/* * ks_flash.c * ---------- * Keystore implementation in flash memory. * * Authors: Rob Austein, Fredrik Thulin * Copyright (c) 2015-2016, NORDUnet A/S All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the NORDUnet nor the names of its contributors may * be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include "hal.h" #include "hal_internal.h" #include "last_gasp_pin_internal.h" #define HAL_OK CMIS_HAL_OK #include "stm-keystore.h" #undef HAL_OK /* * Known block states. * * C does not guarantee any particular representation for enums, so * including enums directly in the block header isn't safe. Instead, * we use an access method which casts when reading from the header. * Writing to the header isn't a problem, because C does guarantee * that enum is compatible with *some* integer type, it just doesn't * specify which one. */ typedef enum { BLOCK_TYPE_ERASED = 0xFF, /* Pristine erased block (candidate for reuse) */ BLOCK_TYPE_ZEROED = 0x00, /* Zeroed block (recently used) */ BLOCK_TYPE_KEY = 0x55, /* Block contains key material */ BLOCK_TYPE_ATTR = 0x66, /* Block contains key attributes (overflow from key block) */ BLOCK_TYPE_PIN = 0xAA, /* Block contains PINs */ BLOCK_TYPE_UNKNOWN = -1, /* Internal code for "I have no clue what this is" */ } flash_block_type_t; /* * Block status. */ typedef enum { BLOCK_STATUS_LIVE = 0x66, /* This is a live flash block */ BLOCK_STATUS_TOMBSTONE = 0x44, /* This is a tombstone left behind during an update */ BLOCK_STATUS_UNKNOWN = -1, /* Internal code for "I have no clue what this is" */ } flash_block_status_t; /* * Common header for all flash block types. * A few of these fields are deliberately omitted from the CRC. */ typedef struct { uint8_t block_type; uint8_t block_status; uint8_t total_chunks; uint8_t this_chunk; hal_crc32_t crc; } flash_block_header_t; /* * Key block. Tail end of "der" field (after der_len) used for attributes. */ typedef struct { flash_block_header_t header; hal_uuid_t name; hal_key_type_t type; hal_curve_name_t curve; hal_key_flags_t flags; size_t der_len; unsigned attributes_len; uint8_t der[]; /* Must be last field -- C99 "flexible array member" */ } flash_key_block_t; #define SIZEOF_FLASH_KEY_BLOCK_DER \ (KEYSTORE_SUBSECTOR_SIZE - offsetof(flash_key_block_t, der)) /* * Key attribute overflow block (attributes which don't fit in der field of key block). */ typedef struct { flash_block_header_t header; hal_uuid_t name; unsigned attributes_len; uint8_t attributes[]; /* Must be last field -- C99 "flexible array member" */ } flash_attributes_block_t; #define SIZEOF_FLASH_ATTRIBUTE_BLOCK_ATTRIBUTES \ (KEYSTORE_SUBSECTOR_SIZE - offsetof(flash_attributes_block_t, attributes)) /* * PIN block. Also includes space for backing up the KEK when * HAL_MKM_FLASH_BACKUP_KLUDGE is enabled. */ typedef struct { flash_block_header_t header; hal_ks_pin_t wheel_pin; hal_ks_pin_t so_pin; hal_ks_pin_t user_pin; #if HAL_MKM_FLASH_BACKUP_KLUDGE uint32_t kek_set; uint8_t kek[KEK_LENGTH]; #endif } flash_pin_block_t; #define FLASH_KEK_SET 0x33333333 /* * One flash block. */ typedef union { uint8_t bytes[KEYSTORE_SUBSECTOR_SIZE]; flash_block_header_t header; flash_key_block_t key; flash_attributes_block_t attr; flash_pin_block_t pin; } flash_block_t; /* * In-memory cache. */ typedef struct { unsigned blockno; uint32_t lru; flash_block_t block; } cache_block_t; /* * In-memory database. * * The top-level structure is a static variable; the arrays are allocated at runtime * using hal_allocate_static_memory() because they can get kind of large. */ #ifndef KS_FLASH_CACHE_SIZE #define KS_FLASH_CACHE_SIZE 4 #endif #define NUM_FLASH_BLOCKS KEYSTORE_NUM_SUBSECTORS typedef struct { hal_ks_t ks; /* Must be first (C "subclassing") */ hal_ks_index_t ksi; hal_ks_pin_t wheel_pin; hal_ks_pin_t so_pin; hal_ks_pin_t user_pin; uint32_t cache_lru; cache_block_t *cache; } db_t; /* * PIN block gets the all-zeros UUID, which will never be returned by * the UUID generation code (by definition -- it's not a version 4 UUID). */ const static hal_uuid_t pin_uuid = {{0}}; /* * The in-memory database structure itself is small, but the arrays it * points to are large enough that they come from SDRAM allocated at * startup. */ static db_t db; /* * Type safe casts. */ static inline flash_block_type_t block_get_type(const flash_block_t * const block) { assert(block != NULL); return (flash_block_type_t) block->header.block_type; } static inline flash_block_status_t block_get_status(const flash_block_t * const block) { assert(block != NULL); return (flash_block_status_t) block->header.block_status; } /* * Pick unused or least-recently-used slot in our in-memory cache. * * Updating lru values is caller's problem: if caller is using a cache * slot as a temporary buffer and there's no point in caching the * result, leave the lru values alone and the right thing will happen. */ static inline flash_block_t *cache_pick_lru(void) { uint32_t best_delta = 0; int best_index = 0; for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++) { if (db.cache[i].blockno == ~0) return &db.cache[i].block; const uint32_t delta = db.cache_lru - db.cache[i].lru; if (delta > best_delta) { best_delta = delta; best_index = i; } } db.cache[best_index].blockno = ~0; return &db.cache[best_index].block; } /* * Find a block in our in-memory cache; return block or NULL if not present. */ static inline flash_block_t *cache_find_block(const unsigned blockno) { for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++) if (db.cache[i].blockno == blockno) return &db.cache[i].block; return NULL; } /* * Mark a block in our in-memory cache as being in current use. */ static inline void cache_mark_used(const flash_block_t * const block, const unsigned blockno) { for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++) { if (&db.cache[i].block == block) { db.cache[i].blockno = blockno; db.cache[i].lru = ++db.cache_lru; return; } } } /* * Release a block from the in-memory cache. */ static inline void cache_release(const flash_block_t * const block) { if (block != NULL) cache_mark_used(block, ~0); } /* * Generate CRC-32 for a block. * * This function needs to understand the structure of * flash_block_header_t, so that it can skip over fields that * shouldn't be included in the CRC. */ static hal_crc32_t calculate_block_crc(const flash_block_t * const block) { assert(block != NULL); hal_crc32_t crc = hal_crc32_init(); crc = hal_crc32_update(crc, &block->header.block_type, sizeof(block->header.block_type)); crc = hal_crc32_update(crc, &block->header.total_chunks, sizeof(block->header.total_chunks)); crc = hal_crc32_update(crc, &block->header.this_chunk, sizeof(block->header.this_chunk)); crc = hal_crc32_update(crc, block->bytes + sizeof(flash_block_header_t), sizeof(*block) - sizeof(flash_block_header_t)); return hal_crc32_finalize(crc); } /* * Calculate block offset. */ static uint32_t block_offset(const unsigned blockno) { return blockno * KEYSTORE_SUBSECTOR_SIZE; } /* * Read a flash block. * * Flash read on the Alpha is slow enough that it pays to check the * first page before reading the rest of the block. */ static hal_error_t block_read(const unsigned blockno, flash_block_t *block) { if (block == NULL || blockno >= NUM_FLASH_BLOCKS || sizeof(*block) != KEYSTORE_SUBSECTOR_SIZE) return HAL_ERROR_IMPOSSIBLE; /* Sigh, magic numeric return codes */ if (keystore_read_data(block_offset(blockno), block->bytes, KEYSTORE_PAGE_SIZE) != 1) return HAL_ERROR_KEYSTORE_ACCESS; switch (block_get_type(block)) { case BLOCK_TYPE_ERASED: case BLOCK_TYPE_ZEROED: return HAL_OK; case BLOCK_TYPE_KEY: case BLOCK_TYPE_PIN: case BLOCK_TYPE_ATTR: break; default: return HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE; } switch (block_get_status(block)) { case BLOCK_STATUS_LIVE: case BLOCK_STATUS_TOMBSTONE: break; default: return HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE; } /* Sigh, magic numeric return codes */ if (keystore_read_data(block_offset(blockno) + KEYSTORE_PAGE_SIZE, block->bytes + KEYSTORE_PAGE_SIZE, sizeof(*block) - KEYSTORE_PAGE_SIZE) != 1) return HAL_ERROR_KEYSTORE_ACCESS; if (calculate_block_crc(block) != block->header.crc) return HAL_ERROR_KEYSTORE_BAD_CRC; return HAL_OK; } /* * Read a block using the cache. Marking the block as used is left * for the caller, so we can avoid blowing out the cache when we * perform a ks_list() operation. */ static hal_error_t block_read_cached(const unsigned blockno, flash_block_t **block) { if (block == NULL) return HAL_ERROR_IMPOSSIBLE; if ((*block = cache_find_block(blockno)) != NULL) return HAL_OK; if ((*block = cache_pick_lru()) == NULL) return HAL_ERROR_IMPOSSIBLE; return block_read(blockno, *block); } /* * Convert a live block into a tombstone. Caller is responsible for * making sure that the block being converted is valid; since we don't * need to update the CRC for this, we just modify the first page. */ static hal_error_t block_deprecate(const unsigned blockno, const flash_block_t * const block) { if (block == NULL || blockno >= NUM_FLASH_BLOCKS) return HAL_ERROR_IMPOSSIBLE; uint8_t page[KEYSTORE_PAGE_SIZE]; flash_block_header_t *header = (void *) page; memcpy(page, block->bytes, sizeof(page)); header->block_status = BLOCK_STATUS_TOMBSTONE; /* Sigh, magic numeric return codes */ if (keystore_write_data(block_offset(blockno), page, sizeof(page)) != 1) return HAL_ERROR_KEYSTORE_ACCESS; return HAL_OK; } /* * Zero (not erase) a flash block. Just need to zero the first page. */ static hal_error_t block_zero(const unsigned blockno) { if (blockno >= NUM_FLASH_BLOCKS) return HAL_ERROR_IMPOSSIBLE; uint8_t page[KEYSTORE_PAGE_SIZE] = {0}; /* Sigh, magic numeric return codes */ if (keystore_write_data(block_offset(blockno), page, sizeof(page)) != 1) return HAL_ERROR_KEYSTORE_ACCESS; return HAL_OK; } /* * Erase a flash block. Also see block_erase_maybe(), below. */ static hal_error_t block_erase(const unsigned blockno) { if (blockno >= NUM_FLASH_BLOCKS) return HAL_ERROR_IMPOSSIBLE; /* Sigh, magic numeric return codes */ if (keystore_erase_subsectors(blockno, blockno) != 1) return HAL_ERROR_KEYSTORE_ACCESS; return HAL_OK; } /* * Erase a flash block if it hasn't already been erased. * May not be necessary, trying to avoid unnecessary wear. * * Unclear whether there's any sane reason why this needs to be * constant time, given how slow erasure is. But side channel attacks * can be tricky things, and it's theoretically possible that we could * leak information about, eg, key length, so we do constant time. */ static hal_error_t block_erase_maybe(const unsigned blockno) { if (blockno >= NUM_FLASH_BLOCKS) return HAL_ERROR_IMPOSSIBLE; uint8_t mask = 0xFF; for (uint32_t a = block_offset(blockno); a < block_offset(blockno + 1); a += KEYSTORE_PAGE_SIZE) { uint8_t page[KEYSTORE_PAGE_SIZE]; if (keystore_read_data(a, page, sizeof(page)) != 1) return HAL_ERROR_KEYSTORE_ACCESS; for (int i = 0; i < KEYSTORE_PAGE_SIZE; i++) mask &= page[i]; } return mask == 0xFF ? HAL_OK : block_erase(blockno); } /* * Write a flash block, calculating CRC when appropriate. */ static hal_error_t block_write(const unsigned blockno, flash_block_t *block) { if (block == NULL || blockno >= NUM_FLASH_BLOCKS || sizeof(*block) != KEYSTORE_SUBSECTOR_SIZE) return HAL_ERROR_IMPOSSIBLE; hal_error_t err = block_erase_maybe(blockno); if (err != HAL_OK) return err; switch (block_get_type(block)) { case BLOCK_TYPE_KEY: case BLOCK_TYPE_PIN: case BLOCK_TYPE_ATTR: block->header.crc = calculate_block_crc(block); break; default: break; } /* Sigh, magic numeric return codes */ if (keystore_write_data(block_offset(blockno), block->bytes, sizeof(*block)) != 1) return HAL_ERROR_KEYSTORE_ACCESS; return HAL_OK; } /* * Forward reference. */ static hal_error_t fetch_pin_block(unsigned *b, flash_block_t **block); /* * Initialize keystore. This includes various tricky bits, some of * which attempt to preserve the free list ordering across reboots, to * improve our simplistic attempt at wear leveling, others attempt to * recover from unclean shutdown. */ static hal_error_t ks_init(const hal_ks_driver_t * const driver) { /* * Initialize the in-memory database. */ const size_t len = (sizeof(*db.ksi.index) * NUM_FLASH_BLOCKS + sizeof(*db.ksi.names) * NUM_FLASH_BLOCKS + sizeof(*db.cache) * KS_FLASH_CACHE_SIZE); uint8_t *mem = hal_allocate_static_memory(len); if (mem == NULL) return HAL_ERROR_ALLOCATION_FAILURE; memset(&db, 0, sizeof(db)); memset(mem, 0, len); db.ksi.size = NUM_FLASH_BLOCKS; db.ksi.index = (void *) mem; mem += sizeof(*db.ksi.index) * NUM_FLASH_BLOCKS; db.ksi.names = (void *) mem; mem += sizeof(*db.ksi.names) * NUM_FLASH_BLOCKS; db.cache = (void *) mem; for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++) db.cache[i].blockno = ~0; /* * Scan existing content of flash to figure out what we've got. * This gets a bit involved due to the need to recover from things * like power failures at inconvenient times. */ flash_block_type_t block_types[NUM_FLASH_BLOCKS]; flash_block_status_t block_status[NUM_FLASH_BLOCKS]; flash_block_t *block = cache_pick_lru(); int first_erased = -1; hal_error_t err; uint16_t n = 0; if (block == NULL) return HAL_ERROR_IMPOSSIBLE; for (int i = 0; i < NUM_FLASH_BLOCKS; i++) { /* * Read one block. If the CRC is bad or the block type is * unknown, it's old data we don't understand, something we were * writing when we crashed, or bad flash; in any of these cases, * we want the block to ends up near the end of the free list. */ err = block_read(i, block); if (err == HAL_ERROR_KEYSTORE_BAD_CRC || err == HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE) block_types[i] = BLOCK_TYPE_UNKNOWN; else if (err == HAL_OK) block_types[i] = block_get_type(block); else return err; switch (block_types[i]) { case BLOCK_TYPE_KEY: case BLOCK_TYPE_PIN: case BLOCK_TYPE_ATTR: block_status[i] = block_get_status(block); break; default: block_status[i] = BLOCK_STATUS_UNKNOWN; } /* * First erased block we see is head of the free list. */ if (block_types[i] == BLOCK_TYPE_ERASED && first_erased < 0) first_erased = i; /* * If it's a valid data block, include it in the index. We remove * tombstones (if any) below, for now it's easiest to include them * in the index, so we can look them up by name if we must. */ const hal_uuid_t *uuid = NULL; switch (block_types[i]) { case BLOCK_TYPE_KEY: uuid = &block->key.name; break; case BLOCK_TYPE_ATTR: uuid = &block->attr.name; break; case BLOCK_TYPE_PIN: uuid = &pin_uuid; break; default: /* Keep GCC happy */ break; } if (uuid != NULL) { db.ksi.names[i].name = *uuid; db.ksi.names[i].chunk = block->header.this_chunk; db.ksi.index[n++] = i; } } db.ksi.used = n; assert(db.ksi.used <= db.ksi.size); /* * At this point we've built the (unsorted) index from all the valid * blocks. Now we need to insert free and unrecognized blocks into * the free list in our preferred order. It's possible that there's * a better way to do this than linear scan, but this is just * integer comparisons in a fairly small data set, so it's probably * not worth trying to optimize. */ if (n < db.ksi.size) for (int i = 0; i < NUM_FLASH_BLOCKS; i++) if (block_types[i] == BLOCK_TYPE_ERASED) db.ksi.index[n++] = i; if (n < db.ksi.size) for (int i = first_erased; i < NUM_FLASH_BLOCKS; i++) if (block_types[i] == BLOCK_TYPE_ZEROED) db.ksi.index[n++] = i; if (n < db.ksi.size) for (int i = 0; i < first_erased; i++) if (block_types[i] == BLOCK_TYPE_ZEROED) db.ksi.index[n++] = i; if (n < db.ksi.size) for (int i = 0; i < NUM_FLASH_BLOCKS; i++) if (block_types[i] == BLOCK_TYPE_UNKNOWN) db.ksi.index[n++] = i; assert(n == db.ksi.size); /* * Initialize the index. */ if ((err = hal_ks_index_setup(&db.ksi)) != HAL_OK) return err; /* * Deal with tombstones. These are blocks left behind when * something bad (like a power failure) happened while we updating. * The sequence of operations while updating is designed so that, * barring a bug or a hardware failure, we should never lose data. * * For any tombstone we find, we start by looking for all the blocks * with a matching UUID, then see what valid sequences we can * construct from what we found. * * If we can construct a valid sequence of live blocks, the complete * update was written out, and we just need to zero the tombstones. * * Otherwise, if we can construct a complete sequence of tombstone * blocks, the update failed before it was completely written, so we * have to zero the incomplete sequence of live blocks then restore * from the tombstones. * * Otherwise, if the live and tombstone blocks taken together form a * valid sequence, the update failed while deprecating the old live * blocks, and the update itself was not written, so we need to * restore the tombstones and leave the live blocks alone. * * If none of the above applies, we don't understand what happened, * which is a symptom of either a bug or a hardware failure more * serious than simple loss of power or reboot at an inconvenient * time, so we error out to avoid accidental loss of data. */ for (int i = 0; i < NUM_FLASH_BLOCKS; i++) { if (block_status[i] != BLOCK_STATUS_TOMBSTONE) continue; hal_uuid_t name = db.ksi.names[i].name; unsigned n_blocks; int where = -1; if ((err = hal_ks_index_find_range(&db.ksi, &name, 0, &n_blocks, NULL, &where)) != HAL_OK) return err; while (where > 0 && !hal_uuid_cmp(&name, &db.ksi.names[db.ksi.index[where - 1]].name)) { where--; n_blocks++; } int live_ok = 1, tomb_ok = 1, join_ok = 1; unsigned n_live = 0, n_tomb = 0; unsigned i_live = 0, i_tomb = 0; for (int j = 0; j < n_blocks; j++) { unsigned b = db.ksi.index[where + j]; switch (block_status[b]) { case BLOCK_STATUS_LIVE: n_live++; break; case BLOCK_STATUS_TOMBSTONE: n_tomb++; break; default: return HAL_ERROR_IMPOSSIBLE; } } uint16_t live_blocks[n_live], tomb_blocks[n_tomb]; for (int j = 0; j < n_blocks; j++) { unsigned b = db.ksi.index[where + j]; if ((err = block_read(b, block)) != HAL_OK) return err; join_ok &= block->header.this_chunk == j && block->header.total_chunks == n_blocks; switch (block_status[b]) { case BLOCK_STATUS_LIVE: live_blocks[i_live] = b; live_ok &= block->header.this_chunk == i_live++ && block->header.total_chunks == n_live; break; case BLOCK_STATUS_TOMBSTONE: tomb_blocks[i_tomb] = b; tomb_ok &= block->header.this_chunk == i_tomb++ && block->header.total_chunks == n_tomb; break; default: return HAL_ERROR_IMPOSSIBLE; } } if (!live_ok && !tomb_ok && !join_ok) return HAL_ERROR_KEYSTORE_LOST_DATA; if (live_ok) { for (int j = 0; j < n_tomb; j++) { const unsigned b = tomb_blocks[j]; if ((err = block_zero(b)) != HAL_OK) return err; block_types[b] = BLOCK_TYPE_ZEROED; block_status[b] = BLOCK_STATUS_UNKNOWN; } } else if (tomb_ok) { for (int j = 0; j < n_live; j++) { const unsigned b = live_blocks[j]; if ((err = block_zero(b)) != HAL_OK) return err; block_types[b] = BLOCK_TYPE_ZEROED; block_status[b] = BLOCK_STATUS_UNKNOWN; } } if (live_ok) { memcpy(&db.ksi.index[where], live_blocks, n_live * sizeof(*db.ksi.index)); memmove(&db.ksi.index[where + n_live], &db.ksi.index[where + n_blocks], (db.ksi.size - where - n_blocks) * sizeof(*db.ksi.index)); memcpy(&db.ksi.index[db.ksi.size - n_tomb], tomb_blocks, n_tomb * sizeof(*db.ksi.index)); db.ksi.used -= n_tomb; n_blocks = n_live; } else if (tomb_ok) { memcpy(&db.ksi.index[where], tomb_blocks, n_tomb * sizeof(*db.ksi.index)); memmove(&db.ksi.index[where + n_tomb], &db.ksi.index[where + n_blocks], (db.ksi.size - where - n_blocks) * sizeof(*db.ksi.index)); memcpy(&db.ksi.index[db.ksi.size - n_live], live_blocks, n_live * sizeof(*db.ksi.index)); db.ksi.used -= n_live; n_blocks = n_tomb; } for (int j = 0; j < n_blocks; j++) { unsigned b1 = db.ksi.index[where + j]; if (block_status[b1] != BLOCK_STATUS_TOMBSTONE) continue; if ((err = block_read(b1, block)) != HAL_OK) return err; block->header.block_status = BLOCK_STATUS_LIVE; int hint = where + j; unsigned b2; if ((err = hal_ks_index_replace(&db.ksi, &name, j, &b2, &hint)) != HAL_OK || (err = block_write(b2, block)) != HAL_OK) return err; block_status[b2] = BLOCK_STATUS_LIVE; block_types[b1] = BLOCK_TYPE_ZEROED; } } err = fetch_pin_block(NULL, &block); if (err == HAL_OK) { db.wheel_pin = block->pin.wheel_pin; db.so_pin = block->pin.so_pin; db.user_pin = block->pin.user_pin; } else if (err != HAL_ERROR_KEY_NOT_FOUND) return err; else { /* * We found no PIN block, so create one, with the user and so PINs * cleared and the wheel PIN set to the last-gasp value. The * last-gasp WHEEL PIN is a terrible answer, but we need some kind * of bootstrapping mechanism when all else fails. If you have a * better suggestion, we'd love to hear it. */ unsigned b; memset(block, 0xFF, sizeof(*block)); block->header.block_type = BLOCK_TYPE_PIN; block->header.block_status = BLOCK_STATUS_LIVE; block->header.total_chunks = 1; block->header.this_chunk = 0; block->pin.wheel_pin = db.wheel_pin = hal_last_gasp_pin; block->pin.so_pin = db.so_pin; block->pin.user_pin = db.user_pin; if ((err = hal_ks_index_add(&db.ksi, &pin_uuid, 0, &b, NULL)) != HAL_OK) return err; cache_mark_used(block, b); err = block_write(b, block); cache_release(block); if (err != HAL_OK) return err; } /* * Erase first block on free list if it's not already erased. */ if (db.ksi.used < db.ksi.size && (err = block_erase_maybe(db.ksi.index[db.ksi.used])) != HAL_OK) return err; /* * And we're finally done. */ db.ks.driver = driver; return HAL_OK; } static hal_error_t ks_shutdown(const hal_ks_driver_t * const driver) { if (db.ks.driver != driver) return HAL_ERROR_KEYSTORE_ACCESS; return HAL_OK; } static hal_error_t ks_open(const hal_ks_driver_t * const driver, hal_ks_t **ks) { if (driver != hal_ks_token_driver || ks == NULL) return HAL_ERROR_BAD_ARGUMENTS; *ks = &db.ks; return HAL_OK; } static hal_error_t ks_close(hal_ks_t *ks) { if (ks != NULL && ks != &db.ks) return HAL_ERROR_BAD_ARGUMENTS; return HAL_OK; } static inline int acceptable_key_type(const hal_key_type_t type) { switch (type) { case HAL_KEY_TYPE_RSA_PRIVATE: case HAL_KEY_TYPE_EC_PRIVATE: case HAL_KEY_TYPE_RSA_PUBLIC: case HAL_KEY_TYPE_EC_PUBLIC: return 1; default: return 0; } } static hal_error_t ks_store(hal_ks_t *ks, hal_pkey_slot_t *slot, const uint8_t * const der, const size_t der_len) { if (ks != &db.ks || slot == NULL || der == NULL || der_len == 0 || !acceptable_key_type(slot->type)) return HAL_ERROR_BAD_ARGUMENTS; flash_block_t *block = cache_pick_lru(); flash_key_block_t *k = &block->key; uint8_t kek[KEK_LENGTH]; size_t kek_len; hal_error_t err; unsigned b; if (block == NULL) return HAL_ERROR_IMPOSSIBLE; if ((err = hal_ks_index_add(&db.ksi, &slot->name, 0, &b, NULL)) != HAL_OK) return err; cache_mark_used(block, b); memset(block, 0xFF, sizeof(*block)); block->header.block_type = BLOCK_TYPE_KEY; block->header.block_status = BLOCK_STATUS_LIVE; block->header.total_chunks = 1; block->header.this_chunk = 0; k->name = slot->name; k->type = slot->type; k->curve = slot->curve; k->flags = slot->flags; k->der_len = SIZEOF_FLASH_KEY_BLOCK_DER; if ((err = hal_mkm_get_kek(kek, &kek_len, sizeof(kek))) == HAL_OK) err = hal_aes_keywrap(NULL, kek, kek_len, der, der_len, k->der, &k->der_len); memset(kek, 0, sizeof(kek)); if (err == HAL_OK && (err = block_write(b, block)) == HAL_OK) return HAL_OK; memset(block, 0, sizeof(*block)); cache_release(block); (void) hal_ks_index_delete(&db.ksi, &slot->name, 0, NULL, NULL); return err; } static hal_error_t ks_fetch(hal_ks_t *ks, hal_pkey_slot_t *slot, uint8_t *der, size_t *der_len, const size_t der_max) { if (ks != &db.ks || slot == NULL) return HAL_ERROR_BAD_ARGUMENTS; flash_block_t *block; hal_error_t err; unsigned b; if ((err = hal_ks_index_find(&db.ksi, &slot->name, 0, &b, NULL)) != HAL_OK || (err = block_read_cached(b, &block)) != HAL_OK) return err; if (block_get_type(block) != BLOCK_TYPE_KEY) return HAL_ERROR_KEY_NOT_FOUND; cache_mark_used(block, b); flash_key_block_t *k = &block->key; slot->type = k->type; slot->curve = k->curve; slot->flags = k->flags; if (der == NULL && der_len != NULL) *der_len = k->der_len; if (der != NULL) { uint8_t kek[KEK_LENGTH]; size_t kek_len, der_len_; hal_error_t err; if (der_len == NULL) der_len = &der_len_; *der_len = der_max; if ((err = hal_mkm_get_kek(kek, &kek_len, sizeof(kek))) == HAL_OK) err = hal_aes_keyunwrap(NULL, kek, kek_len, k->der, k->der_len, der, der_len); memset(kek, 0, sizeof(kek)); if (err != HAL_OK) return err; } return HAL_OK; } static hal_error_t ks_delete(hal_ks_t *ks, hal_pkey_slot_t *slot) { if (ks != &db.ks || slot == NULL) return HAL_ERROR_BAD_ARGUMENTS; hal_error_t err; unsigned b; if ((err = hal_ks_index_delete(&db.ksi, &slot->name, 0, &b, NULL)) != HAL_OK) return err; cache_release(cache_find_block(b)); if ((err = block_zero(b)) != HAL_OK || (err = block_erase_maybe(db.ksi.index[db.ksi.used])) != HAL_OK) return err; return HAL_OK; } static hal_error_t ks_list(hal_ks_t *ks, const hal_client_handle_t client, const hal_session_handle_t session, hal_pkey_info_t *result, unsigned *result_len, const unsigned result_max) { if (ks != &db.ks || result == NULL || result_len == NULL) return HAL_ERROR_BAD_ARGUMENTS; if (db.ksi.used > result_max) return HAL_ERROR_RESULT_TOO_LONG; flash_block_t *block; hal_error_t err; unsigned b; *result_len = 0; for (int i = 0; i < db.ksi.used; i++) { b = db.ksi.index[i]; if ((err = block_read_cached(b, &block)) != HAL_OK) return err; if (block_get_type(block) != BLOCK_TYPE_KEY || block->header.this_chunk > 0) continue; result[*result_len].type = block->key.type; result[*result_len].curve = block->key.curve; result[*result_len].flags = block->key.flags; result[*result_len].name = block->key.name; ++ *result_len; } return HAL_OK; } static hal_error_t ks_match(hal_ks_t *ks, const hal_client_handle_t client, const hal_session_handle_t session, const hal_key_type_t type, const hal_curve_name_t curve, const hal_key_flags_t flags, hal_rpc_pkey_attribute_t *attributes, const unsigned attributes_len, hal_uuid_t *result, unsigned *result_len, const unsigned result_max, hal_uuid_t *previous_uuid) { #warning NIY return HAL_ERROR_IMPOSSIBLE; } static hal_error_t ks_set_attribute(hal_ks_t *ks, hal_pkey_slot_t *slot, const uint32_t type, const uint8_t * const value, const size_t value_len) { #warning NIY return HAL_ERROR_IMPOSSIBLE; } static hal_error_t ks_get_attribute(hal_ks_t *ks, hal_pkey_slot_t *slot, const uint32_t type, uint8_t *value, size_t *value_len, const size_t value_max) { #warning NIY return HAL_ERROR_IMPOSSIBLE; } static hal_error_t ks_delete_attribute(hal_ks_t *ks, hal_pkey_slot_t *slot, const uint32_t type) { #warning NIY return HAL_ERROR_IMPOSSIBLE; } const hal_ks_driver_t hal_ks_token_driver[1] = {{ ks_init, ks_shutdown, ks_open, ks_close, ks_store, ks_fetch, ks_delete, ks_list, ks_match, ks_set_attribute, ks_get_attribute, ks_delete_attribute }}; /* * The remaining functions aren't really part of the keystore API per se, * but they all involve non-key data which we keep in the keystore * because it's the flash we've got. */ /* * Fetch PIN. This is always cached, so just returned cached value. */ hal_error_t hal_get_pin(const hal_user_t user, const hal_ks_pin_t **pin) { if (pin == NULL) return HAL_ERROR_BAD_ARGUMENTS; switch (user) { case HAL_USER_WHEEL: *pin = &db.wheel_pin; break; case HAL_USER_SO: *pin = &db.so_pin; break; case HAL_USER_NORMAL: *pin = &db.user_pin; break; default: return HAL_ERROR_BAD_ARGUMENTS; } return HAL_OK; } /* * Fetch PIN block. hint = 0 because we know that the all-zeros UUID * should always sort to first slot in the index. */ static hal_error_t fetch_pin_block(unsigned *b, flash_block_t **block) { if (block == NULL) return HAL_ERROR_IMPOSSIBLE; hal_error_t err; int hint = 0; unsigned b_; if (b == NULL) b = &b_; if ((err = hal_ks_index_find(&db.ksi, &pin_uuid, 0, b, &hint)) != HAL_OK || (err = block_read_cached(*b, block)) != HAL_OK) return err; cache_mark_used(*block, *b); if (block_get_type(*block) != BLOCK_TYPE_PIN) return HAL_ERROR_IMPOSSIBLE; return HAL_OK; } /* * Update the PIN block. This block should always be present, but we * have to dance a bit to make sure we write the new PIN block before * destroying the old one. hint = 0 because we know that the all-zeros * UUID should always sort to first slot in the index. * * Most of what happens here is part of updating any block, not just a * PIN block, so we'll probably want to refactor once we get to the * point where we need to update key blocks too. */ static hal_error_t update_pin_block(const unsigned b1, flash_block_t *block, const flash_pin_block_t * const new_data) { if (block == NULL || new_data == NULL || block_get_type(block) != BLOCK_TYPE_PIN) return HAL_ERROR_IMPOSSIBLE; if (db.ksi.used == db.ksi.size) return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE; hal_error_t err = block_deprecate(b1, block); cache_release(block); if (err != HAL_OK) return err; /* * At this point we're committed to an update, because the old flash * block is now a tombstone and can't be reverted in place without * risking data loss. So the rest of this dance is to make sure * that we don't destroy the tombstone unless we succeeed in writing * the new block, so that we can attempt recovery on reboot. */ unsigned b2 = db.ksi.index[db.ksi.used]; cache_mark_used(block, b2); block->pin = *new_data; if ((err = block_write(b2, block)) != HAL_OK) return err; int hint = 0; unsigned b3; if ((err = hal_ks_index_replace(&db.ksi, &pin_uuid, 0, &b3, &hint)) != HAL_OK) return err; if (b2 != b3) return HAL_ERROR_IMPOSSIBLE; if ((err = block_zero(b1)) != HAL_OK) return err; if (db.ksi.used < db.ksi.size) err = block_erase_maybe(db.ksi.index[db.ksi.used]); return err; } /* * Change a PIN. */ hal_error_t hal_set_pin(const hal_user_t user, const hal_ks_pin_t * const pin) { if (pin == NULL) return HAL_ERROR_BAD_ARGUMENTS; flash_block_t *block; hal_error_t err; unsigned b; if ((err = fetch_pin_block(&b, &block)) != HAL_OK) return err; flash_pin_block_t new_data = block->pin; hal_ks_pin_t *dp, *bp; switch (user) { case HAL_USER_WHEEL: bp = &new_data.wheel_pin; dp = &db.wheel_pin; break; case HAL_USER_SO: bp = &new_data.so_pin; dp = &db.so_pin; break; case HAL_USER_NORMAL: bp = &new_data.user_pin; dp = &db.user_pin; break; default: return HAL_ERROR_BAD_ARGUMENTS; } const hal_ks_pin_t old_pin = *dp; *dp = *bp = *pin; if ((err = update_pin_block(b, block, &new_data)) != HAL_OK) *dp = old_pin; return err; } #if HAL_MKM_FLASH_BACKUP_KLUDGE /* * Horrible insecure kludge in lieu of a battery for the MKM. * * API here is a little strange: all calls pass a length parameter, * but any length other than the compiled in constant just returns an * immediate error, there's no notion of buffer max length vs buffer * used length, querying for the size of buffer really needed, or * anything like that. * * We might want to rewrite this some day, if we don't replace it with * a battery first. For now we just preserve the API as we found it * while re-implementing it on top of the new keystore. */ hal_error_t hal_mkm_flash_read(uint8_t *buf, const size_t len) { if (buf != NULL && len != KEK_LENGTH) return HAL_ERROR_MASTERKEY_BAD_LENGTH; flash_block_t *block; hal_error_t err; unsigned b; if ((err = fetch_pin_block(&b, &block)) != HAL_OK) return err; if (block->pin.kek_set != FLASH_KEK_SET) return HAL_ERROR_MASTERKEY_NOT_SET; if (buf != NULL) memcpy(buf, block->pin.kek, len); return HAL_OK; } hal_error_t hal_mkm_flash_write(const uint8_t * const buf, const size_t len) { if (buf == NULL) return HAL_ERROR_BAD_ARGUMENTS; if (len != KEK_LENGTH) return HAL_ERROR_MASTERKEY_BAD_LENGTH; flash_block_t *block; hal_error_t err; unsigned b; if ((err = fetch_pin_block(&b, &block)) != HAL_OK) return err; flash_pin_block_t new_data = block->pin; new_data.kek_set = FLASH_KEK_SET; memcpy(new_data.kek, buf, len); return update_pin_block(b, block, &new_data); } hal_error_t hal_mkm_flash_erase(const size_t len) { if (len != KEK_LENGTH) return HAL_ERROR_MASTERKEY_BAD_LENGTH; flash_block_t *block; hal_error_t err; unsigned b; if ((err = fetch_pin_block(&b, &block)) != HAL_OK) return err; flash_pin_block_t new_data = block->pin; new_data.kek_set = FLASH_KEK_SET; memset(new_data.kek, 0, len); return update_pin_block(b, block, &new_data); } #endif /* HAL_MKM_FLASH_BACKUP_KLUDGE */ /* * Local variables: * indent-tabs-mode: nil * End: */