/* * ks_mmap.c * --------- * Keystore implementation over POSIX mmap(). * * Authors: Rob Austein * Copyright (c) 2015, NORDUnet A/S All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the NORDUnet nor the names of its contributors may * be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include "hal.h" #include "hal_internal.h" #ifndef HAL_KS_MMAP_FILE #define HAL_KS_MMAP_FILE ".cryptech_hal_keystore" #endif #ifndef MAP_FILE #define MAP_FILE 0 #endif /* * Storing the KEK in with the keys it's protecting is a bad idea, but we have no better * place to put it (real protection requires dedicated hardware, which we don't have here). */ #define KEKBUF_LEN (bitsToBytes(256)) static hal_ks_keydb_t *db; static uint8_t *kekbuf; const hal_ks_keydb_t *hal_ks_get_keydb(void) { if (db != NULL) return db; const char * const env = getenv("CRYPTECH_KEYSTORE"); const char * const home = getenv("HOME"); const char * const base = HAL_KS_MMAP_FILE; const long pagemask = sysconf(_SC_PAGESIZE) - 1; const size_t len = (sizeof(hal_ks_keydb_t) + KEKBUF_LEN + pagemask) & ~pagemask; char fn_[strlen(base) + (home == NULL ? 0 : strlen(home)) + 2]; const char *fn = fn_; int fd; if (pagemask < 0) return NULL; if (env != NULL) fn = env; else if (home == NULL) fn = base; else strcat(strcat(strcpy(fn_, home), "/"), base); if ((fd = open(fn, O_RDWR | O_CREAT | O_EXCL, 0600)) >= 0) { uint8_t zeros[len]; memset(zeros, 0, sizeof(zeros)); (void) write(fd, zeros, sizeof(zeros)); } else if (errno == EEXIST) { fd = open(fn, O_RDWR | O_CREAT, 0600); } if (fd >= 0 && (db = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_FILE | MAP_SHARED, fd, 0)) != NULL) kekbuf = (uint8_t *) (db + 1); (void) close(fd); return db; } hal_error_t hal_ks_set_keydb(const hal_ks_key_t * const key, const int loc, const int updating) { if (key == NULL || loc < 0 || loc >= sizeof(db->keys)/sizeof(*db->keys) || (!key->in_use != !updating)) return HAL_ERROR_BAD_ARGUMENTS; db->keys[loc] = *key; db->keys[loc].in_use = 1; return HAL_OK; } hal_error_t hal_ks_del_keydb(const int loc) { if (loc < 0 || loc >= sizeof(db->keys)/sizeof(*db->keys)) return HAL_ERROR_BAD_ARGUMENTS; db->keys[loc].in_use = 0; memset(&db->keys[loc], 0, sizeof(db->keys[loc])); return HAL_OK; } hal_error_t hal_ks_set_pin(const hal_user_t user, const hal_ks_pin_t * const pin) { if (pin == NULL) return HAL_ERROR_BAD_ARGUMENTS; hal_ks_pin_t *p = NULL; switch (user) { case HAL_USER_WHEEL: p = &db->wheel_pin; break; case HAL_USER_SO: p = &db->so_pin; break; case HAL_USER_NORMAL: p = &db->user_pin; break; default: return HAL_ERROR_BAD_ARGUMENTS; } *p = *pin; return HAL_OK; } hal_error_t hal_ks_get_kek(uint8_t *kek, size_t *kek_len, const size_t kek_max) { if (kek == NULL || kek_len == NULL || kek_max < bitsToBytes(128)) return HAL_ERROR_BAD_ARGUMENTS; if (kekbuf == NULL) return HAL_ERROR_IMPOSSIBLE; hal_error_t err; const size_t len = ((kek_max < bitsToBytes(192)) ? bitsToBytes(128) : (kek_max < bitsToBytes(256)) ? bitsToBytes(192) : bitsToBytes(256)); uint8_t t = 0; for (int i = 0; i < KEKBUF_LEN; i++) t |= kekbuf[i]; if (t == 0 && (err = hal_rpc_get_random(kekbuf, sizeof(KEKBUF_LEN))) != HAL_OK) return err; memcpy(kek, kekbuf, len); *kek_len = len; return HAL_OK; } /* * Local variables: * indent-tabs-mode: nil * End: */ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
/**
  ******************************************************************************
  * @file    stm32f4xx_hal_spi.c
  * @author  MCD Application Team
  * @version V1.4.1
  * @date    09-October-2015
  * @brief   SPI HAL module driver.
  *    
  *          This file provides firmware functions to manage the following 
  *          functionalities of the Serial Peripheral Interface (SPI) peripheral:
  *           + Initialization and de-initialization functions
  *           + IO operation functions
  *           + Peripheral Control functions 
  *           + Peripheral State functions
  @verbatim
  ==============================================================================
                        ##### How to use this driver #####
  ==============================================================================
    [..]
      The SPI HAL driver can be used as follows:

      (#) Declare a SPI_HandleTypeDef handle structure, for example:
          SPI_HandleTypeDef  hspi; 

      (#)Initialize the SPI low level resources by implementing the HAL_SPI_MspInit ()API:
          (##) Enable the SPIx interface clock 
          (##) SPI pins configuration
              (+++) Enable the clock for the SPI GPIOs 
              (+++) Configure these SPI pins as alternate function push-pull
          (##) NVIC configuration if you need to use interrupt process
              (+++) Configure the SPIx interrupt priority
              (+++) Enable the NVIC SPI IRQ handle
          (##) DMA Configuration if you need to use DMA process
              (+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive stream
              (+++) Enable the DMAx interface clock using 
              (+++) Configure the DMA handle parameters 
              (+++) Configure the DMA Tx or Rx Stream
              (+++) Associate the initialized hdma_tx handle to the hspi DMA Tx or Rx handle
              (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx or Rx Stream

      (#) Program the Mode, Direction , Data size, Baudrate Prescaler, NSS 
          management, Clock polarity and phase, FirstBit and CRC configuration in the hspi Init structure.

      (#) Initialize the SPI registers by calling the HAL_SPI_Init() API:
          (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
              by calling the customized HAL_SPI_MspInit() API.
     [..]
       Circular mode restriction:
      (#) The DMA circular mode cannot be used when the SPI is configured in these modes:
          (##) Master 2Lines RxOnly
          (##) Master 1Line Rx
      (#) The CRC feature is not managed when the DMA circular mode is enabled
      (#) When the SPI DMA Pause/Stop features are used, we must use the following APIs 
          the HAL_SPI_DMAPause()/ HAL_SPI_DMAStop() only under the SPI callbacks


            
  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"

/** @addtogroup STM32F4xx_HAL_Driver
  * @{
  */

/** @defgroup SPI SPI 
  * @brief SPI HAL module driver
  * @{
  */

#ifdef HAL_SPI_MODULE_ENABLED

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define SPI_TIMEOUT_VALUE  10
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @addtogroup SPI_Private_Functions
  * @{
  */
static void SPI_TxCloseIRQHandler(SPI_HandleTypeDef *hspi);
static void SPI_TxISR(SPI_HandleTypeDef *hspi);
static void SPI_RxCloseIRQHandler(SPI_HandleTypeDef *hspi);
static void SPI_2LinesRxISR(SPI_HandleTypeDef *hspi);
static void SPI_RxISR(SPI_HandleTypeDef *hspi);
static void SPI_DMAEndTransmitReceive(SPI_HandleTypeDef *hspi); 
static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma);
static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma);
static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma);
static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma);
static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma);
static void SPI_DMAError(DMA_HandleTypeDef *hdma);
static HAL_StatusTypeDef SPI_WaitOnFlagUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, FlagStatus Status, uint32_t Timeout);
/**
  * @}
  */
  
/* Exported functions --------------------------------------------------------*/
/** @defgroup SPI_Exported_Functions SPI Exported Functions
  * @{
  */

/** @defgroup SPI_Exported_Functions_Group1 Initialization and de-initialization functions 
 *  @brief    Initialization and Configuration functions 
 *
@verbatim
 ===============================================================================
              ##### Initialization and de-initialization functions #####
 ===============================================================================
    [..]  This subsection provides a set of functions allowing to initialize and 
          de-initialize the SPIx peripheral:

      (+) User must implement HAL_SPI_MspInit() function in which he configures 
          all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ).

      (+) Call the function HAL_SPI_Init() to configure the selected device with 
          the selected configuration:
        (++) Mode
        (++) Direction 
        (++) Data Size
        (++) Clock Polarity and Phase
        (++) NSS Management
        (++) BaudRate Prescaler
        (++) FirstBit
        (++) TIMode
        (++) CRC Calculation
        (++) CRC Polynomial if CRC enabled

      (+) Call the function HAL_SPI_DeInit() to restore the default configuration 
          of the selected SPIx peripheral.       

@endverbatim
  * @{
  */

/**
  * @brief  Initializes the SPI according to the specified parameters 
  *         in the SPI_InitTypeDef and create the associated handle.
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SPI_Init(SPI_HandleTypeDef *hspi)
{
  /* Check the SPI handle allocation */
  if(hspi == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the parameters */
  assert_param(IS_SPI_MODE(hspi->Init.Mode));
  assert_param(IS_SPI_DIRECTION_MODE(hspi->Init.Direction));
  assert_param(IS_SPI_DATASIZE(hspi->Init.DataSize));
  assert_param(IS_SPI_CPOL(hspi->Init.CLKPolarity));
  assert_param(IS_SPI_CPHA(hspi->Init.CLKPhase));
  assert_param(IS_SPI_NSS(hspi->Init.NSS));
  assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler));
  assert_param(IS_SPI_FIRST_BIT(hspi->Init.FirstBit));
  assert_param(IS_SPI_TIMODE(hspi->Init.TIMode));
  assert_param(IS_SPI_CRC_CALCULATION(hspi->Init.CRCCalculation));
  assert_param(IS_SPI_CRC_POLYNOMIAL(hspi->Init.CRCPolynomial));

  if(hspi->State == HAL_SPI_STATE_RESET)
  {
    /* Allocate lock resource and initialize it */
    hspi->Lock = HAL_UNLOCKED;
    /* Init the low level hardware : GPIO, CLOCK, NVIC... */
    HAL_SPI_MspInit(hspi);
  }
  
  hspi->State = HAL_SPI_STATE_BUSY;

  /* Disable the selected SPI peripheral */
  __HAL_SPI_DISABLE(hspi);

  /*----------------------- SPIx CR1 & CR2 Configuration ---------------------*/
  /* Configure : SPI Mode, Communication Mode, Data size, Clock polarity and phase, NSS management,
  Communication speed, First bit and CRC calculation state */
  hspi->Instance->CR1 = (hspi->Init.Mode | hspi->Init.Direction | hspi->Init.DataSize |
                         hspi->Init.CLKPolarity | hspi->Init.CLKPhase | (hspi->Init.NSS & SPI_CR1_SSM) |
                         hspi->Init.BaudRatePrescaler | hspi->Init.FirstBit  | hspi->Init.CRCCalculation);

  /* Configure : NSS management */
  hspi->Instance->CR2 = (((hspi->Init.NSS >> 16) & SPI_CR2_SSOE) | hspi->Init.TIMode);

  /*---------------------------- SPIx CRCPOLY Configuration ------------------*/
  /* Configure : CRC Polynomial */
  hspi->Instance->CRCPR = hspi->Init.CRCPolynomial;

  /* Activate the SPI mode (Make sure that I2SMOD bit in I2SCFGR register is reset) */
  hspi->Instance->I2SCFGR &= (uint32_t)(~SPI_I2SCFGR_I2SMOD);

  hspi->ErrorCode = HAL_SPI_ERROR_NONE;
  hspi->State = HAL_SPI_STATE_READY;
  
  return HAL_OK;
}

/**
  * @brief  DeInitializes the SPI peripheral 
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SPI_DeInit(SPI_HandleTypeDef *hspi)
{
  /* Check the SPI handle allocation */
  if(hspi == NULL)
  {
    return HAL_ERROR;
  }

  /* Disable the SPI Peripheral Clock */
  __HAL_SPI_DISABLE(hspi);

  /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */
  HAL_SPI_MspDeInit(hspi);

  hspi->ErrorCode = HAL_SPI_ERROR_NONE;
  hspi->State = HAL_SPI_STATE_RESET;

  /* Release Lock */
  __HAL_UNLOCK(hspi);

  return HAL_OK;
}

/**
  * @brief SPI MSP Init
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @retval None
  */
 __weak void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi)
 {
   /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_SPI_MspInit could be implemented in the user file
   */
}

/**
  * @brief SPI MSP DeInit
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @retval None
  */
 __weak void HAL_SPI_MspDeInit(SPI_HandleTypeDef *hspi)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_SPI_MspDeInit could be implemented in the user file
   */
}

/**
  * @}
  */

/** @defgroup SPI_Exported_Functions_Group2 IO operation functions
 *  @brief   Data transfers functions
 *
@verbatim
  ==============================================================================
                      ##### IO operation functions #####
 ===============================================================================
    This subsection provides a set of functions allowing to manage the SPI
    data transfers.

    [..] The SPI supports master and slave mode :

    (#) There are two modes of transfer:
       (++) Blocking mode: The communication is performed in polling mode.
            The HAL status of all data processing is returned by the same function
            after finishing transfer.
       (++) No-Blocking mode: The communication is performed using Interrupts
           or DMA, These APIs return the HAL status.
           The end of the data processing will be indicated through the 
           dedicated SPI IRQ when using Interrupt mode or the DMA IRQ when 
           using DMA mode.
           The HAL_SPI_TxCpltCallback(), HAL_SPI_RxCpltCallback() and HAL_SPI_TxRxCpltCallback() user callbacks 
           will be executed respectively at the end of the transmit or Receive process
           The HAL_SPI_ErrorCallback()user callback will be executed when a communication error is detected

    (#) APIs provided for these 2 transfer modes (Blocking mode or Non blocking mode using either Interrupt or DMA)
        exist for 1Line (simplex) and 2Lines (full duplex) modes.

@endverbatim
  * @{
  */

/**
  * @brief  Transmit an amount of data in blocking mode
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @param  pData: pointer to data buffer
  * @param  Size: amount of data to be sent
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{

  if(hspi->State == HAL_SPI_STATE_READY)
  {
    if((pData == NULL ) || (Size == 0)) 
    {
      return  HAL_ERROR;
    }

    /* Check the parameters */
    assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));

    /* Process Locked */
    __HAL_LOCK(hspi);

    /* Configure communication */
    hspi->State = HAL_SPI_STATE_BUSY_TX;
    hspi->ErrorCode   = HAL_SPI_ERROR_NONE;

    hspi->pTxBuffPtr = pData;
    hspi->TxXferSize = Size;
    hspi->TxXferCount = Size;

    /*Init field not used in handle to zero */
    hspi->TxISR = 0;
    hspi->RxISR = 0;
    hspi->RxXferSize   = 0;
    hspi->RxXferCount  = 0;

    /* Reset CRC Calculation */
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
    {
      SPI_RESET_CRC(hspi);
    }

    if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
    {
      /* Configure communication direction : 1Line */
      SPI_1LINE_TX(hspi);
    }

    /* Check if the SPI is already enabled */ 
    if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
    {
      /* Enable SPI peripheral */
      __HAL_SPI_ENABLE(hspi);
    }

    /* Transmit data in 8 Bit mode */
    if(hspi->Init.DataSize == SPI_DATASIZE_8BIT)
    {
      if((hspi->Init.Mode == SPI_MODE_SLAVE)|| (hspi->TxXferCount == 0x01))
      {
        hspi->Instance->DR = (*hspi->pTxBuffPtr++);
        hspi->TxXferCount--;
      }
      while(hspi->TxXferCount > 0)
      {
        /* Wait until TXE flag is set to send data */
        if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_TXE, RESET, Timeout) != HAL_OK)
        { 
          return HAL_TIMEOUT;
        }
        hspi->Instance->DR = (*hspi->pTxBuffPtr++);
        hspi->TxXferCount--;
      }
      /* Enable CRC Transmission */
      if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) 
      {
        hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
      }
    }
    /* Transmit data in 16 Bit mode */
    else
    {
      if((hspi->Init.Mode == SPI_MODE_SLAVE) || (hspi->TxXferCount == 0x01))
      {
        hspi->Instance->DR = *((uint16_t*)hspi->pTxBuffPtr);
        hspi->pTxBuffPtr+=2;
        hspi->TxXferCount--;
      }
      while(hspi->TxXferCount > 0)
      {
        /* Wait until TXE flag is set to send data */
        if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_TXE, RESET, Timeout) != HAL_OK)
        { 
          return HAL_TIMEOUT;
        }
        hspi->Instance->DR = *((uint16_t*)hspi->pTxBuffPtr);
        hspi->pTxBuffPtr+=2;
        hspi->TxXferCount--;
      }
      /* Enable CRC Transmission */
      if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) 
      {
        hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
      }
    }

    /* Wait until TXE flag is set to send data */
    if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_TXE, RESET, Timeout) != HAL_OK)
    {
      hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
      return HAL_TIMEOUT;
    }

    /* Wait until Busy flag is reset before disabling SPI */
    if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_BSY, SET, Timeout) != HAL_OK)
    { 
      hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
      return HAL_TIMEOUT;
    }
 
    /* Clear OVERRUN flag in 2 Lines communication mode because received is not read */
    if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
    {
      __HAL_SPI_CLEAR_OVRFLAG(hspi);
    }

    hspi->State = HAL_SPI_STATE_READY; 

    /* Process Unlocked */
    __HAL_UNLOCK(hspi);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Receive an amount of data in blocking mode 
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @param  pData: pointer to data buffer
  * @param  Size: amount of data to be sent
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
  __IO uint16_t tmpreg;
  uint32_t tmp = 0;

  if(hspi->State == HAL_SPI_STATE_READY)
  {
    if((pData == NULL ) || (Size == 0)) 
    {
      return  HAL_ERROR;
    }

    /* Process Locked */
    __HAL_LOCK(hspi);

    /* Configure communication */
    hspi->State       = HAL_SPI_STATE_BUSY_RX;
    hspi->ErrorCode   = HAL_SPI_ERROR_NONE;

    hspi->pRxBuffPtr  = pData;
    hspi->RxXferSize  = Size;
    hspi->RxXferCount = Size;

    /*Init field not used in handle to zero */
    hspi->RxISR = 0;
    hspi->TxISR = 0;
    hspi->TxXferSize   = 0;
    hspi->TxXferCount  = 0;

    /* Configure communication direction : 1Line */
    if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
    {
      SPI_1LINE_RX(hspi);
    }

    /* Reset CRC Calculation */
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
    {
      SPI_RESET_CRC(hspi);
    }
    
    if((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES))
    {
      /* Process Unlocked */
      __HAL_UNLOCK(hspi);

      /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */
      return HAL_SPI_TransmitReceive(hspi, pData, pData, Size, Timeout);
    }

    /* Check if the SPI is already enabled */ 
    if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
    {
      /* Enable SPI peripheral */
      __HAL_SPI_ENABLE(hspi);
    }

    /* Receive data in 8 Bit mode */
    if(hspi->Init.DataSize == SPI_DATASIZE_8BIT)
    {
      while(hspi->RxXferCount > 1)
      {
        /* Wait until RXNE flag is set */
        if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout) != HAL_OK)
        { 
          return HAL_TIMEOUT;
        }

        (*hspi->pRxBuffPtr++) = hspi->Instance->DR;
        hspi->RxXferCount--;
      }
      /* Enable CRC Transmission */
      if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) 
      {
        hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
      }
    }
    /* Receive data in 16 Bit mode */
    else
    {
      while(hspi->RxXferCount > 1)
      {
        /* Wait until RXNE flag is set to read data */
        if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout) != HAL_OK)
        { 
          return HAL_TIMEOUT;
        }

        *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
        hspi->pRxBuffPtr+=2;
        hspi->RxXferCount--;
      }
      /* Enable CRC Transmission */
      if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) 
      {
        hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
      }
    }

    /* Wait until RXNE flag is set */
    if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout) != HAL_OK)
    { 
      return HAL_TIMEOUT;
    }

    /* Receive last data in 8 Bit mode */
    if(hspi->Init.DataSize == SPI_DATASIZE_8BIT)
    {
      (*hspi->pRxBuffPtr++) = hspi->Instance->DR;
    }
    /* Receive last data in 16 Bit mode */
    else
    {
      *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
      hspi->pRxBuffPtr+=2;
    }
    hspi->RxXferCount--;

    /* Wait until RXNE flag is set: CRC Received */
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
    {
      if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout) != HAL_OK)
      {
        hspi->ErrorCode |= HAL_SPI_ERROR_CRC;
        return HAL_TIMEOUT;
      }

      /* Read CRC to Flush RXNE flag */
      tmpreg = hspi->Instance->DR;
      UNUSED(tmpreg);
    }
    
    if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
    {
      /* Disable SPI peripheral */
      __HAL_SPI_DISABLE(hspi);
    }

    hspi->State = HAL_SPI_STATE_READY;

    tmp = __HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR);
    /* Check if CRC error occurred */
    if((hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) && (tmp != RESET))
    {  
      hspi->ErrorCode |= HAL_SPI_ERROR_CRC;

      /* Reset CRC Calculation */
      SPI_RESET_CRC(hspi);

      /* Process Unlocked */
      __HAL_UNLOCK(hspi);

      return HAL_ERROR; 
    }

    /* Process Unlocked */
    __HAL_UNLOCK(hspi);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Transmit and Receive an amount of data in blocking mode 
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @param  pTxData: pointer to transmission data buffer
  * @param  pRxData: pointer to reception data buffer to be
  * @param  Size: amount of data to be sent
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size, uint32_t Timeout)
{
  __IO uint16_t tmpreg;
  uint32_t tmpstate = 0, tmp = 0;
  
  tmpstate = hspi->State; 
  if((tmpstate == HAL_SPI_STATE_READY) || (tmpstate == HAL_SPI_STATE_BUSY_RX))
  {
    if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0))
    {
      return  HAL_ERROR;
    }

    /* Check the parameters */
    assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));

    /* Process Locked */
    __HAL_LOCK(hspi);
 
    /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */
    if(hspi->State == HAL_SPI_STATE_READY)
    {
      hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
    }

     /* Configure communication */   
    hspi->ErrorCode   = HAL_SPI_ERROR_NONE;

    hspi->pRxBuffPtr  = pRxData;
    hspi->RxXferSize  = Size;
    hspi->RxXferCount = Size;  
    
    hspi->pTxBuffPtr  = pTxData;
    hspi->TxXferSize  = Size; 
    hspi->TxXferCount = Size;

    /*Init field not used in handle to zero */
    hspi->RxISR = 0;
    hspi->TxISR = 0;

    /* Reset CRC Calculation */
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
    {
      SPI_RESET_CRC(hspi);
    }

    /* Check if the SPI is already enabled */ 
    if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
    {
      /* Enable SPI peripheral */
      __HAL_SPI_ENABLE(hspi);
    }

    /* Transmit and Receive data in 16 Bit mode */
    if(hspi->Init.DataSize == SPI_DATASIZE_16BIT)
    {
      if((hspi->Init.Mode == SPI_MODE_SLAVE) || ((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->TxXferCount == 0x01)))
      {
        hspi->Instance->DR = *((uint16_t*)hspi->pTxBuffPtr);
        hspi->pTxBuffPtr+=2;
        hspi->TxXferCount--;
      }
      if(hspi->TxXferCount == 0)
      {
        /* Enable CRC Transmission */
        if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
        {
          hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
        }

        /* Wait until RXNE flag is set */
        if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout) != HAL_OK)
        { 
          return HAL_TIMEOUT;
        }

        *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
        hspi->pRxBuffPtr+=2;
        hspi->RxXferCount--;
      }
      else
      {
        while(hspi->TxXferCount > 0)
        {
          /* Wait until TXE flag is set to send data */
          if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_TXE, RESET, Timeout) != HAL_OK)
          { 
            return HAL_TIMEOUT;
          }

          hspi->Instance->DR = *((uint16_t*)hspi->pTxBuffPtr);
          hspi->pTxBuffPtr+=2;
          hspi->TxXferCount--;

          /* Enable CRC Transmission */
          if((hspi->TxXferCount == 0) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
          {
            hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
          }

          /* Wait until RXNE flag is set */
          if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout) != HAL_OK)
          { 
            return HAL_TIMEOUT;
          }
          
          *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
          hspi->pRxBuffPtr+=2;
          hspi->RxXferCount--;
        }
        /* Receive the last byte */
        if(hspi->Init.Mode == SPI_MODE_SLAVE)
        {
          /* Wait until RXNE flag is set */
          if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout) != HAL_OK)
          {
            return HAL_TIMEOUT;
          }
          
          *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
          hspi->pRxBuffPtr+=2;
          hspi->RxXferCount--;
        }
      }
    }
    /* Transmit and Receive data in 8 Bit mode */
    else
    {
      if((hspi->Init.Mode == SPI_MODE_SLAVE) || ((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->TxXferCount == 0x01)))
      {
        hspi->Instance->DR = (*hspi->pTxBuffPtr++);
        hspi->TxXferCount--;
      }
      if(hspi->TxXferCount == 0)
      {
        /* Enable CRC Transmission */
        if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
        {
          hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
        }

        /* Wait until RXNE flag is set */
        if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout) != HAL_OK)
        {
          return HAL_TIMEOUT;
        }

        (*hspi->pRxBuffPtr) = hspi->Instance->DR;
        hspi->RxXferCount--;
      }
      else
      {
        while(hspi->TxXferCount > 0)
        {
          /* Wait until TXE flag is set to send data */
          if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_TXE, RESET, Timeout) != HAL_OK)
          {
            return HAL_TIMEOUT;
          }

          hspi->Instance->DR = (*hspi->pTxBuffPtr++);
          hspi->TxXferCount--;

          /* Enable CRC Transmission */
          if((hspi->TxXferCount == 0) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
          {
            hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
          }

            /* Wait until RXNE flag is set */
            if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout) != HAL_OK)
            {
              return HAL_TIMEOUT;
            }
            
            (*hspi->pRxBuffPtr++) = hspi->Instance->DR;
            hspi->RxXferCount--;
        }
        if(hspi->Init.Mode == SPI_MODE_SLAVE)
        {
          /* Wait until RXNE flag is set */
          if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout) != HAL_OK)
          {
            return HAL_TIMEOUT;
          }
          
          (*hspi->pRxBuffPtr++) = hspi->Instance->DR;
          hspi->RxXferCount--;
        }
      }
    }

    /* Read CRC from DR to close CRC calculation process */
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
    {
      /* Wait until RXNE flag is set */
      if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout) != HAL_OK)
      {
        hspi->ErrorCode |= HAL_SPI_ERROR_CRC;
        return HAL_TIMEOUT;
      }
      /* Read CRC */
      tmpreg = hspi->Instance->DR;
      UNUSED(tmpreg);
    }

    /* Wait until Busy flag is reset before disabling SPI */
    if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_BSY, SET, Timeout) != HAL_OK)
    {
      hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
      return HAL_TIMEOUT;
    }
    
    hspi->State = HAL_SPI_STATE_READY;

    tmp = __HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR);
    /* Check if CRC error occurred */
    if((hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) && (tmp != RESET))
    {
      hspi->ErrorCode |= HAL_SPI_ERROR_CRC;

      /* Reset CRC Calculation */
      if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
      {
        SPI_RESET_CRC(hspi);
      }

      /* Process Unlocked */
      __HAL_UNLOCK(hspi);
      
      return HAL_ERROR; 
    }

    /* Process Unlocked */
    __HAL_UNLOCK(hspi);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Transmit an amount of data in no-blocking mode with Interrupt
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @param  pData: pointer to data buffer
  * @param  Size: amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
{
  if(hspi->State == HAL_SPI_STATE_READY)
  {
    if((pData == NULL) || (Size == 0))
    {
      return  HAL_ERROR;
    }

    /* Check the parameters */
    assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));

    /* Process Locked */
    __HAL_LOCK(hspi);

    /* Configure communication */
    hspi->State        = HAL_SPI_STATE_BUSY_TX;
    hspi->ErrorCode    = HAL_SPI_ERROR_NONE;

    hspi->TxISR = &SPI_TxISR;
    hspi->pTxBuffPtr   = pData;
    hspi->TxXferSize   = Size;
    hspi->TxXferCount  = Size;

    /*Init field not used in handle to zero */
    hspi->RxISR = 0;
    hspi->RxXferSize   = 0;
    hspi->RxXferCount  = 0;

    /* Configure communication direction : 1Line */
    if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
    {
      SPI_1LINE_TX(hspi);
    }

    /* Reset CRC Calculation */
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
    {
      SPI_RESET_CRC(hspi);
    }

    if (hspi->Init.Direction == SPI_DIRECTION_2LINES)
    {
      __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE));
    }else
    {
      /* Enable TXE and ERR interrupt */
      __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_ERR));
    }
    /* Process Unlocked */
    __HAL_UNLOCK(hspi);

    /* Check if the SPI is already enabled */ 
    if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
    {
      /* Enable SPI peripheral */
      __HAL_SPI_ENABLE(hspi);
    }

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Receive an amount of data in no-blocking mode with Interrupt
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @param  pData: pointer to data buffer
  * @param  Size: amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SPI_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
{
  if(hspi->State == HAL_SPI_STATE_READY)
  {
    if((pData == NULL) || (Size == 0)) 
    {
      return  HAL_ERROR;
    }

    /* Process Locked */
    __HAL_LOCK(hspi);

    /* Configure communication */
    hspi->State        = HAL_SPI_STATE_BUSY_RX;
    hspi->ErrorCode    = HAL_SPI_ERROR_NONE;

    hspi->RxISR = &SPI_RxISR;
    hspi->pRxBuffPtr   = pData;
    hspi->RxXferSize   = Size;
    hspi->RxXferCount  = Size ; 

   /*Init field not used in handle to zero */
    hspi->TxISR = 0;
    hspi->TxXferSize   = 0;
    hspi->TxXferCount  = 0;

    /* Configure communication direction : 1Line */
    if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
    {
       SPI_1LINE_RX(hspi);
    }
    else if((hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->Init.Mode == SPI_MODE_MASTER))
    {
       /* Process Unlocked */
       __HAL_UNLOCK(hspi);

       /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */
       return HAL_SPI_TransmitReceive_IT(hspi, pData, pData, Size);
    }

    /* Reset CRC Calculation */
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
    {
      SPI_RESET_CRC(hspi);
    }

    /* Enable TXE and ERR interrupt */
    __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));

    /* Process Unlocked */
    __HAL_UNLOCK(hspi);

    /* Note : The SPI must be enabled after unlocking current process 
              to avoid the risk of SPI interrupt handle execution before current
              process unlock */

        /* Check if the SPI is already enabled */ 
    if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
    {
      /* Enable SPI peripheral */
      __HAL_SPI_ENABLE(hspi);
    }

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY; 
  }
}

/**
  * @brief  Transmit and Receive an amount of data in no-blocking mode with Interrupt 
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @param  pTxData: pointer to transmission data buffer
  * @param  pRxData: pointer to reception data buffer to be
  * @param  Size: amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size)
{
 uint32_t tmpstate = 0;

 tmpstate = hspi->State;
  if((tmpstate == HAL_SPI_STATE_READY) || \
     ((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmpstate == HAL_SPI_STATE_BUSY_RX)))
  {
    if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0)) 
    {
      return  HAL_ERROR;
    }

    /* Check the parameters */
    assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));

    /* Process locked */
    __HAL_LOCK(hspi);

    /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */
    if(hspi->State != HAL_SPI_STATE_BUSY_RX)
    {
      hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
    }

    /* Configure communication */
    hspi->ErrorCode    = HAL_SPI_ERROR_NONE;

    hspi->TxISR = &SPI_TxISR;
    hspi->pTxBuffPtr   = pTxData;
    hspi->TxXferSize   = Size;
    hspi->TxXferCount  = Size;

    hspi->RxISR = &SPI_2LinesRxISR;
    hspi->pRxBuffPtr   = pRxData;
    hspi->RxXferSize   = Size;
    hspi->RxXferCount  = Size;

    /* Reset CRC Calculation */
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
    {
      SPI_RESET_CRC(hspi);
    }

    /* Enable TXE, RXNE and ERR interrupt */
    __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));

    /* Process Unlocked */
    __HAL_UNLOCK(hspi);

    /* Check if the SPI is already enabled */ 
    if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
    {
      /* Enable SPI peripheral */
      __HAL_SPI_ENABLE(hspi);
    }

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY; 
  }
}

/**
  * @brief  Transmit an amount of data in no-blocking mode with DMA
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @param  pData: pointer to data buffer
  * @param  Size: amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SPI_Transmit_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
{
  if(hspi->State == HAL_SPI_STATE_READY)
  {
    if((pData == NULL) || (Size == 0))
    {
      return  HAL_ERROR;
    }

    /* Check the parameters */
    assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));

    /* Process Locked */
    __HAL_LOCK(hspi);

    /* Configure communication */
    hspi->State       = HAL_SPI_STATE_BUSY_TX;
    hspi->ErrorCode   = HAL_SPI_ERROR_NONE;

    hspi->pTxBuffPtr  = pData;
    hspi->TxXferSize  = Size;
    hspi->TxXferCount = Size;

    /*Init field not used in handle to zero */
    hspi->TxISR = 0;
    hspi->RxISR = 0;
    hspi->RxXferSize   = 0;
    hspi->RxXferCount  = 0;

    /* Configure communication direction : 1Line */
    if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
    {
      SPI_1LINE_TX(hspi);
    }

    /* Reset CRC Calculation */
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
    {
      SPI_RESET_CRC(hspi);
    }

    /* Set the SPI TxDMA Half transfer complete callback */
    hspi->hdmatx->XferHalfCpltCallback = SPI_DMAHalfTransmitCplt;
    
    /* Set the SPI TxDMA transfer complete callback */
    hspi->hdmatx->XferCpltCallback = SPI_DMATransmitCplt;

    /* Set the DMA error callback */
    hspi->hdmatx->XferErrorCallback = SPI_DMAError;

    /* Enable the Tx DMA Stream */
    HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, hspi->TxXferCount);

    /* Process Unlocked */
    __HAL_UNLOCK(hspi);

    /* Check if the SPI is already enabled */ 
    if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
    {
      /* Enable SPI peripheral */
      __HAL_SPI_ENABLE(hspi);
    }

    /* Enable Tx DMA Request */
    hspi->Instance->CR2 |= SPI_CR2_TXDMAEN;

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Receive an amount of data in no-blocking mode with DMA 
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *         the configuration information for SPI module.
  * @param  pData: pointer to data buffer
  * @note  When the CRC feature is enabled the pData Length must be Size + 1. 
  * @param  Size: amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SPI_Receive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
{
  if(hspi->State == HAL_SPI_STATE_READY)
  {
    if((pData == NULL) || (Size == 0))
    {
      return  HAL_ERROR;
    }

    /* Process Locked */
    __HAL_LOCK(hspi);

    /* Configure communication */
    hspi->State       = HAL_SPI_STATE_BUSY_RX;
    hspi->ErrorCode   = HAL_SPI_ERROR_NONE;

    hspi->pRxBuffPtr  = pData;
    hspi->RxXferSize  = Size;
    hspi->RxXferCount = Size;

    /*Init field not used in handle to zero */
    hspi->RxISR = 0;
    hspi->TxISR = 0;
    hspi->TxXferSize   = 0;
    hspi->TxXferCount  = 0;

    /* Configure communication direction : 1Line */
    if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
    {
       SPI_1LINE_RX(hspi);
    }
    else if((hspi->Init.Direction == SPI_DIRECTION_2LINES)&&(hspi->Init.Mode == SPI_MODE_MASTER))
    {
       /* Process Unlocked */
       __HAL_UNLOCK(hspi);

       /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */
       return HAL_SPI_TransmitReceive_DMA(hspi, pData, pData, Size);
    }

    /* Reset CRC Calculation */
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
    {
      SPI_RESET_CRC(hspi);
    }

    /* Set the SPI RxDMA Half transfer complete callback */
    hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt;
    
    /* Set the SPI Rx DMA transfer complete callback */
    hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt;

    /* Set the DMA error callback */
    hspi->hdmarx->XferErrorCallback = SPI_DMAError;

    /* Enable the Rx DMA Stream */
    HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr, hspi->RxXferCount);

    /* Process Unlocked */
    __HAL_UNLOCK(hspi);

    /* Check if the SPI is already enabled */ 
    if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
    {
      /* Enable SPI peripheral */
      __HAL_SPI_ENABLE(hspi);
    }

    /* Enable Rx DMA Request */  
    hspi->Instance->CR2 |= SPI_CR2_RXDMAEN;

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Transmit and Receive an amount of data in no-blocking mode with DMA 
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @param  pTxData: pointer to transmission data buffer
  * @param  pRxData: pointer to reception data buffer
  * @note  When the CRC feature is enabled the pRxData Length must be Size + 1 
  * @param  Size: amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size)
{
  uint32_t tmpstate = 0;
  tmpstate = hspi->State;
  if((tmpstate == HAL_SPI_STATE_READY) || ((hspi->Init.Mode == SPI_MODE_MASTER) && \
     (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmpstate == HAL_SPI_STATE_BUSY_RX)))
  {
    if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0))
    {
      return  HAL_ERROR;
    }

    /* Check the parameters */
    assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
    
    /* Process locked */
    __HAL_LOCK(hspi);

    /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */
    if(hspi->State != HAL_SPI_STATE_BUSY_RX)
    {
      hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
    }

    /* Configure communication */
    hspi->ErrorCode   = HAL_SPI_ERROR_NONE;

    hspi->pTxBuffPtr  = (uint8_t*)pTxData;
    hspi->TxXferSize  = Size;
    hspi->TxXferCount = Size;

    hspi->pRxBuffPtr  = (uint8_t*)pRxData;
    hspi->RxXferSize  = Size;
    hspi->RxXferCount = Size;

    /*Init field not used in handle to zero */
    hspi->RxISR = 0;
    hspi->TxISR = 0;

    /* Reset CRC Calculation */
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
    {
      SPI_RESET_CRC(hspi);
    }

    /* Check if we are in Rx only or in Rx/Tx Mode and configure the DMA transfer complete callback */
    if(hspi->State == HAL_SPI_STATE_BUSY_RX)
    {
      /* Set the SPI Rx DMA Half transfer complete callback */
      hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt;
      
      hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt;
    }
    else
    {
      /* Set the SPI Tx/Rx DMA Half transfer complete callback */
      hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfTransmitReceiveCplt;
  
      hspi->hdmarx->XferCpltCallback = SPI_DMATransmitReceiveCplt;
    }

    /* Set the DMA error callback */
    hspi->hdmarx->XferErrorCallback = SPI_DMAError;

    /* Enable the Rx DMA Stream */
    HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr, hspi->RxXferCount);

    /* Enable Rx DMA Request */  
    hspi->Instance->CR2 |= SPI_CR2_RXDMAEN;

    /* Set the SPI Tx DMA transfer complete callback as NULL because the communication closing
    is performed in DMA reception complete callback  */
    hspi->hdmatx->XferCpltCallback = NULL;
    
    if(hspi->State == HAL_SPI_STATE_BUSY_TX_RX)
    {
      /* Set the DMA error callback */
      hspi->hdmatx->XferErrorCallback = SPI_DMAError;
    }
    else
    {
      hspi->hdmatx->XferErrorCallback = NULL;
    }    
    
    /* Enable the Tx DMA Stream */
    HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, hspi->TxXferCount);

    /* Process Unlocked */
    __HAL_UNLOCK(hspi);

    /* Check if the SPI is already enabled */ 
    if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
    {
      /* Enable SPI peripheral */
      __HAL_SPI_ENABLE(hspi);
    }

    /* Enable Tx DMA Request */  
    hspi->Instance->CR2 |= SPI_CR2_TXDMAEN;

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Pauses the DMA Transfer.
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for the specified SPI module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SPI_DMAPause(SPI_HandleTypeDef *hspi)
{
  /* Process Locked */
  __HAL_LOCK(hspi);
  
  /* Disable the SPI DMA Tx & Rx requests */
  hspi->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
  hspi->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
  
  /* Process Unlocked */
  __HAL_UNLOCK(hspi);
  
  return HAL_OK; 
}

/**
  * @brief Resumes the DMA Transfer.
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for the specified SPI module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SPI_DMAResume(SPI_HandleTypeDef *hspi)
{
  /* Process Locked */
  __HAL_LOCK(hspi);
  
  /* Enable the SPI DMA Tx & Rx requests */
  hspi->Instance->CR2 |= SPI_CR2_TXDMAEN;
  hspi->Instance->CR2 |= SPI_CR2_RXDMAEN;
  
  /* Process Unlocked */
  __HAL_UNLOCK(hspi);
  
  return HAL_OK;
}

/**
  * @brief Stops the DMA Transfer.
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for the specified SPI module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SPI_DMAStop(SPI_HandleTypeDef *hspi)
{
  /* The Lock is not implemented on this API to allow the user application
     to call the HAL SPI API under callbacks HAL_SPI_TxCpltCallback() or HAL_SPI_RxCpltCallback() or HAL_SPI_TxRxCpltCallback():
     when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated
     and the correspond call back is executed HAL_SPI_TxCpltCallback() or HAL_SPI_RxCpltCallback() or HAL_SPI_TxRxCpltCallback()
     */
  
  /* Abort the SPI DMA tx Stream */
  if(hspi->hdmatx != NULL)
  {
    HAL_DMA_Abort(hspi->hdmatx);
  }
  /* Abort the SPI DMA rx Stream */
  if(hspi->hdmarx != NULL)
  {
    HAL_DMA_Abort(hspi->hdmarx);
  }
  
  /* Disable the SPI DMA Tx & Rx requests */
  hspi->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
  hspi->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
  
  hspi->State = HAL_SPI_STATE_READY;
  
  return HAL_OK;
}

/**
  * @brief  This function handles SPI interrupt request.
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @retval HAL status
  */
void HAL_SPI_IRQHandler(SPI_HandleTypeDef *hspi)
{
  uint32_t tmp1 = 0, tmp2 = 0, tmp3 = 0;

  tmp1 = __HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE);
  tmp2 = __HAL_SPI_GET_IT_SOURCE(hspi, SPI_IT_RXNE);
  tmp3 = __HAL_SPI_GET_FLAG(hspi, SPI_FLAG_OVR);
  /* SPI in mode Receiver and Overrun not occurred ---------------------------*/
  if((tmp1 != RESET) && (tmp2 != RESET) && (tmp3 == RESET))
  {
    hspi->RxISR(hspi);
    return;
  } 

  tmp1 = __HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE);
  tmp2 = __HAL_SPI_GET_IT_SOURCE(hspi, SPI_IT_TXE);
  /* SPI in mode Transmitter ---------------------------------------------------*/
  if((tmp1 != RESET) && (tmp2 != RESET))
  {
    hspi->TxISR(hspi);
    return;
  }

  if(__HAL_SPI_GET_IT_SOURCE(hspi, SPI_IT_ERR) != RESET)
  {
    /* SPI CRC error interrupt occurred ---------------------------------------*/
    if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
    {
      hspi->ErrorCode |= HAL_SPI_ERROR_CRC;
      __HAL_SPI_CLEAR_CRCERRFLAG(hspi);
    }
    /* SPI Mode Fault error interrupt occurred --------------------------------*/
    if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_MODF) != RESET)
    {
      hspi->ErrorCode |= HAL_SPI_ERROR_MODF;
      __HAL_SPI_CLEAR_MODFFLAG(hspi);
    }
    
    /* SPI Overrun error interrupt occurred -----------------------------------*/
    if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_OVR) != RESET)
    {
      if(hspi->State != HAL_SPI_STATE_BUSY_TX)
      {
        hspi->ErrorCode |= HAL_SPI_ERROR_OVR;
        __HAL_SPI_CLEAR_OVRFLAG(hspi);      
      }
    }

    /* SPI Frame error interrupt occurred -------------------------------------*/
    if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_FRE) != RESET)
    {
      hspi->ErrorCode |= HAL_SPI_ERROR_FRE;
      __HAL_SPI_CLEAR_FREFLAG(hspi);
    }

    /* Call the Error call Back in case of Errors */
    if(hspi->ErrorCode!=HAL_SPI_ERROR_NONE)
    {
      hspi->State = HAL_SPI_STATE_READY;
      HAL_SPI_ErrorCallback(hspi);
    }
  }
}

/**
  * @brief Tx Transfer completed callbacks
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @retval None
  */
__weak void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_SPI_TxCpltCallback could be implemented in the user file
   */
}

/**
  * @brief Rx Transfer completed callbacks
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @retval None
  */
__weak void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_SPI_RxCpltCallback() could be implemented in the user file
   */
}

/**
  * @brief Tx and Rx Transfer completed callbacks
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @retval None
  */
__weak void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_SPI_TxRxCpltCallback() could be implemented in the user file
   */
}

/**
  * @brief Tx Half Transfer completed callbacks
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @retval None
  */
__weak void HAL_SPI_TxHalfCpltCallback(SPI_HandleTypeDef *hspi)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_SPI_TxHalfCpltCallback could be implemented in the user file
   */
}

/**
  * @brief Rx Half Transfer completed callbacks
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @retval None
  */
__weak void HAL_SPI_RxHalfCpltCallback(SPI_HandleTypeDef *hspi)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_SPI_RxHalfCpltCallback() could be implemented in the user file
   */
}

/**
  * @brief Tx and Rx Transfer completed callbacks
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @retval None
  */
__weak void HAL_SPI_TxRxHalfCpltCallback(SPI_HandleTypeDef *hspi)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_SPI_TxRxHalfCpltCallback() could be implemented in the user file
   */
}

/**
  * @brief SPI error callbacks
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @retval None
  */
 __weak void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi)
{
  /* NOTE : - This function Should not be modified, when the callback is needed,
            the HAL_SPI_ErrorCallback() could be implemented in the user file.
            - The ErrorCode parameter in the hspi handle is updated by the SPI processes
            and user can use HAL_SPI_GetError() API to check the latest error occurred.
   */
}

/**
  * @}
  */

/** @defgroup SPI_Exported_Functions_Group3 Peripheral State and Errors functions 
  *  @brief   SPI control functions 
  *
@verbatim
 ===============================================================================
                      ##### Peripheral State and Errors functions #####
 ===============================================================================  
    [..]
    This subsection provides a set of functions allowing to control the SPI.
     (+) HAL_SPI_GetState() API can be helpful to check in run-time the state of the SPI peripheral
     (+) HAL_SPI_GetError() check in run-time Errors occurring during communication
@endverbatim
  * @{
  */

/**
  * @brief  Return the SPI state
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @retval HAL state
  */
HAL_SPI_StateTypeDef HAL_SPI_GetState(SPI_HandleTypeDef *hspi)
{
  return hspi->State;
}

/**
  * @brief  Return the SPI error code
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @retval SPI Error Code
  */
uint32_t HAL_SPI_GetError(SPI_HandleTypeDef *hspi)
{
  return hspi->ErrorCode;
}

/**
  * @}
  */

  /**
  * @brief  Interrupt Handler to close Tx transfer 
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @retval void
  */
static void SPI_TxCloseIRQHandler(SPI_HandleTypeDef *hspi)
{
  /* Wait until TXE flag is set to send data */
  if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_TXE, RESET, SPI_TIMEOUT_VALUE) != HAL_OK)
  {
    hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
  }

  /* Disable TXE interrupt */
  __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE ));

  /* Disable ERR interrupt if Receive process is finished */
  if(__HAL_SPI_GET_IT_SOURCE(hspi, SPI_IT_RXNE) == RESET)
  {
    __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_ERR));

    /* Wait until Busy flag is reset before disabling SPI */
    if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_BSY, SET, SPI_TIMEOUT_VALUE) != HAL_OK)
    {
      hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
    }

    /* Clear OVERRUN flag in 2 Lines communication mode because received is not read */
    if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
    {
      __HAL_SPI_CLEAR_OVRFLAG(hspi);
    }
    
    /* Check if Errors has been detected during transfer */
    if(hspi->ErrorCode ==  HAL_SPI_ERROR_NONE)
    {
      /* Check if we are in Tx or in Rx/Tx Mode */
      if(hspi->State == HAL_SPI_STATE_BUSY_TX_RX)
      {
        /* Set state to READY before run the Callback Complete */
        hspi->State = HAL_SPI_STATE_READY;
        HAL_SPI_TxRxCpltCallback(hspi);
      }
      else
      {
        /* Set state to READY before run the Callback Complete */
        hspi->State = HAL_SPI_STATE_READY;
        HAL_SPI_TxCpltCallback(hspi);
      }
    }
    else
    {
      /* Set state to READY before run the Callback Complete */
      hspi->State = HAL_SPI_STATE_READY;
      /* Call Error call back in case of Error */
      HAL_SPI_ErrorCallback(hspi);
    }
  }
}

/**
  * @brief  Interrupt Handler to transmit amount of data in no-blocking mode 
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @retval void
  */
static void SPI_TxISR(SPI_HandleTypeDef *hspi)
{
  /* Transmit data in 8 Bit mode */
  if(hspi->Init.DataSize == SPI_DATASIZE_8BIT)
  {
    hspi->Instance->DR = (*hspi->pTxBuffPtr++);
  }
  /* Transmit data in 16 Bit mode */
  else
  {
    hspi->Instance->DR = *((uint16_t*)hspi->pTxBuffPtr);
    hspi->pTxBuffPtr+=2;
  }
  hspi->TxXferCount--;

  if(hspi->TxXferCount == 0)
  {
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
    {
      /* calculate and transfer CRC on Tx line */
      hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
    }
    SPI_TxCloseIRQHandler(hspi);
  }
}

/**
  * @brief  Interrupt Handler to close Rx transfer 
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @retval void
  */
static void SPI_RxCloseIRQHandler(SPI_HandleTypeDef *hspi)
{
  __IO uint16_t tmpreg;

  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
  {
    /* Wait until RXNE flag is set to send data */
    if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, SPI_TIMEOUT_VALUE) != HAL_OK)
    {
      hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
    }

    /* Read CRC to reset RXNE flag */
    tmpreg = hspi->Instance->DR;
    UNUSED(tmpreg);

    /* Wait until RXNE flag is set to send data */
    if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, SET, SPI_TIMEOUT_VALUE) != HAL_OK)
    {
      hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
    }

    /* Check if CRC error occurred */
    if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
    {
      hspi->ErrorCode |= HAL_SPI_ERROR_CRC;

      /* Reset CRC Calculation */
      SPI_RESET_CRC(hspi);
    }
  }

  /* Disable RXNE and ERR interrupt */
  __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE));

  /* if Transmit process is finished */
  if(__HAL_SPI_GET_IT_SOURCE(hspi, SPI_IT_TXE) == RESET)
  {
    /* Disable ERR interrupt */
    __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_ERR));

    if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
    {
      /* Disable SPI peripheral */
      __HAL_SPI_DISABLE(hspi);
    }
    
    /* Check if Errors has been detected during transfer */
    if(hspi->ErrorCode ==  HAL_SPI_ERROR_NONE)
    {
      /* Check if we are in Rx or in Rx/Tx Mode */
      if(hspi->State == HAL_SPI_STATE_BUSY_TX_RX)
      {
        /* Set state to READY before run the Callback Complete */
        hspi->State = HAL_SPI_STATE_READY;
        HAL_SPI_TxRxCpltCallback(hspi);
      }
      else
      {
        /* Set state to READY before run the Callback Complete */
        hspi->State = HAL_SPI_STATE_READY;
        HAL_SPI_RxCpltCallback(hspi);
      }
    }
    else
    {
      /* Set state to READY before run the Callback Complete */
      hspi->State = HAL_SPI_STATE_READY;
      /* Call Error call back in case of Error */
      HAL_SPI_ErrorCallback(hspi);
    }
  }
}

/**
  * @brief  Interrupt Handler to receive amount of data in 2Lines mode 
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @retval void
  */
static void SPI_2LinesRxISR(SPI_HandleTypeDef *hspi)
{
  /* Receive data in 8 Bit mode */
  if(hspi->Init.DataSize == SPI_DATASIZE_8BIT)
  {
    (*hspi->pRxBuffPtr++) = hspi->Instance->DR;
  }
  /* Receive data in 16 Bit mode */
  else
  {
    *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
    hspi->pRxBuffPtr+=2;
  }
  hspi->RxXferCount--;

  if(hspi->RxXferCount==0)
  {
    SPI_RxCloseIRQHandler(hspi);
  }
}

/**
  * @brief  Interrupt Handler to receive amount of data in no-blocking mode 
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @retval void
  */
static void SPI_RxISR(SPI_HandleTypeDef *hspi)
{
  /* Receive data in 8 Bit mode */
  if(hspi->Init.DataSize == SPI_DATASIZE_8BIT)
  {
    (*hspi->pRxBuffPtr++) = hspi->Instance->DR;
  }
  /* Receive data in 16 Bit mode */
  else
  {
    *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
    hspi->pRxBuffPtr+=2;
  }
    hspi->RxXferCount--;

  /* Enable CRC Transmission */
  if((hspi->RxXferCount == 1) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
  {
    /* Set CRC Next to calculate CRC on Rx side */
    hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;  
  }

  if(hspi->RxXferCount == 0)
  {
    SPI_RxCloseIRQHandler(hspi);
  }
}

/**
  * @brief DMA SPI transmit process complete callback 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma)
{
  SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;

  /* DMA Normal Mode */
  if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0)
  {
    /* Wait until TXE flag is set to send data */
    if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_TXE, RESET, SPI_TIMEOUT_VALUE) != HAL_OK)
    {
      hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
    }
    /* Disable Tx DMA Request */
    hspi->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);

    /* Wait until Busy flag is reset before disabling SPI */
    if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_BSY, SET, SPI_TIMEOUT_VALUE) != HAL_OK)
    {
      hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
    }

    hspi->TxXferCount = 0;

    hspi->State = HAL_SPI_STATE_READY;
  }

  /* Clear OVERRUN flag in 2 Lines communication mode because received is not read */
  if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
  {
   __HAL_SPI_CLEAR_OVRFLAG(hspi);
  }

  /* Check if Errors has been detected during transfer */
  if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
  {
    HAL_SPI_ErrorCallback(hspi);
  }
  else
  {
    HAL_SPI_TxCpltCallback(hspi);
  }
}

/**
  * @brief DMA SPI receive process complete callback 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
{
  __IO uint16_t tmpreg;
  
  SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  /* DMA Normal mode */
  if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0)
  {
    if((hspi->Init.Direction == SPI_DIRECTION_2LINES)&&(hspi->Init.Mode == SPI_MODE_MASTER))
    {
       SPI_DMAEndTransmitReceive(hspi);  
    }
    /* SPI_DIRECTION_1LINE or SPI_DIRECTION_2LINES_RXONLY */
    else
    {
      if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
      {
        /* Disable SPI peripheral */
        __HAL_SPI_DISABLE(hspi);
      }
      
      /* Disable Rx DMA Request */
      hspi->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
      
      hspi->RxXferCount = 0;
      
      /* Reset CRC Calculation */
      if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
      {
        /* Wait until RXNE flag is set to send data */
        if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, SPI_TIMEOUT_VALUE) != HAL_OK)
        {
          hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
        }
        
        /* Read CRC */
        tmpreg = hspi->Instance->DR;
        UNUSED(tmpreg);
        
        /* Wait until RXNE flag is set */
        if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, SET, SPI_TIMEOUT_VALUE) != HAL_OK)
        {
          hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
        }
        
        /* Check if CRC error occurred */
        if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
        {
          hspi->ErrorCode |= HAL_SPI_ERROR_CRC;
          __HAL_SPI_CLEAR_CRCERRFLAG(hspi);
        }
      }
    }
    
    hspi->State = HAL_SPI_STATE_READY;
    
    /* Check if Errors has been detected during transfer */
    if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
    {
      HAL_SPI_ErrorCallback(hspi);
    }
    else
    {
      HAL_SPI_RxCpltCallback(hspi);
    } 
  }
  else
  {
    HAL_SPI_RxCpltCallback(hspi);
  }
}

/**
  * @brief End DMA SPI transmit receive process 
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @retval None
  */
static void SPI_DMAEndTransmitReceive(SPI_HandleTypeDef *hspi)   
{
  __IO uint16_t tmpreg;
  
  /* Reset CRC Calculation */
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
  {
    /* Check if CRC is done on going (RXNE flag set) */
    if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, SET, SPI_TIMEOUT_VALUE) == HAL_OK)
    {
      /* Wait until RXNE flag is set to send data */
      if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, SPI_TIMEOUT_VALUE) != HAL_OK)
      {
        hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
      }
    }
    /* Read CRC */
    tmpreg = hspi->Instance->DR;
    UNUSED(tmpreg);
    
    /* Check if CRC error occurred */
    if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
    {
      hspi->ErrorCode |= HAL_SPI_ERROR_CRC;
      __HAL_SPI_CLEAR_CRCERRFLAG(hspi);
    }
  }
  
  /* Wait until TXE flag is set to send data */
  if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_TXE, RESET, SPI_TIMEOUT_VALUE) != HAL_OK)
  {
    hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
  }
  /* Disable Tx DMA Request */
  hspi->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
  
  /* Wait until Busy flag is reset before disabling SPI */
  if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_BSY, SET, SPI_TIMEOUT_VALUE) != HAL_OK)
  {
    hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
  }
  
  /* Disable Rx DMA Request */
  hspi->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
  
  hspi->TxXferCount = 0;
  hspi->RxXferCount = 0;
}

/**
  * @brief DMA SPI transmit receive process complete callback 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma)
{
  SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0)
  { /**/
    SPI_DMAEndTransmitReceive(hspi);
    
    hspi->State = HAL_SPI_STATE_READY;
    
    /* Check if Errors has been detected during transfer */
    if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
    {
      HAL_SPI_ErrorCallback(hspi);
    }
    else
    {
      HAL_SPI_TxRxCpltCallback(hspi);
    }
  }
  else
  {
    HAL_SPI_TxRxCpltCallback(hspi);
  }
}

/**
  * @brief DMA SPI half transmit process complete callback 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma)
{
  SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;

  HAL_SPI_TxHalfCpltCallback(hspi);
}

/**
  * @brief DMA SPI half receive process complete callback 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma)
{
  SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;

  HAL_SPI_RxHalfCpltCallback(hspi);
}

/**
  * @brief DMA SPI Half transmit receive process complete callback 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma)   
{
  SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;

  HAL_SPI_TxRxHalfCpltCallback(hspi);
}

/**
  * @brief DMA SPI communication error callback 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
static void SPI_DMAError(DMA_HandleTypeDef *hdma)
{
  SPI_HandleTypeDef* hspi = (SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  hspi->TxXferCount = 0;
  hspi->RxXferCount = 0;
  hspi->State= HAL_SPI_STATE_READY;
  hspi->ErrorCode |= HAL_SPI_ERROR_DMA;
  HAL_SPI_ErrorCallback(hspi);
}

/**
  * @brief This function handles SPI Communication Timeout.
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @param  Flag: SPI flag to check
  * @param  Status: Flag status to check: RESET or set
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
static HAL_StatusTypeDef SPI_WaitOnFlagUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, FlagStatus Status, uint32_t Timeout)  
{
  uint32_t tickstart = 0;

  /* Get tick */ 
  tickstart = HAL_GetTick();

  /* Wait until flag is set */
  if(Status == RESET)
  {
    while(__HAL_SPI_GET_FLAG(hspi, Flag) == RESET)
    {
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
        {
          /* Disable the SPI and reset the CRC: the CRC value should be cleared
             on both master and slave sides in order to resynchronize the master
             and slave for their respective CRC calculation */

          /* Disable TXE, RXNE and ERR interrupts for the interrupt process */
          __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));

          /* Disable SPI peripheral */
          __HAL_SPI_DISABLE(hspi);

          /* Reset CRC Calculation */
          if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
          {
            SPI_RESET_CRC(hspi);
          }

          hspi->State= HAL_SPI_STATE_READY;

          /* Process Unlocked */
          __HAL_UNLOCK(hspi);

          return HAL_TIMEOUT;
        }
      }
    }
  }
  else
  {
    while(__HAL_SPI_GET_FLAG(hspi, Flag) != RESET)
    {
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
        {
          /* Disable the SPI and reset the CRC: the CRC value should be cleared
             on both master and slave sides in order to resynchronize the master
             and slave for their respective CRC calculation */

          /* Disable TXE, RXNE and ERR interrupts for the interrupt process */
          __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));

          /* Disable SPI peripheral */
          __HAL_SPI_DISABLE(hspi);

          /* Reset CRC Calculation */
          if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
          {
            SPI_RESET_CRC(hspi);
          }

          hspi->State= HAL_SPI_STATE_READY;

          /* Process Unlocked */
          __HAL_UNLOCK(hspi);

          return HAL_TIMEOUT;
        }
      }
    }
  }
  return HAL_OK;
}


/**
  * @}
  */

#endif /* HAL_SPI_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/