/* * test-ecdsa.c * ------------ * Test harness for Cryptech ECDSA code. * * At the moment, the ECDSA code is a pure software implementation, * Verilog will be along eventually. * * Testing ECDSA is a bit tricky because ECDSA depends heavily on * using a new random secret for each signature. So we can test some * things against the normal ECDSA implemenation, but some tests * require a side door replacement of the random number generator so * that we can use a known values from our test vector in place of the * random secret that would be used in real operation. Test code for * the latter mode depends on the library having been compiled with * the testing hook enable, which it should not be for production use. * * Authors: Rob Austein * Copyright (c) 2015, SUNET * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include "test-ecdsa.h" /* * Supplied test vectors don't use ASN.1 encoding. Don't want to * trust our own ASN.1 code for this (it's one of the things we're * testing) so use Python pyasn1 or ecdsa.der code to build what we * need and supply them as test vector data too. This is probably * also the right way to test our encoding and decoding of private * keys too. */ #if HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM /* * Code to let us replace ECDSA's random numbers with test data, if * the ECDSA library code has been compiled with support for this. */ typedef hal_error_t (*rng_override_test_function_t)(void *, const size_t); extern rng_override_test_function_t hal_ecdsa_set_rng_override_test_function(rng_override_test_function_t new_func); static const uint8_t *next_random_value = NULL; static size_t next_random_length = 0; static hal_error_t next_random_handler(void *data, const size_t length) { if (data == NULL) return HAL_ERROR_BAD_ARGUMENTS; if (next_random_value == NULL || length < next_random_length) return HAL_ERROR_IMPOSSIBLE; memset(data, 0, length); memcpy(data + length - next_random_length, next_random_value, next_random_length); next_random_value = NULL; next_random_length = 0; (void) hal_ecdsa_set_rng_override_test_function(0); return HAL_OK; } static void set_next_random(const uint8_t * const data, const size_t length) { (void) hal_ecdsa_set_rng_override_test_function(next_random_handler); next_random_value = data; next_random_length = length; } /* * Run one keygen test from test vectors. */ static int test_against_static_vectors(const ecdsa_tc_t * const tc) { hal_error_t err; set_next_random(tc->d, tc->d_len); uint8_t keybuf1[hal_ecdsa_key_t_size]; hal_ecdsa_key_t *key1 = NULL; if ((err = hal_ecdsa_key_gen(&key1, keybuf1, sizeof(keybuf1), tc->curve)) != HAL_OK) return printf("hal_ecdsa_key_gen() failed: %s\n", hal_error_string(err)), 0; uint8_t Qx[tc->Qx_len], Qy[tc->Qy_len]; size_t Qx_len, Qy_len; if ((err = hal_ecdsa_key_get_public(key1, Qx, &Qx_len, sizeof(Qx), Qy, &Qy_len, sizeof(Qy))) != HAL_OK) return printf("hal_ecdsa_key_get_public() failed: %s\n", hal_error_string(err)), 0; if (tc->Qx_len != Qx_len || memcmp(tc->Qx, Qx, Qx_len) != 0) return printf("Qx mismatch\n"), 0; if (tc->Qy_len != Qy_len || memcmp(tc->Qy, Qy, Qy_len) != 0) return printf("Qy mismatch\n"), 0; if (hal_ecdsa_key_to_der_len(key1) != tc->key_len) return printf("DER Key length mismatch\n"), 0; uint8_t keyder[tc->key_len]; size_t keyder_len; if ((err = hal_ecdsa_key_to_der(key1, keyder, &keyder_len, sizeof(keyder))) != HAL_OK) return printf("hal_ecdsa_key_to_der() failed: %s\n", hal_error_string(err)), 0; uint8_t keybuf2[hal_ecdsa_key_t_size]; hal_ecdsa_key_t *key2 = NULL; if ((err = hal_ecdsa_key_from_der(&key2, keybuf2, sizeof(keybuf2), keyder, keyder_len)) != HAL_OK) return printf("hal_ecdsa_key_from_der() failed: %s\n", hal_error_string(err)), 0; if (memcmp(key1, key2, hal_ecdsa_key_t_size) != 0) return printf("Key mismatch after read/write cycle\n"), 0; set_next_random(tc->k, tc->k_len); uint8_t sig[tc->sig_len]; size_t sig_len; if ((err = hal_ecdsa_sign(key1, tc->H, tc->H_len, sig, &sig_len, sizeof(sig))) != HAL_OK) return printf("hal_ecdsa_sign() failed: %s\n", hal_error_string(err)), 0; if (sig_len != tc->sig_len || memcmp(sig, tc->sig, tc->sig_len) != 0) return printf("Signature mismatch\n"), 0; if ((err = hal_ecdsa_verify(key2, tc->H, tc->H_len, sig, sig_len)) != HAL_OK) return printf("hal_ecdsa_verify(private) failed: %s\n", hal_error_string(err)), 0; hal_ecdsa_key_clear(key2); key2 = NULL; if ((err = hal_ecdsa_key_load_private(&key2, keybuf2, sizeof(keybuf2), tc->curve, tc->Qx, tc->Qx_len, tc->Qy, tc->Qy_len, tc->d, tc->d_len)) != HAL_OK) return printf("hal_ecdsa_load_private() failed: %s\n", hal_error_string(err)), 0; if (memcmp(key1, key2, hal_ecdsa_key_t_size) != 0) return printf("Key mismatch after hal_ecdsa_load_private_key()\n"), 0; hal_ecdsa_key_clear(key2); key2 = NULL; if ((err = hal_ecdsa_key_load_public(&key2, keybuf2, sizeof(keybuf2), tc->curve, tc->Qx, tc->Qx_len, tc->Qy, tc->Qy_len)) != HAL_OK) return printf("hal_ecdsa_load_public() failed: %s\n", hal_error_string(err)), 0; if ((err = hal_ecdsa_verify(key2, tc->H, tc->H_len, sig, sig_len)) != HAL_OK) return printf("hal_ecdsa_verify(public) failed: %s\n", hal_error_string(err)), 0; return 1; } #endif /* HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM */ /* * Run one keygen/sign/verify test with a newly generated key. */ static int test_keygen_sign_verify(const hal_ecdsa_curve_t curve) { const hal_hash_descriptor_t *hash_descriptor = NULL; uint8_t keybuf[hal_ecdsa_key_t_size]; hal_ecdsa_key_t *key = NULL; hal_error_t err; switch (curve) { case HAL_ECDSA_CURVE_P256: printf("ECDSA P-256 key generation / signature / verification test\n"); hash_descriptor = hal_hash_sha256; break; case HAL_ECDSA_CURVE_P384: printf("ECDSA P-384 key generation / signature / verification test\n"); hash_descriptor = hal_hash_sha384; break; case HAL_ECDSA_CURVE_P521: printf("ECDSA P-521 key generation / signature / verification test\n"); hash_descriptor = hal_hash_sha512; break; default: printf("Unsupported ECDSA curve type\n"); return 0; } if ((err = hal_ecdsa_key_gen(&key, keybuf, sizeof(keybuf), curve)) != HAL_OK) return printf("hal_ecdsa_key_gen() failed: %s\n", hal_error_string(err)), 0; uint8_t hashbuf[hash_descriptor->digest_length]; { const uint8_t plaintext[] = "So long, and thanks..."; uint8_t statebuf[hash_descriptor->hash_state_length]; hal_hash_state_t state = { NULL }; if ((err = hal_hash_initialize(hash_descriptor, &state, statebuf, sizeof(statebuf))) != HAL_OK || (err = hal_hash_update(state, plaintext, strlen((const char *) plaintext))) != HAL_OK || (err = hal_hash_finalize(state, hashbuf, sizeof(hashbuf))) != HAL_OK) return printf("Couldn't hash plaintext: %s\n", hal_error_string(err)), 0; } /* * Lazy but probably-good-enough guess on signature size -- want * explicit number in ecdsa_curve_t? */ uint8_t sigbuf[hash_descriptor->digest_length * 3]; size_t siglen; if ((err = hal_ecdsa_sign(key, hashbuf, sizeof(hashbuf), sigbuf, &siglen, sizeof(sigbuf))) != HAL_OK) return printf("hal_ecdsa_sign() failed: %s\n", hal_error_string(err)), 0; if ((err = hal_ecdsa_verify(key, hashbuf, sizeof(hashbuf), sigbuf, siglen)) != HAL_OK) return printf("hal_ecdsa_verify() failed: %s\n", hal_error_string(err)), 0; return 1; } /* * Time a test. */ static void _time_check(const struct timeval t0, const int ok) { struct timeval t; gettimeofday(&t, NULL); t.tv_sec -= t0.tv_sec; t.tv_usec = t0.tv_usec; if (t.tv_usec < 0) { t.tv_usec += 1000000; t.tv_sec -= 1; } printf("Elapsed time %lu.%06lu seconds, %s\n", (unsigned long) t.tv_sec, (unsigned long) t.tv_usec, ok ? "OK" : "FAILED"); } #define time_check(_expr_) \ do { \ struct timeval _t; \ gettimeofday(&_t, NULL); \ int _ok = (_expr_); \ _time_check(_t, _ok); \ ok &= _ok; \ } while (0) /* * Run tests for one ECDSA curve. */ static int test_ecdsa(const ecdsa_tc_t * const tc) { int ok = 1; time_check(test_against_static_vectors(tc)); time_check(test_keygen_sign_verify(tc->curve)); return ok; } int main(int argc, char *argv[]) { uint8_t name[8], version[4]; hal_error_t err; /* * Initialize EIM and report what core we're running. */ if ((err = hal_io_read(CSPRNG_ADDR_NAME0, name, sizeof(name))) != HAL_OK || (err = hal_io_read(CSPRNG_ADDR_VERSION, version, sizeof(version))) != HAL_OK) { printf("Initialization failed: %s\n", hal_error_string(err)); return 1; } printf("\"%8.8s\" \"%4.4s\"\n\n", name, version); for (int i = 0; i < sizeof(ecdsa_tc)/sizeof(*ecdsa_tc); i++) if (!test_ecdsa(&ecdsa_tc[i])) return 1; return 0; } /* * Local variables: * indent-tabs-mode: nil * End: */