned long) t.tv_sec, (unsigned long) t.tv_usec, ok ? "OK" : "FAILED"); } #define time_check(_expr_) \ do { \ struct timeval _t; \ gettimeofday(&_t, NULL); \ int _ok = (_expr_); \ _time_check(_t, _ok); \ ok &= _ok; \ } while (0) /* * Test signature and exponentiation for one RSA keypair using * precompiled test vectors, then generate a key of the same length * and try generating a signature with that. */ static int test_rsa(hal_core_t *core, const rsa_tc_t * const tc) { int ok = 1; /* RSA encryption */ time_check(test_modexp(core, "Verification", tc, &tc->s, &tc->e, &tc->m)); /* Brute force RSA decryption */ time_check(test_modexp(core, "Signature (ModExp)", tc, &tc->m, &tc->d, &tc->s)); /* RSA decyrption using CRT */ time_check(test_decrypt(core, "Signature (CRT)", tc)); /* Key generation and CRT -- not test vector, so writes key and sig to file */ time_check(test_gen(core, "Generation and CRT", tc)); return ok; } int main(int argc, char *argv[]) { hal_core_t *core = hal_core_find(MODEXPS6_NAME, NULL); if (core == NULL) core = hal_core_find(MODEXPA7_NAME, NULL); const hal_core_info_t *core_info = hal_core_info(core); if (core_info != NULL) printf("\"%8.8s\" \"%4.4s\"\n\n", core_info->name, core_info->version); /* * Run the test cases. */ hal_modexp_set_debug(1); /* Normal test */ for (int i = 0; i < (sizeof(rsa_tc)/sizeof(*rsa_tc)); i++) if (!test_rsa(core, &rsa_tc[i])) return 1; return 0; } /* * Local variables: * indent-tabs-mode: nil * End: */ n235' href='#n235'>235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
/*
 * ecdsa.c
 * -------
 * Elliptic Curve Digital Signature Algorithm for NIST prime curves.
 *
 * At some point we may want to refactor this code to separate
 * functionality that applies to all elliptic curve cryptography into
 * a separate module from functions specific to ECDSA over the NIST
 * prime curves, but it's simplest to keep this all in one place
 * initially.
 *
 * Much of the code in this module is based, at least loosely, on Tom
 * St Denis's libtomcrypt code.  Algorithms for point addition and
 * point doubling courtesy of the hyperelliptic.org formula database.
 *
 * Authors: Rob Austein
 * Copyright (c) 2015, NORDUnet A/S
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * - Redistributions of source code must retain the above copyright notice,
 *   this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 *
 * - Neither the name of the NORDUnet nor the names of its contributors may
 *   be used to endorse or promote products derived from this software
 *   without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * We use "Tom's Fast Math" library for our bignum implementation.
 * This particular implementation has a couple of nice features:
 *
 * - The code is relatively readable, thus reviewable.
 *
 * - The bignum representation doesn't use dynamic memory, which
 *   simplifies things for us.
 *
 * The price tag for not using dynamic memory is that libtfm has to be
 * configured to know about the largest bignum one wants it to be able
 * to support at compile time.  This should not be a serious problem.
 *
 * We use a lot of one-element arrays (fp_int[1] instead of plain
 * fp_int) to avoid having to prefix every use of an fp_int with "&".
 * Perhaps we should encapsulate this idiom in a typedef.
 *
 * Unfortunately, libtfm is bad about const-ification, but we want to
 * hide that from our users, so our public API uses const as
 * appropriate and we use inline functions to remove const constraints
 * in a relatively type-safe manner before calling libtom.
 */

#include <stdint.h>
#include <assert.h>

#include "hal.h"
#include "hal_internal.h"
#include <tfm.h>
#include "asn1_internal.h"

/*
 * Whether we're using static test vectors instead of the random
 * number generator.  Do NOT enable this in production (doh).
 */

#ifndef HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM
#define HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM 0
#endif

#if defined(RPC_CLIENT) && RPC_CLIENT != RPC_CLIENT_LOCAL
#define hal_get_random(core, buffer, length) hal_rpc_get_random(buffer, length)
#endif

/*
 * Whether we want debug output.
 */

static int debug = 0;

void hal_ecdsa_set_debug(const int onoff)
{
  debug = onoff;
}

/*
 * ECDSA curve descriptor.  We only deal with named curves; at the
 * moment, we only deal with NIST prime curves where the elliptic
 * curve's "a" parameter is always -3 and its "h" value (order of
 * elliptic curve group divided by order of base point) is always 1.
 *
 * Since the Montgomery parameters we need for the point arithmetic
 * depend only on the underlying field prime, we precompute them when
 * we load the curve and store them in the field descriptor, even
 * though they aren't really curve parameters per se.
 *
 * For similar reasons, we also include the ASN.1 OBJECT IDENTIFIERs
 * used to name these curves.
 */

typedef struct {
  fp_int q[1];                          /* Modulus of underlying prime field */
  fp_int b[1];                          /* Curve's "b" parameter */
  fp_int Gx[1];                         /* x component of base point G */
  fp_int Gy[1];                         /* y component of base point G */
  fp_int n[1];                          /* Order of base point G */
  fp_int mu[1];                         /* Montgomery normalization factor */
  fp_digit rho;                         /* Montgomery reduction value */
  const uint8_t *oid;                   /* OBJECT IDENTIFIER */
  size_t oid_len;                       /* Length of OBJECT IDENTIFIER */
} ecdsa_curve_t;

/*
 * ECDSA key implementation.  This structure type is private to this
 * module, anything else that needs to touch one of these just gets a
 * typed opaque pointer.  We do, however, export the size, so that we
 * can make memory allocation the caller's problem.
 *
 * EC points are stored in Jacobian format such that (x, y, z) =>
 * (x/z**2, y/z**3, 1) when interpretted as affine coordinates.
 *
 * There are really three different representations in use here:
 *
 * 1) Plain affine representation (z == 1);
 * 2) Montgomery form affine representation (z == curve->mu); and
 * 3) Montgomery form Jacobian representation (whatever).
 *
 * Only form (1) is ever visible outside this module.  We perform
 * explicit conversions from form (1) to form (2) and from forms (2,3)
 * to form (1).  Form (3) only occurs as the result of compuation.
 *
 * In theory, we could shave some microscopic amount of time off of
 * signature verification by supporting an explicit conversion from
 * form (3) to form (2), but it's not worth the additional complexity.
 */

typedef struct {
  fp_int x[1], y[1], z[1];
} ec_point_t;

struct hal_ecdsa_key {
  hal_key_type_t type;                  /* Public or private */
  hal_curve_name_t curve;               /* Curve descriptor */
  ec_point_t Q[1];                      /* Public key */
  fp_int d[1];                          /* Private key */
};

const size_t hal_ecdsa_key_t_size = sizeof(struct hal_ecdsa_key);

/*
 * Initializers.  We want to be able to initialize automatic fp_int
 * and ec_point_t variables to a sane value (less error prone), but
 * picky compilers whine about the number of curly braces required.
 * So we define macros which isolate that madness in one place, and
 * use those macros everywhere.
 */

#define INIT_FP_INT	{{{0}}}
#define	INIT_EC_POINT_T	{{INIT_FP_INT}}

/*
 * Error handling.
 */

#define lose(_code_) do { err = _code_; goto fail; } while (0)

/*
 * We can't (usefully) initialize fp_int variables to non-zero values
 * at compile time, so instead we load all the curve parameters the
 * first time anything asks for any of them.
 */

static const ecdsa_curve_t * const get_curve(const hal_curve_name_t curve)
{
  static ecdsa_curve_t curve_p256, curve_p384, curve_p521;
  static int initialized = 0;

  if (!initialized) {

#include "ecdsa_curves.h"

    fp_read_unsigned_bin(curve_p256.q,  unconst_uint8_t(p256_q),  sizeof(p256_q));
    fp_read_unsigned_bin(curve_p256.b,  unconst_uint8_t(p256_b),  sizeof(p256_b));
    fp_read_unsigned_bin(curve_p256.Gx, unconst_uint8_t(p256_Gx), sizeof(p256_Gx));
    fp_read_unsigned_bin(curve_p256.Gy, unconst_uint8_t(p256_Gy), sizeof(p256_Gy));
    fp_read_unsigned_bin(curve_p256.n,  unconst_uint8_t(p256_n),  sizeof(p256_n));
    if (fp_montgomery_setup(curve_p256.q, &curve_p256.rho) != FP_OKAY)
      return NULL;
    fp_zero(curve_p256.mu);
    fp_montgomery_calc_normalization(curve_p256.mu, curve_p256.q);
    curve_p256.oid = p256_oid;
    curve_p256.oid_len = sizeof(p256_oid);

    fp_read_unsigned_bin(curve_p384.q,  unconst_uint8_t(p384_q),  sizeof(p384_q));
    fp_read_unsigned_bin(curve_p384.b,  unconst_uint8_t(p384_b),  sizeof(p384_b));
    fp_read_unsigned_bin(curve_p384.Gx, unconst_uint8_t(p384_Gx), sizeof(p384_Gx));
    fp_read_unsigned_bin(curve_p384.Gy, unconst_uint8_t(p384_Gy), sizeof(p384_Gy));
    fp_read_unsigned_bin(curve_p384.n,  unconst_uint8_t(p384_n),  sizeof(p384_n));
    if (fp_montgomery_setup(curve_p384.q, &curve_p384.rho) != FP_OKAY)
      return NULL;
    fp_zero(curve_p384.mu);
    fp_montgomery_calc_normalization(curve_p384.mu, curve_p384.q);
    curve_p384.oid = p384_oid;
    curve_p384.oid_len = sizeof(p384_oid);

    fp_read_unsigned_bin(curve_p521.q,  unconst_uint8_t(p521_q),  sizeof(p521_q));
    fp_read_unsigned_bin(curve_p521.b,  unconst_uint8_t(p521_b),  sizeof(p521_b));
    fp_read_unsigned_bin(curve_p521.Gx, unconst_uint8_t(p521_Gx), sizeof(p521_Gx));
    fp_read_unsigned_bin(curve_p521.Gy, unconst_uint8_t(p521_Gy), sizeof(p521_Gy));
    fp_read_unsigned_bin(curve_p521.n,  unconst_uint8_t(p521_n),  sizeof(p521_n));
    if (fp_montgomery_setup(curve_p521.q, &curve_p521.rho) != FP_OKAY)
      return NULL;
    fp_zero(curve_p521.mu);
    fp_montgomery_calc_normalization(curve_p521.mu, curve_p521.q);
    curve_p521.oid = p521_oid;
    curve_p521.oid_len = sizeof(p521_oid);

    initialized = 1;
  }

  switch (curve) {
  case HAL_CURVE_P256:  return &curve_p256;
  case HAL_CURVE_P384:  return &curve_p384;
  case HAL_CURVE_P521:  return &curve_p521;
  default:              return NULL;
  }
}

static inline const ecdsa_curve_t * oid_to_curve(hal_curve_name_t *curve_name,
                                                 const uint8_t * const oid,
                                                 const size_t oid_len)
{
  assert(curve_name != NULL && oid != NULL);

  const ecdsa_curve_t *curve = NULL;
  *curve_name = HAL_CURVE_NONE;

  while ((curve = get_curve(++*curve_name)) != NULL)
    if (oid_len == curve->oid_len && memcmp(oid, curve->oid, oid_len) == 0)
      return curve;

  return NULL;
}

/*
 * Finite field operations (hence "ff_").  These are basically just
 * the usual bignum operations, constrained by the field modulus.
 *
 * All of these are operations in the field underlying the specified
 * curve, and assume that operands are already in Montgomery form.
 *
 * The ff_add() and ff_sub() are written a bit oddly, in an attempt to
 * make them run in constant time.  An optimizing compiler may be
 * clever enough to defeat this.  In the long run, we probably want to
 * perform these field operations in Verilog anyway.
 *
 * We might be able to squeeze a bit more speed out of the point
 * arithmetic by making using fp_mul_2d() when multiplying by a power
 * of two.  Skipping for now as a premature optimization, but if we do
 * need this, it'd probably be simplest to add a ff_dbl() function
 * which handles overflow in the same way that ff_add() does.
 */

static inline void ff_add(const ecdsa_curve_t * const curve,
                          const fp_int * const a,
                          const fp_int * const b,
                          fp_int *c)
{
  fp_int t[2][1] = {INIT_FP_INT};

  fp_add(unconst_fp_int(a), unconst_fp_int(b), t[0]);
  fp_sub(t[0], unconst_fp_int(curve->q), t[1]);

  fp_copy(t[fp_cmp_d(t[1], 0) != FP_LT], c);

  memset(t, 0, sizeof(t));
}

static inline void ff_sub(const ecdsa_curve_t * const curve,
                          const fp_int * const a,
                          const fp_int * const b,
                          fp_int *c)
{
  fp_int t[2][1] = {INIT_FP_INT};

  fp_sub(unconst_fp_int(a), unconst_fp_int(b), t[0]);
  fp_add(t[0], unconst_fp_int(curve->q), t[1]);

  fp_copy(t[fp_cmp_d(t[0], 0) == FP_LT], c);

  memset(t, 0, sizeof(t));
}

static inline void ff_mul(const ecdsa_curve_t * const curve,
                          const fp_int * const a,
                          const fp_int * const b,
                          fp_int *c)
{
  fp_mul(unconst_fp_int(a), unconst_fp_int(b), c);
  fp_montgomery_reduce(c, unconst_fp_int(curve->q), curve->rho);
}

static inline void ff_sqr(const ecdsa_curve_t * const curve,
                          const fp_int * const a,
                          fp_int *b)
{
  fp_sqr(unconst_fp_int(a), b);
  fp_montgomery_reduce(b, unconst_fp_int(curve->q), curve->rho);
}

/*
 * Test whether a point is the point at infinity.
 *
 * In Jacobian projective coordinate, any point of the form
 *
 *   (j ** 2, j **3, 0) for j in [1..q-1]
 *
 * is on the line at infinity, but for practical purposes simply
 * checking the z coordinate is probably sufficient.
 */

static inline int point_is_infinite(const ec_point_t * const P)
{
  assert(P != NULL);
  return fp_iszero(P->z);
}

/*
 * Set a point to be the point at infinity.  For Jacobian projective
 * coordinates, it's customary to use (1 : 1 : 0) as the
 * representitive value.
 *
 * If a curve is supplied, we want the Montgomery form of the point at
 * infinity for that curve.
 */

static inline void point_set_infinite(ec_point_t *P, const ecdsa_curve_t * const curve)
{
  assert(P != NULL);

  if (curve != NULL) {
    fp_copy(unconst_fp_int(curve->mu), P->x);
    fp_copy(unconst_fp_int(curve->mu), P->y);
    fp_zero(P->z);
  }

  else {
    fp_set(P->x, 1);
    fp_set(P->y, 1);
    fp_zero(P->z);
  }
}

/*
 * Copy a point.
 */

static inline void point_copy(const ec_point_t * const P, ec_point_t *R)
{
  if (P != NULL && R != NULL && P != R)
    *R = *P;
}

/**
 * Convert a point into Montgomery form.
 * @param P        [in/out] The point to map
 * @param curve    The curve parameters structure
 */

static inline hal_error_t point_to_montgomery(ec_point_t *P,
                                              const ecdsa_curve_t * const curve)
{
  assert(P != NULL && curve != NULL);

  if (fp_cmp_d(unconst_fp_int(P->z), 1) != FP_EQ)
    return HAL_ERROR_BAD_ARGUMENTS;

  if (fp_mulmod(P->x, unconst_fp_int(curve->mu), unconst_fp_int(curve->q), P->x) != FP_OKAY ||
      fp_mulmod(P->y, unconst_fp_int(curve->mu), unconst_fp_int(curve->q), P->y) != FP_OKAY)
    return HAL_ERROR_IMPOSSIBLE;

  fp_copy(unconst_fp_int(curve->mu), P->z);
  return HAL_OK;
}

/**
 * Map a point in projective Jacbobian coordinates back to affine
 * space.  This also converts back from Montgomery to plain form.
 * @param P        [in/out] The point to map
 * @param curve    The curve parameters structure
 *
 * It's not possible to represent the point at infinity in plain
 * affine coordinates, and the calling function will have to handle
 * the point at infinity specially in any case, so we declare this to
 * be the calling function's problem.
 */

static inline hal_error_t point_to_affine(ec_point_t *P,
                                          const ecdsa_curve_t * const curve)
{
  assert(P != NULL && curve != NULL);

  if (point_is_infinite(P))
    return HAL_ERROR_IMPOSSIBLE;

  hal_error_t err = HAL_ERROR_IMPOSSIBLE;

  fp_int t1[1] = INIT_FP_INT;
  fp_int t2[1] = INIT_FP_INT;

  fp_int * const q = unconst_fp_int(curve->q);

  fp_montgomery_reduce(P->z, q, curve->rho);

  if (fp_invmod (P->z,   q, t1) != FP_OKAY ||    /* t1 = 1 / z    */
      fp_sqrmod (t1,     q, t2) != FP_OKAY ||    /* t2 = 1 / z**2 */
      fp_mulmod (t1, t2, q, t1) != FP_OKAY)      /* t1 = 1 / z**3 */
    goto fail;

  fp_mul (P->x,  t2,  P->x);                     /* x = x / z**2 */
  fp_mul (P->y,  t1,  P->y);                     /* y = y / z**3 */
  fp_set (P->z,  1);                             /* z = 1        */

  fp_montgomery_reduce(P->x, q, curve->rho);
  fp_montgomery_reduce(P->y, q, curve->rho);

  err = HAL_OK;

 fail:
  fp_zero(t1);
  fp_zero(t2);
  return err;
}

/**
 * Double an EC point.
 * @param P             The point to double
 * @param R             [out] The destination of the double
 * @param curve         The curve parameters structure
 *
 * Algorithm is dbl-2001-b from
 * http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html
 */

static inline void point_double(const ec_point_t * const P,
                                ec_point_t *R,
                                const ecdsa_curve_t * const curve)
{
  assert(P != NULL && R != NULL && curve != NULL);

  const int was_infinite = point_is_infinite(P);

  fp_int alpha[1] = INIT_FP_INT;
  fp_int beta[1]  = INIT_FP_INT;
  fp_int gamma[1] = INIT_FP_INT;
  fp_int delta[1] = INIT_FP_INT;
  fp_int t1[1]    = INIT_FP_INT;
  fp_int t2[1]    = INIT_FP_INT;

  ff_sqr  (curve,  P->z,          delta);       /* delta = Pz ** 2 */
  ff_sqr  (curve,  P->y,          gamma);       /* gamma = Py ** 2 */
  ff_mul  (curve,  P->x,  gamma,  beta);        /* beta  = Px * gamma */
  ff_sub  (curve,  P->x,  delta,  t1);          /* alpha = 3 * (Px - delta) * (Px + delta) */
  ff_add  (curve,  P->x,  delta,  t2);
  ff_mul  (curve,  t1,    t2,     t1);
  ff_add  (curve,  t1,    t1,     t2);
  ff_add  (curve,  t1,    t2,     alpha);

  ff_sqr  (curve,  alpha,         t1);          /* Rx = (alpha ** 2) - (8 * beta) */
  ff_add  (curve,  beta,  beta,   t2);
  ff_add  (curve,  t2,    t2,     t2);
  ff_add  (curve,  t2,    t2,     t2);
  ff_sub  (curve,  t1,    t2,     R->x);

  ff_add  (curve,  P->y,  P->z,   t1);          /* Rz = ((Py + Pz) ** 2) - gamma - delta */
  ff_sqr  (curve,  t1,            t1);
  ff_sub  (curve,  t1,    gamma,  t1);
  ff_sub  (curve,  t1,    delta,  R->z);

  ff_add  (curve,  beta,  beta,   t1);          /* Ry = (((4 * beta) - Rx) * alpha) - (8 * (gamma ** 2)) */
  ff_add  (curve,  t1,    t1,     t1);
  ff_sub  (curve,  t1,    R->x,   t1);
  ff_mul  (curve,  t1,    alpha,  t1);
  ff_sqr  (curve,  gamma,         t2);
  ff_add  (curve,  t2,    t2,     t2);
  ff_add  (curve,  t2,    t2,     t2);
  ff_add  (curve,  t2,    t2,     t2);
  ff_sub  (curve,  t1,    t2,     R->y);

  assert(was_infinite == point_is_infinite(P));

  fp_zero(alpha); fp_zero(beta); fp_zero(gamma); fp_zero(delta); fp_zero(t1); fp_zero(t2);
}

/**
 * Add two EC points
 * @param P             The point to add
 * @param Q             The point to add
 * @param R             [out] The destination of the double
 * @param curve         The curve parameters structure
 *
 * Algorithm is madd-2007-bl from
 * http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html
 *
 * The special cases are unfortunate, but are probably unavoidable for
 * this type of curve.  We do what we can to make this constant-time
 * in spite of the special cases.  The one we really can't do much
 * about is P == Q, because in that case we have to switch to the
 * point doubling algorithm.
 */

static inline void point_add(const ec_point_t * const P,
                             const ec_point_t * const Q,
                             ec_point_t *R,
                             const ecdsa_curve_t * const curve)
{
  assert(P != NULL && Q != NULL && R != NULL && curve != NULL);

  /*
   * Q must be affine in Montgomery form.
   */

  assert(fp_cmp(unconst_fp_int(Q->z), unconst_fp_int(curve->mu)) == FP_EQ);

#warning What happens here if P and Q are not equal but map to the same point in affine space?

  const int same_xz = (fp_cmp(unconst_fp_int(P->z), unconst_fp_int(Q->z)) == FP_EQ &&
                       fp_cmp(unconst_fp_int(P->x), unconst_fp_int(Q->x)) == FP_EQ);

  /*
   * If P == Q, we must use point doubling instead of point addition,
   * and there's nothing we can do to mask the timing differences.
   * So just do it, right away.
   */

  if (same_xz && fp_cmp(unconst_fp_int(P->y), unconst_fp_int(Q->y)) == FP_EQ)
    return point_double(P, R, curve);

  /*
   * Check now for the other special cases, but defer handling them
   * until the end, to mask timing differences.
   */

  const int P_was_infinite = point_is_infinite(P);

  fp_int Qy_neg[1] = INIT_FP_INT;
  fp_sub(unconst_fp_int(curve->q), unconst_fp_int(Q->y), Qy_neg);
  const int result_is_infinite = fp_cmp(unconst_fp_int(P->y), Qy_neg) == FP_EQ && same_xz;
  fp_zero(Qy_neg);

  /*
   * Main point addition algorithm.
   */

  fp_int Z1Z1[1] = INIT_FP_INT;
  fp_int H[1]    = INIT_FP_INT;
  fp_int HH[1]   = INIT_FP_INT;
  fp_int I[1]    = INIT_FP_INT;
  fp_int J[1]    = INIT_FP_INT;
  fp_int r[1]    = INIT_FP_INT;
  fp_int V[1]    = INIT_FP_INT;
  fp_int t[1]    = INIT_FP_INT;

  ff_sqr  (curve,  P->z,           Z1Z1);       /* Z1Z1 = Pz ** 2 */

  ff_mul  (curve,  Q->x,   Z1Z1,   H);          /* H = (Qx * Z1Z1) - Px */
  ff_sub  (curve,  H,      P->x,   H);

  ff_sqr  (curve,  H,              HH);         /* HH = H ** 2 */

  ff_add  (curve,  HH,     HH,     I);          /* I = 4 * HH */
  ff_add  (curve,  I,      I,      I);

  ff_mul  (curve,  H,      I,      J);          /* J = H * I */

  ff_mul  (curve,  P->z,   Z1Z1,   r);          /* r = 2 * ((Qy * Pz * Z1Z1) - Py) */
  ff_mul  (curve,  Q->y,   r,      r);
  ff_sub  (curve,  r,      P->y,   r);
  ff_add  (curve,  r,      r,      r);

  ff_mul  (curve,  P->x,   I,      V);          /* V = Px * I */

  ff_sqr  (curve,  r,              R->x);       /* Rx = (r ** 2) - J - (2 * V) */
  ff_sub  (curve,  R->x,   J,      R->x);
  ff_sub  (curve,  R->x,   V,      R->x);
  ff_sub  (curve,  R->x,   V,      R->x);

  ff_mul  (curve,  P->y,   J,      t);         /* Ry = (r * (V - Rx)) - (2 * Py * J) */
  ff_sub  (curve,  V,      R->x,   R->y);
  ff_mul  (curve,  r,      R->y,   R->y);
  ff_sub  (curve,  R->y,   t,      R->y);
  ff_sub  (curve,  R->y,   t,      R->y);

  ff_add  (curve,  P->z,   H,      R->z);       /* Rz = ((Pz + H) ** 2) - Z1Z1 - HH */
  ff_sqr  (curve,  R->z,           R->z);
  ff_sub  (curve,  R->z,   Z1Z1,   R->z);
  ff_sub  (curve,  R->z,   HH,     R->z);

  fp_zero(Z1Z1), fp_zero(H), fp_zero(HH), fp_zero(I), fp_zero(J), fp_zero(r), fp_zero(V), fp_zero(t);

  /*
   * Handle deferred special cases, then we're done.
   */

  if (P_was_infinite)
    point_copy(Q, R);

  else if (result_is_infinite)
    point_set_infinite(R, curve);
}

/**
 * Perform a point multiplication.
 * @param k             The scalar to multiply by
 * @param P             The base point
 * @param R             [out] Destination for kP
 * @param curve         Curve parameters
 * @return HAL_OK on success
 *
 * P must be in affine form.
 */

static hal_error_t point_scalar_multiply(const fp_int * const k,
                                         const ec_point_t * const P_,
                                         ec_point_t *R,
                                         const ecdsa_curve_t * const curve)
{
  assert(k != NULL && P_ != NULL && R != NULL &&  curve != NULL);

  if (fp_iszero(k) || fp_cmp_d(unconst_fp_int(P_->z), 1) != FP_EQ)
    return HAL_ERROR_BAD_ARGUMENTS;

  hal_error_t err;

  /*
   * Convert P to Montgomery form.
   */

  ec_point_t P[1];
  point_copy(P_, P);

  if ((err = point_to_montgomery(P, curve)) != HAL_OK) {
    memset(P, 0, sizeof(P));
    return err;
  }

  /*
   * Initialize table.
   * M[0] is a dummy for constant timing.
   * M[1] is where we accumulate the result.
   */

  ec_point_t M[2][1] = {INIT_EC_POINT_T};

  point_set_infinite(M[0], curve);
  point_set_infinite(M[1], curve);

  /*
   * Walk down bits of the scalar, performing dummy operations to mask
   * timing.
   *
   * Note that, in order for the timing protection to work, the
   * number of iterations in the loop has to depend on the order of
   * the base point rather than on the scalar.
   */

  for (int bit_index = fp_count_bits(unconst_fp_int(curve->n)) - 1; bit_index >= 0; bit_index--) {

    const int digit_index = bit_index / DIGIT_BIT;
    const fp_digit  digit = digit_index < k->used ? k->dp[digit_index] : 0;
    const fp_digit   mask = ((fp_digit) 1) << (bit_index % DIGIT_BIT);
    const int         bit = (digit & mask) != 0;

    point_double (M[1],        M[1],    curve);
    point_add    (M[bit],  P,  M[bit],  curve);

  }

  /*
   * Copy result, map back to affine, then done.
   */

  point_copy(M[1], R);

  err = point_to_affine(R, curve);

  memset(P, 0, sizeof(P));
  memset(M, 0, sizeof(M));

  return err;
}

/*
 * Testing only: ECDSA key generation and signature both have a
 * critical dependency on random numbers, but we can't use the random
 * number generator when testing against static test vectors. So add a
 * wrapper around the random number generator calls, with a hook to
 * let us override the generator for test purposes.  Do NOT use this
 * in production, kids.
 */

#if HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM

#warning hal_ecdsa random number generator overridden for test purposes
#warning DO NOT USE THIS IN PRODUCTION

typedef hal_error_t (*rng_override_test_function_t)(void *, const size_t);

static rng_override_test_function_t rng_test_override_function = 0;

rng_override_test_function_t hal_ecdsa_set_rng_override_test_function(rng_override_test_function_t new_func)
{
  rng_override_test_function_t old_func = rng_test_override_function;
  rng_test_override_function = new_func;
  return old_func;
}

static inline hal_error_t get_random(void *buffer, const size_t length)
{
  if (rng_test_override_function)
    return rng_test_override_function(buffer, length);
  else
    return hal_get_random(NULL, buffer, length);
}

#else /* HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM */

static inline hal_error_t get_random(void *buffer, const size_t length)
{
  return hal_get_random(NULL, buffer, length);
}

#endif /* HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM */

/*
 * Pick a random point on the curve, return random scalar and
 * resulting point.
 */

static hal_error_t point_pick_random(const ecdsa_curve_t * const curve,
                                     fp_int *k,
                                     ec_point_t *P)
{
  hal_error_t err;

  assert(curve != NULL && k != NULL && P != NULL);

  /*
   * Pick a random scalar corresponding to a point on the curve.  Per
   * the NSA (gulp) Suite B guidelines, we ask the CSPRNG for 64 more
   * bits than we need, which should be enough to mask any bias
   * induced by the modular reduction.
   *
   * We're picking a point out of the subgroup generated by the base
   * point on the elliptic curve, so the modulus for this calculation
   * is the order of the base point.
   *
   * Zero is an excluded value, but the chance of a non-broken CSPRNG
   * returning zero is so low that it would almost certainly indicate
   * an undiagnosed bug in the CSPRNG.
   */

  uint8_t k_buf[fp_unsigned_bin_size(unconst_fp_int(curve->n)) + 8];

  do {

    if ((err = get_random(k_buf, sizeof(k_buf))) != HAL_OK)
      return err;

    fp_read_unsigned_bin(k, k_buf, sizeof(k_buf));

    if (fp_iszero(k) || fp_mod(k, unconst_fp_int(curve->n), k) != FP_OKAY)
      return HAL_ERROR_IMPOSSIBLE;

  } while (fp_iszero(k));

  memset(k_buf, 0, sizeof(k_buf));

  /*
   * Calculate P = kG and return.
   */

  fp_copy(curve->Gx, P->x);
  fp_copy(curve->Gy, P->y);
  fp_set(P->z, 1);

  return point_scalar_multiply(k, P, P, curve);
}

/*
 * Test whether a point really is on a particular curve.  This is
 * called "validation" when applied to a public key, and is required
 * before verifying a signature.
 */

static int point_is_on_curve(const ec_point_t * const P,
                             const ecdsa_curve_t * const curve)
{
  assert(P != NULL && curve != NULL);

  fp_int t1[1] = INIT_FP_INT;
  fp_int t2[1] = INIT_FP_INT;

  /*
   * Compute y**2 - x**3 + 3*x.
   */

  fp_sqr(unconst_fp_int(P->y), t1);             /* t1 = y**2 */
  fp_sqr(unconst_fp_int(P->x), t2);             /* t2 = x**2 */
  if (fp_mod(t2, unconst_fp_int(curve->q), t2) != FP_OKAY)
    return 0;
  fp_mul(unconst_fp_int(P->x), t2, t2);         /* t2 = x**3 */
  fp_sub(t1, t2, t1);                           /* t1 = y**2 - x**3 */
  fp_add(t1, unconst_fp_int(P->x), t1);         /* t1 = y**2 - x**3 + 1*x */
  fp_add(t1, unconst_fp_int(P->x), t1);         /* t1 = y**2 - x**3 + 2*x */
  fp_add(t1, unconst_fp_int(P->x), t1);         /* t1 = y**2 - x**3 + 3*x */

  /*
   * Normalize and test whether computed value matches b.
   */

  if (fp_mod(t1, unconst_fp_int(curve->q), t1) != FP_OKAY)
    return 0;
  while (fp_cmp_d(t1, 0) == FP_LT)
    fp_add(t1, unconst_fp_int(curve->q), t1);
  while (fp_cmp(t1, unconst_fp_int(curve->q)) != FP_LT)
    fp_sub(t1, unconst_fp_int(curve->q), t1);

  return fp_cmp(t1, unconst_fp_int(curve->b)) == FP_EQ;
}

/*
 * Generate a new ECDSA key.
 */

hal_error_t hal_ecdsa_key_gen(const hal_core_t *core,
                              hal_ecdsa_key_t **key_,
                              void *keybuf, const size_t keybuf_len,
                              const hal_curve_name_t curve_)
{
  const ecdsa_curve_t * const curve = get_curve(curve_);
  hal_ecdsa_key_t *key = keybuf;
  hal_error_t err;

  if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key) || curve == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  memset(keybuf, 0, keybuf_len);

  key->type = HAL_KEY_TYPE_EC_PRIVATE;
  key->curve = curve_;

  if ((err = point_pick_random(curve, key->d, key->Q)) != HAL_OK)
    return err;

  assert(point_is_on_curve(key->Q, curve));

  *key_ = key;
  return HAL_OK;
}

/*
 * Extract key type (public or private).
 */

hal_error_t hal_ecdsa_key_get_type(const hal_ecdsa_key_t * const key,
                                   hal_key_type_t *key_type)
{
  if (key == NULL || key_type == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  *key_type = key->type;
  return HAL_OK;
}

/*
 * Extract name of curve underlying a key.
 */

hal_error_t hal_ecdsa_key_get_curve(const hal_ecdsa_key_t * const key,
                                    hal_curve_name_t *curve)
{
  if (key == NULL || curve == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  *curve = key->curve;
  return HAL_OK;
}

/*
 * Extract public key components.
 */

hal_error_t hal_ecdsa_key_get_public(const hal_ecdsa_key_t * const key,
                                     uint8_t *x, size_t *x_len, const size_t x_max,
                                     uint8_t *y, size_t *y_len, const size_t y_max)
{
  if (key == NULL || (x_len == NULL && x != NULL) || (y_len == NULL && y != NULL))
    return HAL_ERROR_BAD_ARGUMENTS;

  if (x_len != NULL)
    *x_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->x));

  if (y_len != NULL)
    *y_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->y));

  if ((x != NULL && *x_len > x_max) ||
      (y != NULL && *y_len > y_max))
    return HAL_ERROR_RESULT_TOO_LONG;

  if (x != NULL)
    fp_to_unsigned_bin(unconst_fp_int(key->Q->x), x);

  if (y != NULL)
    fp_to_unsigned_bin(unconst_fp_int(key->Q->y), y);

  return HAL_OK;
}

/*
 * Clear a key.
 */

void hal_ecdsa_key_clear(hal_ecdsa_key_t *key)
{
  if (key != NULL)
    memset(key, 0, sizeof(*key));
}

/*
 * Load a public key from components, and validate that the public key
 * really is on the named curve.
 */

hal_error_t hal_ecdsa_key_load_public(hal_ecdsa_key_t **key_,
                                      void *keybuf, const size_t keybuf_len,
                                      const hal_curve_name_t curve_,
                                      const uint8_t * const x, const size_t x_len,
                                      const uint8_t * const y, const size_t y_len)
{
  const ecdsa_curve_t * const curve = get_curve(curve_);
  hal_ecdsa_key_t *key = keybuf;

  if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key) || curve == NULL || x == NULL || y == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  memset(keybuf, 0, keybuf_len);

  key->type = HAL_KEY_TYPE_EC_PUBLIC;
  key->curve = curve_;

  fp_read_unsigned_bin(key->Q->x, unconst_uint8_t(x), x_len);
  fp_read_unsigned_bin(key->Q->y, unconst_uint8_t(y), y_len);
  fp_set(key->Q->z, 1);

  if (!point_is_on_curve(key->Q, curve))
    return HAL_ERROR_KEY_NOT_ON_CURVE;

  *key_ = key;

  return HAL_OK;
}

/*
 * Load a private key from components; does all the same things as
 * hal_ecdsa_key_load_public(), then loads the private key itself and
 * adjusts the key type.
 *
 * For extra paranoia, we could check Q == dG.
 */

hal_error_t hal_ecdsa_key_load_private(hal_ecdsa_key_t **key_,
                                       void *keybuf, const size_t keybuf_len,
                                       const hal_curve_name_t curve_,
                                       const uint8_t * const x, const size_t x_len,
                                       const uint8_t * const y, const size_t y_len,
                                       const uint8_t * const d, const size_t d_len)
{
  hal_ecdsa_key_t *key = keybuf;
  hal_error_t err;

  if (d == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  if ((err = hal_ecdsa_key_load_public(key_, keybuf, keybuf_len, curve_, x, x_len, y, y_len)) != HAL_OK)
    return err;

  key->type = HAL_KEY_TYPE_EC_PRIVATE;
  fp_read_unsigned_bin(key->d, unconst_uint8_t(d), d_len);
  return HAL_OK;
}

/*
 * Write public key in X9.62 ECPoint format (ASN.1 OCTET STRING, first octet is compression flag).
 */

hal_error_t hal_ecdsa_key_to_ecpoint(const hal_ecdsa_key_t * const key,
                                     uint8_t *der, size_t *der_len, const size_t der_max)
{
  if (key == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  const ecdsa_curve_t * const curve = get_curve(key->curve);
  if (curve == NULL)
    return HAL_ERROR_IMPOSSIBLE;

  const size_t q_len  = fp_unsigned_bin_size(unconst_fp_int(curve->q));
  const size_t Qx_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->x));
  const size_t Qy_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->y));
  assert(q_len >= Qx_len && q_len >= Qy_len);

  const size_t vlen = q_len * 2 + 1;
  size_t hlen;

  hal_error_t err = hal_asn1_encode_header(ASN1_OCTET_STRING, vlen, der, &hlen, der_max);

  if (der_len != NULL)
    *der_len = hlen + vlen;

  if (der == NULL || err != HAL_OK)
    return err;

  assert(hlen + vlen <= der_max);

  uint8_t *d = der + hlen;
  memset(d, 0, vlen);

  *d++ = 0x04;                  /* uncompressed */

  fp_to_unsigned_bin(unconst_fp_int(key->Q->x), d + q_len - Qx_len);
  d += q_len;

  fp_to_unsigned_bin(unconst_fp_int(key->Q->y), d + q_len - Qy_len);
  d += q_len;

  assert(d <= der + der_max);

  return HAL_OK;
}

/*
 * Convenience wrapper to return how many bytes a key would take if
 * encoded as an ECPoint.
 */

size_t hal_ecdsa_key_to_ecpoint_len(const hal_ecdsa_key_t * const key)
{
  size_t len;
  return hal_ecdsa_key_to_ecpoint(key, NULL, &len, 0) == HAL_OK ? len : 0;
}

/*
 * Read public key in X9.62 ECPoint format (ASN.1 OCTET STRING, first octet is compression flag).
 * ECPoint format doesn't include a curve identifier, so caller has to supply one.
 */

hal_error_t hal_ecdsa_key_from_ecpoint(hal_ecdsa_key_t **key_,
                                       void *keybuf, const size_t keybuf_len,
                                       const uint8_t * const der, const size_t der_len,
                                       const hal_curve_name_t curve)
{
  hal_ecdsa_key_t *key = keybuf;

  if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key) || get_curve(curve) == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  memset(keybuf, 0, keybuf_len);
  key->type = HAL_KEY_TYPE_EC_PUBLIC;
  key->curve = curve;

  size_t hlen, vlen;
  hal_error_t err;

  if ((err = hal_asn1_decode_header(ASN1_OCTET_STRING, der, der_len, &hlen, &vlen)) != HAL_OK)
    return err;

  const uint8_t * const der_end = der + hlen + vlen;
  const uint8_t *d = der + hlen;

  if (vlen < 3 || (vlen & 1) == 0 || *d++ != 0x04)
    lose(HAL_ERROR_ASN1_PARSE_FAILED);

  vlen /= 2;

  fp_read_unsigned_bin(key->Q->x, unconst_uint8_t(d), vlen);
  d += vlen;

  fp_read_unsigned_bin(key->Q->y, unconst_uint8_t(d), vlen);
  d += vlen;

  fp_set(key->Q->z, 1);

  if (d != der_end)
    lose(HAL_ERROR_ASN1_PARSE_FAILED);

  *key_ = key;
  return HAL_OK;

 fail:
  memset(keybuf, 0, keybuf_len);
  return err;
}

/*
 * Write private key in RFC 5915 ASN.1 DER format.
 *
 * This is hand-coded, and is approaching the limit where one should
 * probably be using an ASN.1 compiler like asn1c instead.
 */

hal_error_t hal_ecdsa_private_key_to_der(const hal_ecdsa_key_t * const key,
                                         uint8_t *der, size_t *der_len, const size_t der_max)
{
  if (key == NULL || key->type != HAL_KEY_TYPE_EC_PRIVATE)
    return HAL_ERROR_BAD_ARGUMENTS;

  const ecdsa_curve_t * const curve = get_curve(key->curve);
  if (curve == NULL)
    return HAL_ERROR_IMPOSSIBLE;

  const size_t q_len  = fp_unsigned_bin_size(unconst_fp_int(curve->q));
  const size_t d_len  = fp_unsigned_bin_size(unconst_fp_int(key->d));
  const size_t Qx_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->x));
  const size_t Qy_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->y));
  assert(q_len >= d_len && q_len >= Qx_len && q_len >= Qy_len);

  fp_int version[1] = INIT_FP_INT;
  fp_set(version, 1);

  hal_error_t err;

  size_t version_len, hlen, hlen_oct, hlen_oid, hlen_exp0, hlen_bit, hlen_exp1;

  if ((err = hal_asn1_encode_integer(version,                                    NULL, &version_len, 0)) != HAL_OK ||
      (err = hal_asn1_encode_header(ASN1_OCTET_STRING,          q_len,           NULL, &hlen_oct,    0)) != HAL_OK ||
      (err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER,     curve->oid_len,  NULL, &hlen_oid,    0)) != HAL_OK ||
      (err = hal_asn1_encode_header(ASN1_EXPLICIT_0, hlen_oid + curve->oid_len,  NULL, &hlen_exp0,   0)) != HAL_OK ||
      (err = hal_asn1_encode_header(ASN1_BIT_STRING,            (q_len + 1) * 2, NULL, &hlen_bit,    0)) != HAL_OK ||
      (err = hal_asn1_encode_header(ASN1_EXPLICIT_1, hlen_bit + (q_len + 1) * 2, NULL, &hlen_exp1,   0)) != HAL_OK)
    return err;

  const size_t vlen = (version_len   +
                       hlen_oct + q_len +
                       hlen_oid + hlen_exp0 + curve->oid_len +
                       hlen_bit + hlen_exp1 + (q_len + 1) * 2);

  err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max);

  if (der_len != NULL)
    *der_len = hlen + vlen;

  if (der == NULL || err != HAL_OK)
    return err;

  uint8_t *d = der + hlen;
  memset(d, 0, vlen);

  if ((err = hal_asn1_encode_integer(version, d, NULL, der + der_max - d)) != HAL_OK)
    return err;
  d += version_len;

  if ((err = hal_asn1_encode_header(ASN1_OCTET_STRING, q_len, d, &hlen, der + der_max - d)) != HAL_OK)
    return err;
  d += hlen;
  fp_to_unsigned_bin(unconst_fp_int(key->d), d + q_len - d_len);
  d += q_len;

  if ((err = hal_asn1_encode_header(ASN1_EXPLICIT_0, hlen_oid + curve->oid_len, d, &hlen, der + der_max - d)) != HAL_OK)
    return err;
  d += hlen;
  if ((err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, curve->oid_len, d, &hlen, der + der_max - d)) != HAL_OK)
    return err;
  d += hlen;
  memcpy(d, curve->oid, curve->oid_len);
  d += curve->oid_len;

  if ((err = hal_asn1_encode_header(ASN1_EXPLICIT_1, hlen_bit + (q_len + 1) * 2, d, &hlen, der + der_max - d)) != HAL_OK)
    return err;
  d += hlen;
  if ((err = hal_asn1_encode_header(ASN1_BIT_STRING, (q_len + 1) * 2, d, &hlen, der + der_max - d)) != HAL_OK)
    return err;
  d += hlen;
  *d++ = 0x00;
  *d++ = 0x04;
  fp_to_unsigned_bin(unconst_fp_int(key->Q->x), d + q_len - Qx_len);
  d += q_len;
  fp_to_unsigned_bin(unconst_fp_int(key->Q->y), d + q_len - Qy_len);
  d += q_len;

  assert(d <= der + der_max);

  return HAL_OK;
}

/*
 * Convenience wrapper to return how many bytes a private key would
 * take if encoded as DER.
 */

size_t hal_ecdsa_private_key_to_der_len(const hal_ecdsa_key_t * const key)
{
  size_t len;
  return hal_ecdsa_private_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0;
}

/*
 * Read private key in RFC 5915 ASN.1 DER format.
 *
 * This is hand-coded, and is approaching the limit where one should
 * probably be using an ASN.1 compiler like asn1c instead.
 */

hal_error_t hal_ecdsa_private_key_from_der(hal_ecdsa_key_t **key_,
                                           void *keybuf, const size_t keybuf_len,
                                           const uint8_t * const der, const size_t der_len)
{
  hal_ecdsa_key_t *key = keybuf;

  if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key))
    return HAL_ERROR_BAD_ARGUMENTS;

  memset(keybuf, 0, keybuf_len);
  key->type = HAL_KEY_TYPE_EC_PRIVATE;

  size_t hlen, vlen;
  hal_error_t err;

  if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, der, der_len, &hlen, &vlen)) != HAL_OK)
    return err;

  const uint8_t * const der_end = der + hlen + vlen;
  const uint8_t *d = der + hlen;
  const ecdsa_curve_t *curve = NULL;
  fp_int version[1] = INIT_FP_INT;

  if ((err = hal_asn1_decode_integer(version, d, &hlen, vlen)) != HAL_OK)
    goto fail;
  if (fp_cmp_d(version, 1) != FP_EQ)
    lose(HAL_ERROR_ASN1_PARSE_FAILED);
  d += hlen;

  if ((err = hal_asn1_decode_header(ASN1_OCTET_STRING, d, der_end - d, &hlen, &vlen)) != HAL_OK)
    return err;
  d += hlen;
  fp_read_unsigned_bin(key->d, unconst_uint8_t(d), vlen);
  d += vlen;

  if ((err = hal_asn1_decode_header(ASN1_EXPLICIT_0, d, der_end - d, &hlen, &vlen)) != HAL_OK)
    return err;
  d += hlen;
  if (vlen > der_end - d)
    lose(HAL_ERROR_ASN1_PARSE_FAILED);
  if ((err = hal_asn1_decode_header(ASN1_OBJECT_IDENTIFIER, d, vlen, &hlen, &vlen)) != HAL_OK)
    return err;
  d += hlen;
  if ((curve = oid_to_curve(&key->curve, d, vlen)) == NULL)
    lose(HAL_ERROR_ASN1_PARSE_FAILED);
  d += vlen;

  if ((err = hal_asn1_decode_header(ASN1_EXPLICIT_1, d, der_end - d, &hlen, &vlen)) != HAL_OK)
    return err;
  d += hlen;
  if (vlen > der_end - d)
    lose(HAL_ERROR_ASN1_PARSE_FAILED);
  if ((err = hal_asn1_decode_header(ASN1_BIT_STRING, d, vlen, &hlen, &vlen)) != HAL_OK)
    return err;
  d += hlen;
  if (vlen < 4 || (vlen & 1) != 0 || *d++ != 0x00 || *d++ != 0x04)
    lose(HAL_ERROR_ASN1_PARSE_FAILED);
  vlen = vlen/2 - 1;
  fp_read_unsigned_bin(key->Q->x, unconst_uint8_t(d), vlen);
  d += vlen;
  fp_read_unsigned_bin(key->Q->y, unconst_uint8_t(d), vlen);
  d += vlen;
  fp_set(key->Q->z, 1);

  if (d != der_end)
    lose(HAL_ERROR_ASN1_PARSE_FAILED);

  *key_ = key;
  return HAL_OK;

 fail:
  memset(keybuf, 0, keybuf_len);
  return err;
}

/*
 * Write public key in SubjectPublicKeyInfo format, see RFCS 5280 and 5480.
 */

static const uint8_t oid_ecPublicKey[] = { 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x02, 0x01 };

hal_error_t hal_ecdsa_public_key_to_der(const hal_ecdsa_key_t * const key,
                                        uint8_t *der, size_t *der_len, const size_t der_max)
{
  if (key == NULL || (key->type != HAL_KEY_TYPE_EC_PRIVATE &&
                      key->type != HAL_KEY_TYPE_EC_PUBLIC))
    return HAL_ERROR_BAD_ARGUMENTS;

  const ecdsa_curve_t * const curve = get_curve(key->curve);
  if (curve == NULL)
    return HAL_ERROR_IMPOSSIBLE;

  const size_t q_len  = fp_unsigned_bin_size(unconst_fp_int(curve->q));
  const size_t Qx_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->x));
  const size_t Qy_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->y));
  const size_t ecpoint_len = q_len * 2 + 1;
  assert(q_len >= Qx_len && q_len >= Qy_len);

  if (der != NULL && ecpoint_len < der_max) {
    memset(der, 0, ecpoint_len);

    uint8_t *d = der;
    *d++ = 0x04;                /* Uncompressed */

    fp_to_unsigned_bin(unconst_fp_int(key->Q->x), d + q_len - Qx_len);
    d += q_len;

    fp_to_unsigned_bin(unconst_fp_int(key->Q->y), d + q_len - Qy_len);
    d += q_len;

    assert(d < der + der_max);
  }

  return hal_asn1_encode_spki(oid_ecPublicKey, sizeof(oid_ecPublicKey),
                              curve->oid, curve->oid_len,
                              der, ecpoint_len,
                              der, der_len, der_max);
}

/*
 * Convenience wrapper to return how many bytes a public key would
 * take if encoded as DER.
 */

size_t hal_ecdsa_public_key_to_der_len(const hal_ecdsa_key_t * const key)
{
  size_t len;
  return hal_ecdsa_public_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0;
}

/*
 * Read public key in SubjectPublicKeyInfo format, see RFCS 5280 and 5480.
 */

hal_error_t hal_ecdsa_public_key_from_der(hal_ecdsa_key_t **key_,
                                           void *keybuf, const size_t keybuf_len,
                                           const uint8_t * const der, const size_t der_len)
{
  hal_ecdsa_key_t *key = keybuf;

  if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key))
    return HAL_ERROR_BAD_ARGUMENTS;

  memset(keybuf, 0, keybuf_len);
  key->type = HAL_KEY_TYPE_EC_PUBLIC;

  const uint8_t *alg_oid = NULL, *curve_oid = NULL, *pubkey = NULL;
  size_t         alg_oid_len,     curve_oid_len,     pubkey_len;
  const ecdsa_curve_t *curve;
  hal_error_t err;

  if ((err = hal_asn1_decode_spki(&alg_oid, &alg_oid_len, &curve_oid, &curve_oid_len, &pubkey, &pubkey_len,
                                  der, der_len)) != HAL_OK)
    return err;

  if (alg_oid == NULL || curve_oid == NULL || pubkey == NULL ||
      alg_oid_len != sizeof(oid_ecPublicKey) || memcmp(alg_oid, oid_ecPublicKey, alg_oid_len) != 0 ||
      (curve = oid_to_curve(&key->curve, curve_oid, curve_oid_len)) == NULL ||
      pubkey_len < 3 || (pubkey_len & 1) == 0 || pubkey[0] != 0x04 ||
      pubkey_len / 2 != fp_unsigned_bin_size(unconst_fp_int(curve->q)))
    return HAL_ERROR_ASN1_PARSE_FAILED;

  const uint8_t * const Qx = pubkey + 1;
  const uint8_t * const Qy = Qx + pubkey_len / 2;

  fp_read_unsigned_bin(key->Q->x, unconst_uint8_t(Qx), pubkey_len / 2);
  fp_read_unsigned_bin(key->Q->y, unconst_uint8_t(Qy), pubkey_len / 2);
  fp_set(key->Q->z, 1);

  *key_ = key;
  return HAL_OK;
}

/*
 * Encode a signature in PKCS #11 format: an octet string consisting
 * of concatenated values for r and s, each padded (if necessary) out
 * to the byte length of the order of the base point.
 */

static hal_error_t encode_signature_pkcs11(const ecdsa_curve_t * const curve,
                                           const fp_int * const r, const fp_int * const s,
                                           uint8_t *signature, size_t *signature_len, const size_t signature_max)
{
  assert(curve != NULL && r != NULL && s != NULL);

  const size_t n_len = fp_unsigned_bin_size(unconst_fp_int(curve->n));
  const size_t r_len = fp_unsigned_bin_size(unconst_fp_int(r));
  const size_t s_len = fp_unsigned_bin_size(unconst_fp_int(s));

  if (n_len < r_len || n_len < s_len)
    return HAL_ERROR_IMPOSSIBLE;

  if (signature_len != NULL)
    *signature_len = n_len * 2;

  if (signature == NULL)
    return HAL_OK;

  if (signature_max < n_len * 2)
    return HAL_ERROR_RESULT_TOO_LONG;

  memset(signature, 0, n_len * 2);
  fp_to_unsigned_bin(unconst_fp_int(r), signature + 1 * n_len - r_len);
  fp_to_unsigned_bin(unconst_fp_int(s), signature + 2 * n_len - s_len);

  return HAL_OK;
}

/*
 * Decode a signature from PKCS #11 format: an octet string consisting
 * of concatenated values for r and s, each of which occupies half of
 * the octet string (which must therefore be of even length).
 */

static hal_error_t decode_signature_pkcs11(const ecdsa_curve_t * const curve,
                                           fp_int *r, fp_int *s,
                                           const uint8_t * const signature, const size_t signature_len)
{
  assert(curve != NULL && r != NULL && s != NULL);

  if (signature == NULL || (signature_len & 1) != 0)
    return HAL_ERROR_BAD_ARGUMENTS;

  const size_t n_len = signature_len / 2;

  if (n_len > fp_unsigned_bin_size(unconst_fp_int(curve->n)))
    return HAL_ERROR_BAD_ARGUMENTS;

  fp_read_unsigned_bin(r, unconst_uint8_t(signature) + 0 * n_len, n_len);
  fp_read_unsigned_bin(s, unconst_uint8_t(signature) + 1 * n_len, n_len);

  return HAL_OK;
}

/*
 * Sign a caller-supplied hash.
 */

hal_error_t hal_ecdsa_sign(const hal_core_t *core,
                           const hal_ecdsa_key_t * const key,
                           const uint8_t * const hash, const size_t hash_len,
                           uint8_t *signature, size_t *signature_len, const size_t signature_max)
{
  if (key == NULL || hash == NULL || signature == NULL || signature_len == NULL || key->type != HAL_KEY_TYPE_EC_PRIVATE)
    return HAL_ERROR_BAD_ARGUMENTS;

  const ecdsa_curve_t * const curve = get_curve(key->curve);
  if (curve == NULL)
    return HAL_ERROR_IMPOSSIBLE;

  fp_int k[1] = INIT_FP_INT;
  fp_int r[1] = INIT_FP_INT;
  fp_int s[1] = INIT_FP_INT;
  fp_int e[1] = INIT_FP_INT;

  fp_int * const n = unconst_fp_int(curve->n);
  fp_int * const d = unconst_fp_int(key->d);

  ec_point_t R[1] = INIT_EC_POINT_T;

  hal_error_t err;

  fp_read_unsigned_bin(e, unconst_uint8_t(hash), hash_len);

  do {

    /*
     * Pick random curve point R, then calculate r = Rx % n.
     * If r == 0, we can't use this point, so go try again.
     */

    if ((err = point_pick_random(curve, k, R)) != HAL_OK)
      goto fail;

    assert(point_is_on_curve(R, curve));

    if (fp_mod(R->x, n, r) != FP_OKAY)
      lose(HAL_ERROR_IMPOSSIBLE);

    if (fp_iszero(r))
      continue;

    /*
     * Calculate s = ((e + dr)/k) % n.
     * If s == 0, we can't use this point, so go try again.
     */

    if (fp_mulmod (d, r, n, s) != FP_OKAY)
      lose(HAL_ERROR_IMPOSSIBLE);

    fp_add        (e, s, s);

    if (fp_mod    (s, n, s)    != FP_OKAY ||
        fp_invmod (k, n, k)    != FP_OKAY ||
        fp_mulmod (s, k, n, s) != FP_OKAY)
      lose(HAL_ERROR_IMPOSSIBLE);

  } while (fp_iszero(s));

  /*
   * Encode the signature, then we're done.
   */

  if ((err = encode_signature_pkcs11(curve, r, s, signature, signature_len, signature_max)) != HAL_OK)
    goto fail;

  err = HAL_OK;

 fail:
  fp_zero(k); fp_zero(r); fp_zero(s); fp_zero(e);
  memset(R, 0, sizeof(R));
  return err;
}

/*
 * Verify a signature using a caller-supplied hash.
 */

hal_error_t hal_ecdsa_verify(const hal_core_t *core,
                             const hal_ecdsa_key_t * const key,
                             const uint8_t * const hash, const size_t hash_len,
                             const uint8_t * const signature, const size_t signature_len)
{
  assert(key != NULL && hash != NULL && signature != NULL);

  const ecdsa_curve_t * const curve = get_curve(key->curve);

  if (curve == NULL)
    return HAL_ERROR_IMPOSSIBLE;

  if (!point_is_on_curve(key->Q, curve))
    return HAL_ERROR_KEY_NOT_ON_CURVE;

  fp_int * const n = unconst_fp_int(curve->n);

  hal_error_t err;

  fp_int r[1]  = INIT_FP_INT;
  fp_int s[1]  = INIT_FP_INT;
  fp_int e[1]  = INIT_FP_INT;
  fp_int w[1]  = INIT_FP_INT;
  fp_int u1[1] = INIT_FP_INT;
  fp_int u2[1] = INIT_FP_INT;
  fp_int v[1]  = INIT_FP_INT;

  ec_point_t u1G[1] = INIT_EC_POINT_T;
  ec_point_t u2Q[1] = INIT_EC_POINT_T;
  ec_point_t R[1]   = INIT_EC_POINT_T;

  /*
   * Start by decoding the signature.
   */

  if ((err = decode_signature_pkcs11(curve, r, s, signature, signature_len)) != HAL_OK)
    return err;

  /*
   * Check that r and s are in the allowed range, read the hash, then
   * compute:
   *
   * w  = 1 / s
   * u1 = e * w
   * u2 = r * w
   * R  = u1 * G + u2 * Q.
   */

  if (fp_cmp_d(r, 1) == FP_LT || fp_cmp(r, n) != FP_LT ||
      fp_cmp_d(s, 1) == FP_LT || fp_cmp(s, n) != FP_LT)
    return HAL_ERROR_INVALID_SIGNATURE;

  fp_read_unsigned_bin(e, unconst_uint8_t(hash), hash_len);

  if (fp_invmod(s, n, w)     != FP_OKAY ||
      fp_mulmod(e, w, n, u1) != FP_OKAY ||
      fp_mulmod(r, w, n, u2) != FP_OKAY)
    return HAL_ERROR_IMPOSSIBLE;

  fp_copy(unconst_fp_int(curve->Gx), u1G->x);
  fp_copy(unconst_fp_int(curve->Gy), u1G->y);
  fp_set(u1G->z, 1);

  if ((err = point_scalar_multiply(u1, u1G,    u1G, curve)) != HAL_OK ||
      (err = point_scalar_multiply(u2, key->Q, u2Q, curve)) != HAL_OK)
    return err;

  if (point_is_infinite(u1G))
    point_copy(u2Q, R);
  else if (point_is_infinite(u2Q))
    point_copy(u1G, R);
  else if ((err = point_to_montgomery(u1G, curve)) != HAL_OK ||
           (err = point_to_montgomery(u2Q, curve)) != HAL_OK)
    return err;
  else
    point_add(u1G, u2Q, R, curve);

  /*
   * Signature is OK if
   *   R is not the point at infinity, and
   *   Rx is congruent to r mod n.
   */

  if (point_is_infinite(R))
    return HAL_ERROR_INVALID_SIGNATURE;

  if ((err = point_to_affine(R, curve)) != HAL_OK)
    return err;

  if (fp_mod(R->x, n, v) != FP_OKAY)
    return HAL_ERROR_IMPOSSIBLE;

  return fp_cmp(v, r) == FP_EQ ? HAL_OK : HAL_ERROR_INVALID_SIGNATURE;
}

/*
 * Local variables:
 * indent-tabs-mode: nil
 * End:
 */