/* * hashsig.c * --------- * Implementation of draft-mcgrew-hash-sigs-10.txt * * Copyright (c) 2018, NORDUnet A/S All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the NORDUnet nor the names of its contributors may * be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "hal.h" #include "hashsig.h" #include "ks.h" #include "asn1_internal.h" #include "xdr_internal.h" typedef struct { uint8_t bytes[32]; } bytestring32; typedef struct { uint8_t bytes[16]; } bytestring16; #define D_PBLC 0x8080 #define D_MESG 0x8181 #define D_LEAF 0x8282 #define D_INTR 0x8383 #define u32str(X) htonl(X) #define u16str(X) htons(X) #define u8str(X) (X & 0xff) #define check(op) do { hal_error_t _err = (op); if (_err != HAL_OK) return _err; } while (0) /* ---------------------------------------------------------------- */ /* * XDR extensions */ static inline hal_error_t hal_xdr_encode_bytestring32(uint8_t ** const outbuf, const uint8_t * const limit, const bytestring32 * const value) { return hal_xdr_encode_fixed_opaque(outbuf, limit, (const uint8_t *)value, sizeof(bytestring32)); } static inline hal_error_t hal_xdr_decode_bytestring32_ptr(const uint8_t ** const inbuf, const uint8_t * const limit, bytestring32 **value) { return hal_xdr_decode_fixed_opaque_ptr(inbuf, limit, (const uint8_t ** const)value, sizeof(bytestring32)); } static inline hal_error_t hal_xdr_decode_bytestring32(const uint8_t ** const inbuf, const uint8_t * const limit, bytestring32 * const value) { return hal_xdr_decode_fixed_opaque(inbuf, limit, (uint8_t * const)value, sizeof(bytestring32)); } static inline hal_error_t hal_xdr_encode_bytestring16(uint8_t ** const outbuf, const uint8_t * const limit, const bytestring16 *value) { return hal_xdr_encode_fixed_opaque(outbuf, limit, (const uint8_t *)value, sizeof(bytestring16)); } static inline hal_error_t hal_xdr_decode_bytestring16_ptr(const uint8_t ** const inbuf, const uint8_t * const limit, bytestring16 **value) { return hal_xdr_decode_fixed_opaque_ptr(inbuf, limit, (const uint8_t ** const)value, sizeof(bytestring16)); } static inline hal_error_t hal_xdr_decode_bytestring16(const uint8_t ** const inbuf, const uint8_t * const limit, bytestring16 * const value) { return hal_xdr_decode_fixed_opaque(inbuf, limit, (uint8_t * const)value, sizeof(bytestring16)); } /* ---------------------------------------------------------------- */ /* * ASN.1 extensions */ static inline hal_error_t hal_asn1_encode_size_t(const size_t n, uint8_t *der, size_t *der_len, const size_t der_max) { return hal_asn1_encode_uint32((const uint32_t)n, der, der_len, der_max); } static inline hal_error_t hal_asn1_decode_size_t(size_t *np, const uint8_t * const der, size_t *der_len, const size_t der_max) { /* trust the compiler to optimize out the unused code path */ if (sizeof(size_t) == sizeof(uint32_t)) { return hal_asn1_decode_uint32((uint32_t *)np, der, der_len, der_max); } else { uint32_t n; hal_error_t err; if ((err = hal_asn1_decode_uint32(&n, der, der_len, der_max)) == HAL_OK) *np = (size_t)n; return err; } } static inline hal_error_t hal_asn1_encode_lms_algorithm(const hal_lms_algorithm_t type, uint8_t *der, size_t *der_len, const size_t der_max) { return hal_asn1_encode_uint32((const uint32_t)type, der, der_len, der_max); } static inline hal_error_t hal_asn1_decode_lms_algorithm(hal_lms_algorithm_t *type, const uint8_t * const der, size_t *der_len, const size_t der_max) { uint32_t n; hal_error_t err; if ((err = hal_asn1_decode_uint32(&n, der, der_len, der_max)) == HAL_OK) *type = (hal_lms_algorithm_t)n; return err; } static inline hal_error_t hal_asn1_encode_lmots_algorithm(const hal_lmots_algorithm_t type, uint8_t *der, size_t *der_len, const size_t der_max) { return hal_asn1_encode_uint32((const uint32_t)type, der, der_len, der_max); } static inline hal_error_t hal_asn1_decode_lmots_algorithm(hal_lmots_algorithm_t *type, const uint8_t * const der, size_t *der_len, const size_t der_max) { uint32_t n; hal_error_t err; if ((err = hal_asn1_decode_uint32(&n, der, der_len, der_max)) == HAL_OK) *type = (hal_lmots_algorithm_t)n; return err; } #if 0 /* currently unused */ static inline hal_error_t hal_asn1_encode_uuid(const hal_uuid_t * const data, uint8_t *der, size_t *der_len, const size_t der_max) { return hal_asn1_encode_octet_string((const uint8_t * const)data, sizeof(hal_uuid_t), der, der_len, der_max); } static inline hal_error_t hal_asn1_decode_uuid(hal_uuid_t *data, const uint8_t * const der, size_t *der_len, const size_t der_max) { return hal_asn1_decode_octet_string((uint8_t *)data, sizeof(hal_uuid_t), der, der_len, der_max); } #endif static inline hal_error_t hal_asn1_encode_bytestring16(const bytestring16 * const data, uint8_t *der, size_t *der_len, const size_t der_max) { return hal_asn1_encode_octet_string((const uint8_t * const)data, sizeof(bytestring16), der, der_len, der_max); } static inline hal_error_t hal_asn1_decode_bytestring16(bytestring16 *data, const uint8_t * const der, size_t *der_len, const size_t der_max) { return hal_asn1_decode_octet_string((uint8_t *)data, sizeof(bytestring16), der, der_len, der_max); } static inline hal_error_t hal_asn1_encode_bytestring32(const bytestring32 * const data, uint8_t *der, size_t *der_len, const size_t der_max) { return hal_asn1_encode_octet_string((const uint8_t * const)data, sizeof(bytestring32), der, der_len, der_max); } static inline hal_error_t hal_asn1_decode_bytestring32(bytestring32 *data, const uint8_t * const der, size_t *der_len, const size_t der_max) { return hal_asn1_decode_octet_string((uint8_t *)data, sizeof(bytestring32), der, der_len, der_max); } /* ---------------------------------------------------------------- */ /* * LM-OTS */ typedef const struct lmots_parameter_set { hal_lmots_algorithm_t type; size_t n, w, p, ls; } lmots_parameter_t; static lmots_parameter_t lmots_parameters[] = { { hal_lmots_sha256_n32_w1, 32, 1, 265, 7 }, { hal_lmots_sha256_n32_w2, 32, 2, 133, 6 }, { hal_lmots_sha256_n32_w4, 32, 4, 67, 4 }, { hal_lmots_sha256_n32_w8, 32, 8, 34, 0 }, }; typedef struct lmots_key { hal_key_type_t type; lmots_parameter_t *lmots; bytestring16 I; size_t q; bytestring32 * x; bytestring32 K; } lmots_key_t; static inline lmots_parameter_t *lmots_select_parameter_set(const hal_lmots_algorithm_t lmots_type) { if (lmots_type < hal_lmots_sha256_n32_w1 || lmots_type > hal_lmots_sha256_n32_w8) return NULL; else return &lmots_parameters[lmots_type - hal_lmots_sha256_n32_w1]; } static inline size_t lmots_private_key_len(lmots_parameter_t * const lmots) { /* u32str(type) || I || u32str(q) || x[0] || x[1] || ... || x[p-1] */ return 2 * sizeof(uint32_t) + sizeof(bytestring16) + (lmots->p * lmots->n); } #if 0 /* currently unused */ static inline size_t lmots_public_key_len(lmots_parameter_t * const lmots) { /* u32str(type) || I || u32str(q) || K */ return 2 * sizeof(uint32_t) + sizeof(bytestring16) + lmots->n; } #endif static inline size_t lmots_signature_len(lmots_parameter_t * const lmots) { /* u32str(type) || C || y[0] || ... || y[p-1] */ return sizeof(uint32_t) + (lmots->p + 1) * lmots->n; } #if RPC_CLIENT == RPC_CLIENT_LOCAL /* Given a key with most fields filled in, generate the lmots private and * public key components (x and K). * Let the caller worry about storage. */ static hal_error_t lmots_generate(lmots_key_t * const key) { if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMOTS || key->lmots == NULL || key->x == NULL) return HAL_ERROR_BAD_ARGUMENTS; // Algorithm 0: Generating a Private Key // 3. set n and p according to the typecode and Table 1 size_t n = key->lmots->n; size_t p = key->lmots->p; size_t w = key->lmots->w; // 4. compute the array x as follows: // for ( i = 0; i < p; i = i + 1 ) { // set x[i] to a uniformly random n-byte string // } for (size_t i = 0; i < p; ++i) check(hal_rpc_get_random(&key->x[i], n)); // Algorithm 1: Generating a One Time Signature Public Key From a // Private Key // 4. compute the string K as follows: uint8_t statebuf[512]; hal_hash_state_t *state = NULL; bytestring32 y[p]; uint32_t l; uint16_t s; uint8_t b; // for ( i = 0; i < p; i = i + 1 ) { for (size_t i = 0; i < p; ++i) { // tmp = x[i] bytestring32 tmp; memcpy(&tmp, &key->x[i], sizeof(tmp)); // for ( j = 0; j < 2^w - 1; j = j + 1 ) { for (size_t j = 0; j < (1U << w) - 1; ++j) { // tmp = H(I || u32str(q) || u16str(i) || u8str(j) || tmp) check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I))); l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); s = u16str(i); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); b = u8str(j); check(hal_hash_update(state, (const uint8_t *)&b, sizeof(b))); check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp))); check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp))); } // y[i] = tmp memcpy(&y[i], &tmp, sizeof(tmp)); // } } // K = H(I || u32str(q) || u16str(D_PBLC) || y[0] || ... || y[p-1]) check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I))); l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); s = u16str(D_PBLC); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); for (size_t i = 0; i < p; ++i) check(hal_hash_update(state, (const uint8_t *)&y[i], sizeof(y[i]))); check(hal_hash_finalize(state, (uint8_t *)&key->K, sizeof(key->K))); return HAL_OK; } #endif /* strings of w-bit elements */ static uint8_t coef(const uint8_t * const S, const size_t i, size_t w) { switch (w) { case 1: return (S[i/8] >> (7 - (i % 8))) & 0x01; case 2: return (S[i/4] >> (6 - (2 * (i % 4)))) & 0x03; case 4: return (S[i/2] >> (4 - (4 * (i % 2)))) & 0x0f; case 8: return S[i]; default: return 0; } } /* checksum */ static uint16_t Cksm(const uint8_t * const S, lmots_parameter_t *lmots) { uint16_t sum = 0; for (size_t i = 0; i < (lmots->n * 8 / lmots->w); ++i) sum += ((1 << lmots->w) - 1) - coef(S, i, lmots->w); return (sum << lmots->ls); } #if RPC_CLIENT == RPC_CLIENT_LOCAL static hal_error_t lmots_sign(lmots_key_t *key, const uint8_t * const msg, const size_t msg_len, uint8_t * sig, size_t *sig_len, const size_t sig_max) { if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMOTS || msg == NULL || sig == NULL) return HAL_ERROR_BAD_ARGUMENTS; // Algorithm 3: Generating a One Time Signature From a Private Key and a // Message // 1. set type to the typecode of the algorithm // // 2. set n, p, and w according to the typecode and Table 1 size_t n = key->lmots->n; size_t p = key->lmots->p; size_t w = key->lmots->w; if (sig_max < lmots_signature_len(key->lmots)) return HAL_ERROR_BAD_ARGUMENTS; // 3. determine x, I and q from the private key // // 4. set C to a uniformly random n-byte string bytestring32 C; check(hal_rpc_get_random(&C, n)); // 5. compute the array y as follows: uint8_t statebuf[512]; hal_hash_state_t *state = NULL; uint8_t Q[n + 2]; /* hash || 16-bit checksum */ uint32_t l; uint16_t s; uint8_t b; // Q = H(I || u32str(q) || u16str(D_MESG) || C || message) check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I))); l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); s = u16str(D_MESG); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); check(hal_hash_update(state, (const uint8_t *)&C, sizeof(C))); check(hal_hash_update(state, msg, msg_len)); check(hal_hash_finalize(state, Q, n)); /* append checksum */ *(uint16_t *)&Q[n] = u16str(Cksm((uint8_t *)Q, key->lmots)); bytestring32 y[p]; // for ( i = 0; i < p; i = i + 1 ) { for (size_t i = 0; i < p; ++i) { // a = coef(Q || Cksm(Q), i, w) uint8_t a = coef(Q, i, w); // tmp = x[i] bytestring32 tmp; memcpy(&tmp, &key->x[i], sizeof(tmp)); // for ( j = 0; j < a; j = j + 1 ) { for (size_t j = 0; j < (size_t)a; ++j) { // tmp = H(I || u32str(q) || u16str(i) || u8str(j) || tmp) check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I))); l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); s = u16str(i); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); b = u8str(j); check(hal_hash_update(state, (const uint8_t *)&b, sizeof(b))); check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp))); check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp))); // } } // y[i] = tmp memcpy(&y[i], &tmp, sizeof(tmp)); } // 6. return u32str(type) || C || y[0] || ... || y[p-1] uint8_t *sigptr = sig; const uint8_t * const siglim = sig + sig_max; check(hal_xdr_encode_int(&sigptr, siglim, key->lmots->type)); check(hal_xdr_encode_bytestring32(&sigptr, siglim, &C)); for (size_t i = 0; i < p; ++i) check(hal_xdr_encode_bytestring32(&sigptr, siglim, &y[i])); if (sig_len != NULL) *sig_len = sigptr - sig; return HAL_OK; } #endif static hal_error_t lmots_public_key_candidate(const lmots_key_t * const key, const uint8_t * const msg, const size_t msg_len, const uint8_t * const sig, const size_t sig_len) { if (key == NULL || msg == NULL || sig == NULL) return HAL_ERROR_BAD_ARGUMENTS; /* Skip the length checks here, because we did a unitary length check * at the start of lms_verify. */ // 1. if the signature is not at least four bytes long, return INVALID // // 2. parse sigtype, C, and y from the signature as follows: // a. sigtype = strTou32(first 4 bytes of signature) const uint8_t *sigptr = sig; const uint8_t * const siglim = sig + sig_len; uint32_t sigtype; check(hal_xdr_decode_int(&sigptr, siglim, &sigtype)); // b. if sigtype is not equal to pubtype, return INVALID if ((hal_lmots_algorithm_t)sigtype != key->lmots->type) return HAL_ERROR_INVALID_SIGNATURE; // c. set n and p according to the pubtype and Table 1; if the // signature is not exactly 4 + n * (p+1) bytes long, return INVALID size_t n = key->lmots->n; size_t p = key->lmots->p; size_t w = key->lmots->w; // d. C = next n bytes of signature bytestring32 C; check(hal_xdr_decode_bytestring32(&sigptr, siglim, &C)); // e. y[0] = next n bytes of signature // y[1] = next n bytes of signature // ... // y[p-1] = next n bytes of signature bytestring32 y[p]; for (size_t i = 0; i < p; ++i) check(hal_xdr_decode_bytestring32(&sigptr, siglim, &y[i])); // 3. compute the string Kc as follows uint8_t statebuf[512]; hal_hash_state_t *state = NULL; uint8_t Q[n + 2]; /* hash || 16-bit checksum */ uint32_t l; uint16_t s; uint8_t b; // Q = H(I || u32str(q) || u16str(D_MESG) || C || message) check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I))); l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); s = u16str(D_MESG); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); check(hal_hash_update(state, (const uint8_t *)&C, sizeof(C))); check(hal_hash_update(state, msg, msg_len)); check(hal_hash_finalize(state, Q, n)); /* append checksum */ *(uint16_t *)&Q[n] = u16str(Cksm((uint8_t *)Q, key->lmots)); bytestring32 z[p]; // for ( i = 0; i < p; i = i + 1 ) { for (size_t i = 0; i < p; ++i) { // a = coef(Q || Cksm(Q), i, w) uint8_t a = coef(Q, i, w); // tmp = y[i] bytestring32 tmp; memcpy(&tmp, &y[i], sizeof(tmp)); // for ( j = a; j < 2^w - 1; j = j + 1 ) { for (size_t j = (size_t)a; j < (1U << w) - 1; ++j) { // tmp = H(I || u32str(q) || u16str(i) || u8str(j) || tmp) check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I))); l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); s = u16str(i); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); b = u8str(j); check(hal_hash_update(state, (const uint8_t *)&b, sizeof(b))); check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp))); check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp))); // } } // z[i] = tmp memcpy(&z[i], &tmp, sizeof(tmp)); // } } // Kc = H(I || u32str(q) || u16str(D_PBLC) || z[0] || z[1] || ... || z[p-1]) check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I))); l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); s = u16str(D_PBLC); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); for (size_t i = 0; i < p; ++i) check(hal_hash_update(state, (const uint8_t *)&z[i], sizeof(z[i]))); check(hal_hash_finalize(state, (uint8_t *)&key->K, sizeof(key->K))); // 4. return Kc return HAL_OK; } #if RPC_CLIENT == RPC_CLIENT_LOCAL static hal_error_t lmots_private_key_to_der(const lmots_key_t * const key, uint8_t *der, size_t *der_len, const size_t der_max) { if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMOTS) return HAL_ERROR_BAD_ARGUMENTS; // u32str(lmots_type) || I || u32str(q) || K || x[0] || x[1] || ... || x[p-1] /* K is not an integral part of the private key, but we store it to speed up restart */ /* * Calculate data length. */ size_t len, vlen = 0, hlen; check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_bytestring16(&key->I, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_size_t(key->q, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_bytestring32(&key->K, NULL, &len, 0)); vlen += len; for (size_t i = 0; i < key->lmots->p; ++i) { check(hal_asn1_encode_bytestring32(&key->x[i], NULL, &len, 0)); vlen += len; } check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen, 0)); check(hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len, NULL, 0, NULL, hlen + vlen, NULL, der_len, der_max)); if (der == NULL) return HAL_OK; /* * Encode data. */ check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max)); uint8_t *d = der + hlen; memset(d, 0, vlen); check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_size_t(key->q, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_bytestring32(&key->K, d, &len, vlen)); d += len; vlen -= len; for (size_t i = 0; i < key->lmots->p; ++i) { check(hal_asn1_encode_bytestring32(&key->x[i], d, &len, vlen)); d += len; vlen -= len; } return hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len, NULL, 0, der, d - der, der, der_len, der_max); } static size_t lmots_private_key_to_der_len(const lmots_key_t * const key) { size_t len = 0; return (lmots_private_key_to_der(key, NULL, &len, 0) == HAL_OK) ? len : 0; } static hal_error_t lmots_private_key_from_der(lmots_key_t *key, const uint8_t *der, const size_t der_len) { if (key == NULL || der == NULL) return HAL_ERROR_BAD_ARGUMENTS; key->type = HAL_KEY_TYPE_HASHSIG_LMOTS; size_t hlen, vlen, alg_oid_len, curve_oid_len, privkey_len; const uint8_t *alg_oid, *curve_oid, *privkey; check(hal_asn1_decode_pkcs8_privatekeyinfo(&alg_oid, &alg_oid_len, &curve_oid, &curve_oid_len, &privkey, &privkey_len, der, der_len)); if (alg_oid_len != hal_asn1_oid_mts_hashsig_len || memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0 || curve_oid_len != 0) return HAL_ERROR_ASN1_PARSE_FAILED; check(hal_asn1_decode_header(ASN1_SEQUENCE, privkey, privkey_len, &hlen, &vlen)); const uint8_t *d = privkey + hlen; size_t len; // u32str(lmots_type) || I || u32str(q) || K || x[0] || x[1] || ... || x[p-1] hal_lmots_algorithm_t lmots_type; check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &len, vlen)); d += len; vlen -= len; key->lmots = lmots_select_parameter_set(lmots_type); check(hal_asn1_decode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_decode_size_t(&key->q, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_decode_bytestring32(&key->K, d, &len, vlen)); d += len; vlen -= len; if (key->x != NULL) { for (size_t i = 0; i < key->lmots->p; ++i) { check(hal_asn1_decode_bytestring32(&key->x[i], d, &len, vlen)); d += len; vlen -= len; } if (d != privkey + privkey_len) return HAL_ERROR_ASN1_PARSE_FAILED; } return HAL_OK; } #endif /* ---------------------------------------------------------------- */ /* * LMS */ typedef const struct lms_parameter_set { hal_lms_algorithm_t type; size_t m, h; } lms_parameter_t; static lms_parameter_t lms_parameters[] = { { hal_lms_sha256_n32_h5, 32, 5 }, { hal_lms_sha256_n32_h10, 32, 10 }, { hal_lms_sha256_n32_h15, 32, 15 }, { hal_lms_sha256_n32_h20, 32, 20 }, { hal_lms_sha256_n32_h25, 32, 25 }, }; typedef struct lms_key { hal_key_type_t type; size_t level; lms_parameter_t *lms; lmots_parameter_t *lmots; bytestring16 I; size_t q; /* index of next lmots signing key */ hal_uuid_t *lmots_keys; /* private key components */ bytestring32 *T; /* public key components */ bytestring32 T1; /* copy of T[1] */ uint8_t *pubkey; /* in XDR format */ size_t pubkey_len; uint8_t *signature; /* of public key by parent lms key */ size_t signature_len; } lms_key_t; static inline lms_parameter_t *lms_select_parameter_set(const hal_lms_algorithm_t lms_type) { if (lms_type < hal_lms_sha256_n32_h5 || lms_type > hal_lms_sha256_n32_h25) return NULL; else return &lms_parameters[lms_type - hal_lms_sha256_n32_h5]; } static inline size_t lms_public_key_len(lms_parameter_t * const lms) { /* u32str(type) || u32str(otstype) || I || T[1] */ return 2 * sizeof(uint32_t) + 16 + lms->m; } static inline size_t lms_signature_len(lms_parameter_t * const lms, lmots_parameter_t * const lmots) { /* u32str(q) || ots_signature || u32str(type) || path[0] || path[1] || ... || path[h-1] */ return 2 * sizeof(uint32_t) + lmots_signature_len(lmots) + lms->h * lms->m; } #if RPC_CLIENT == RPC_CLIENT_LOCAL /* Given a key with most fields filled in, generate the lms private and * public key components. * Let the caller worry about storage. */ static hal_error_t lms_generate(lms_key_t *key) { if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMS || key->lms == NULL || key->lmots == NULL || key->lmots_keys == NULL || key->T == NULL) return HAL_ERROR_BAD_ARGUMENTS; check(hal_uuid_gen((hal_uuid_t *)&key->I)); key->q = 0; bytestring32 x[key->lmots->p]; lmots_key_t lmots_key = { .type = HAL_KEY_TYPE_HASHSIG_LMOTS, .lmots = key->lmots, .x = x }; memcpy(&lmots_key.I, &key->I, sizeof(key->I)); hal_pkey_slot_t slot = { .type = HAL_KEY_TYPE_HASHSIG_LMOTS, .curve = HAL_CURVE_NONE, .flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE | ((key->level == 0) ? HAL_KEY_FLAG_TOKEN: 0) }; hal_ks_t *ks = (key->level == 0) ? hal_ks_token : hal_ks_volatile; uint8_t statebuf[512]; hal_hash_state_t *state = NULL; uint32_t l; uint16_t s; size_t h2 = (1 << key->lms->h); /* private key - array of lmots key names */ for (size_t q = 0; q < h2; ++q) { /* generate the lmots private and public key components */ lmots_key.q = q; check(lmots_generate(&lmots_key)); /* store the lmots key */ uint8_t der[lmots_private_key_to_der_len(&lmots_key)]; size_t der_len; check(lmots_private_key_to_der(&lmots_key, der, &der_len, sizeof(der))); check(hal_uuid_gen(&slot.name)); hal_error_t err = hal_ks_store(ks, &slot, der, der_len); memset(&x, 0, sizeof(x)); memset(der, 0, sizeof(der)); if (err != HAL_OK) return err; /* record the lmots keystore name */ memcpy(&key->lmots_keys[q], &slot.name, sizeof(slot.name)); /* compute T[r] = H(I || u32str(r) || u16str(D_LEAF) || OTS_PUB_HASH[r-2^h]) */ size_t r = h2 + q; check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I))); l = u32str(r); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); s = u16str(D_LEAF); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); check(hal_hash_update(state, (const uint8_t *)&lmots_key.K, sizeof(lmots_key.K))); check(hal_hash_finalize(state, (uint8_t *)&key->T[r], sizeof(key->T[r]))); hal_task_yield_maybe(); } /* generate the rest of T[r] = H(I || u32str(r) || u16str(D_INTR) || T[2*r] || T[2*r+1]) */ for (size_t r = h2 - 1; r > 0; --r) { check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I))); l = u32str(r); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); s = u16str(D_INTR); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); check(hal_hash_update(state, (const uint8_t *)&key->T[2*r], sizeof(key->T[r]))); check(hal_hash_update(state, (const uint8_t *)&key->T[2*r+1], sizeof(key->T[r]))); check(hal_hash_finalize(state, (uint8_t *)&key->T[r], sizeof(key->T[r]))); hal_task_yield_maybe(); } memcpy(&key->T1, &key->T[1], sizeof(key->T1)); /* generate the XDR encoding of the public key, which will be signed * by the previous lms key */ uint8_t *pubkey = key->pubkey; const uint8_t * const publim = key->pubkey + key->pubkey_len; // u32str(lms_type) || u32str(lmots_type) || I || T[1] check(hal_xdr_encode_int(&pubkey, publim, key->lms->type)); check(hal_xdr_encode_int(&pubkey, publim, key->lmots->type)); check(hal_xdr_encode_bytestring16(&pubkey, publim, &key->I)); check(hal_xdr_encode_bytestring32(&pubkey, publim, &key->T1)); return HAL_OK; } static hal_error_t lms_delete(const lms_key_t * const key) { hal_pkey_slot_t slot = {{0}}; hal_ks_t *ks = (key->level == 0) ? hal_ks_token : hal_ks_volatile; /* delete the lmots keys */ for (size_t i = 0; i < (1U << key->lms->h); ++i) { memcpy(&slot.name, &key->lmots_keys[i], sizeof(slot.name)); check(hal_ks_delete(ks, &slot)); hal_task_yield_maybe(); } /* delete the lms key */ memcpy(&slot.name, &key->I, sizeof(slot.name)); return hal_ks_delete(ks, &slot); } static hal_error_t lms_private_key_to_der(const lms_key_t * const key, uint8_t *der, size_t *der_len, const size_t der_max); static hal_error_t lms_sign(lms_key_t * const key, const uint8_t * const msg, const size_t msg_len, uint8_t *sig, size_t *sig_len, const size_t sig_max) { if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMS || msg == NULL || sig == NULL) return HAL_ERROR_BAD_ARGUMENTS; if (key->q >= (1U << key->lms->h)) return HAL_ERROR_HASHSIG_KEY_EXHAUSTED; if (sig_max < lms_signature_len(key->lms, key->lmots)) return HAL_ERROR_RESULT_TOO_LONG; /* u32str(q) || ots_signature || u32str(lms_type) || path[0] || path[1] || ... || path[h-1] */ uint8_t *sigptr = sig; const uint8_t * const siglim = sig + sig_max; check(hal_xdr_encode_int(&sigptr, siglim, key->q)); /* fetch and decode the lmots signing key from the keystore */ hal_pkey_slot_t slot; memset(&slot, 0, sizeof(slot)); memcpy(&slot.name, &key->lmots_keys[key->q], sizeof(slot.name)); lmots_key_t lmots_key; memset(&lmots_key, 0, sizeof(lmots_key)); bytestring32 x[key->lmots->p]; memset(&x, 0, sizeof(x)); lmots_key.x = x; uint8_t der[HAL_KS_WRAPPED_KEYSIZE]; size_t der_len; hal_ks_t *ks = (key->level == 0) ? hal_ks_token : hal_ks_volatile; check(hal_ks_fetch(ks, &slot, der, &der_len, sizeof(der))); check(lmots_private_key_from_der(&lmots_key, der, der_len)); memset(&der, 0, sizeof(der)); //? check lmots_type and I vs. lms key? /* generate the lmots signature */ size_t lmots_sig_len; check(lmots_sign(&lmots_key, msg, msg_len, sigptr, &lmots_sig_len, sig_max - (sigptr - sig))); memset(&x, 0, sizeof(x)); sigptr += lmots_sig_len; check(hal_xdr_encode_int(&sigptr, siglim, key->lms->type)); /* generate the path array */ for (size_t r = (1 << key->lms->h) + key->q; r > 1; r /= 2) check(hal_xdr_encode_bytestring32(&sigptr, siglim, ((r & 1) ? &key->T[r-1] : &key->T[r+1]))); if (sig_len != NULL) *sig_len = sigptr - sig; /* update and store q before returning the signature */ ++key->q; check(lms_private_key_to_der(key, der, &der_len, sizeof(der))); slot.type = HAL_KEY_TYPE_HASHSIG_LMS; slot.flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE | ((key->level == 0) ? HAL_KEY_FLAG_TOKEN : 0); memcpy(&slot.name, &key->I, sizeof(slot.name)); check(hal_ks_rewrite_der(ks, &slot, der, der_len)); return HAL_OK; } #endif static hal_error_t lms_public_key_candidate(const lms_key_t * const key, const uint8_t * const msg, const size_t msg_len, const uint8_t * const sig, const size_t sig_len, bytestring32 * Tc); static hal_error_t lms_verify(const lms_key_t * const key, const uint8_t * const msg, const size_t msg_len, const uint8_t * const sig, const size_t sig_len) { if (key == NULL || msg == NULL || sig == NULL) return HAL_ERROR_BAD_ARGUMENTS; /* We can do one length check right now, rather than the 3 in * Algorithm 6b and 2 in Algorithm 4b, because the lms and lmots types * in the signature have to match the key. */ if (sig_len != lms_signature_len(key->lms, key->lmots)) return HAL_ERROR_INVALID_SIGNATURE; // Algorithm 6: LMS Signature Verification // // 1. if the public key is not at least eight bytes long, return // INVALID // // 2. parse pubtype, I, and T[1] from the public key as follows: // // a. pubtype = strTou32(first 4 bytes of public key) // // b. ots_typecode = strTou32(next 4 bytes of public key) // // c. set m according to pubtype, based on Table 2 // // d. if the public key is not exactly 24 + m bytes // long, return INVALID // // e. I = next 16 bytes of the public key // // f. T[1] = next m bytes of the public key // // 3. compute the candidate LMS root value Tc from the signature, // message, identifier and pubtype using Algorithm 6b. bytestring32 Tc; check(lms_public_key_candidate(key, msg, msg_len, sig, sig_len, &Tc)); // 4. if Tc is equal to T[1], return VALID; otherwise, return INVALID return (memcmp(&Tc, &key->T1, sizeof(Tc)) ? HAL_ERROR_INVALID_SIGNATURE : HAL_OK); } static hal_error_t lms_public_key_candidate(const lms_key_t * const key, const uint8_t * const msg, const size_t msg_len, const uint8_t * const sig, const size_t sig_len, bytestring32 * Tc) { // Algorithm 6b: Computing an LMS Public Key Candidate from a Signature, // Message, Identifier, and algorithm typecode /* XXX and pubotstype */ // 1. if the signature is not at least eight bytes long, return INVALID // // 2. parse sigtype, q, ots_signature, and path from the signature as // follows: // // a. q = strTou32(first 4 bytes of signature) const uint8_t *sigptr = sig; const uint8_t * const siglim = sig + sig_len; uint32_t q; check(hal_xdr_decode_int(&sigptr, siglim, &q)); // b. otssigtype = strTou32(next 4 bytes of signature) uint32_t otssigtype; check(hal_xdr_decode_int_peek(&sigptr, siglim, &otssigtype)); // c. if otssigtype is not the OTS typecode from the public key, return INVALID if ((hal_lmots_algorithm_t)otssigtype != key->lmots->type) return HAL_ERROR_INVALID_SIGNATURE; // d. set n, p according to otssigtype and Table 1; if the // signature is not at least 12 + n * (p + 1) bytes long, return INVALID // // e. ots_signature = bytes 8 through 8 + n * (p + 1) - 1 of signature /* XXX Technically, this is also wrong - this is the remainder of * ots_signature after otssigtype. The full ots_signature would be * bytes 4 through 8 + n * (p + 1) - 1. */ const uint8_t * const ots_signature = sigptr; sigptr += lmots_signature_len(key->lmots); // f. sigtype = strTou32(4 bytes of signature at location 8 + n * (p + 1)) uint32_t sigtype; check(hal_xdr_decode_int(&sigptr, siglim, &sigtype)); // f. if sigtype is not the LM typecode from the public key, return INVALID if ((hal_lms_algorithm_t)sigtype != key->lms->type) return HAL_ERROR_INVALID_SIGNATURE; // g. set m, h according to sigtype and Table 2 size_t m = key->lms->m; size_t h = key->lms->h; size_t h2 = (1 << key->lms->h); // h. if q >= 2^h or the signature is not exactly 12 + n * (p + 1) + m * h bytes long, return INVALID if (q >= h2) return HAL_ERROR_INVALID_SIGNATURE; // i. set path as follows: // path[0] = next m bytes of signature // path[1] = next m bytes of signature // ... // path[h-1] = next m bytes of signature bytestring32 path[h]; for (size_t i = 0; i < h; ++i) check(hal_xdr_decode_bytestring32(&sigptr, siglim, &path[i])); // 3. Kc = candidate public key computed by applying Algorithm 4b // to the signature ots_signature, the message, and the // identifiers I, q lmots_key_t lmots_key = { .type = HAL_KEY_TYPE_HASHSIG_LMOTS, .lmots = key->lmots, .q = q }; memcpy(&lmots_key.I, &key->I, sizeof(lmots_key.I)); check(lmots_public_key_candidate(&lmots_key, msg, msg_len, ots_signature, lmots_signature_len(key->lmots))); // 4. compute the candidate LMS root value Tc as follows: uint8_t statebuf[512]; hal_hash_state_t *state = NULL; uint32_t l; uint16_t s; // node_num = 2^h + q size_t r = h2 + q; // tmp = H(I || u32str(node_num) || u16str(D_LEAF) || Kc) bytestring32 tmp; check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&lmots_key.I, sizeof(lmots_key.I))); l = u32str(r); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); s = u16str(D_LEAF); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); check(hal_hash_update(state, (const uint8_t *)&lmots_key.K, sizeof(lmots_key.K))); check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp))); // i = 0 // while (node_num > 1) { // if (node_num is odd): // tmp = H(I || u32str(node_num/2) || u16str(D_INTR) || path[i] || tmp) // else: // tmp = H(I || u32str(node_num/2) || u16str(D_INTR) || tmp || path[i]) // node_num = node_num/2 // i = i + 1 // } for (size_t i = 0; r > 1; r /= 2, ++i) { check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I))); l = u32str(r/2); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); s = u16str(D_INTR); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); if (r & 1) { check(hal_hash_update(state, (const uint8_t *)&path[i], m)); check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp))); } else { check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp))); check(hal_hash_update(state, (const uint8_t *)&path[i], m)); } check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp))); } // Tc = tmp memcpy(Tc, &tmp, sizeof(*Tc)); return HAL_OK; } #if RPC_CLIENT == RPC_CLIENT_LOCAL static hal_error_t lms_private_key_to_der(const lms_key_t * const key, uint8_t *der, size_t *der_len, const size_t der_max) { if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMS) return HAL_ERROR_BAD_ARGUMENTS; /* * Calculate data length. */ // u32str(lms_type) || u32str(lmots_type) || I || q size_t len, vlen = 0, hlen; check(hal_asn1_encode_lms_algorithm(key->lms->type, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_bytestring16(&key->I, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_size_t(key->q, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen, 0)); check(hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len, NULL, 0, NULL, hlen + vlen, NULL, der_len, der_max)); if (der == NULL) return HAL_OK; /* * Encode data. */ check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max)); uint8_t *d = der + hlen; memset(d, 0, vlen); check(hal_asn1_encode_lms_algorithm(key->lms->type, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_size_t(key->q, d, &len, vlen)); d += len; vlen -= len; return hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len, NULL, 0, der, d - der, der, der_len, der_max); } static size_t lms_private_key_to_der_len(const lms_key_t * const key) { size_t len = 0; return lms_private_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0; } static hal_error_t lms_private_key_from_der(lms_key_t *key, const uint8_t *der, const size_t der_len) { if (key == NULL || der == NULL) return HAL_ERROR_BAD_ARGUMENTS; key->type = HAL_KEY_TYPE_HASHSIG_LMS; size_t hlen, vlen, alg_oid_len, curve_oid_len, privkey_len; const uint8_t *alg_oid, *curve_oid, *privkey; check(hal_asn1_decode_pkcs8_privatekeyinfo(&alg_oid, &alg_oid_len, &curve_oid, &curve_oid_len, &privkey, &privkey_len, der, der_len)); if (alg_oid_len != hal_asn1_oid_mts_hashsig_len || memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0 || curve_oid_len != 0) return HAL_ERROR_ASN1_PARSE_FAILED; check(hal_asn1_decode_header(ASN1_SEQUENCE, privkey, privkey_len, &hlen, &vlen)); const uint8_t *d = privkey + hlen; size_t n; // u32str(lms_type) || u32str(lmots_type) || I || q hal_lms_algorithm_t lms_type; check(hal_asn1_decode_lms_algorithm(&lms_type, d, &n, vlen)); d += n; vlen -= n; key->lms = lms_select_parameter_set(lms_type); hal_lmots_algorithm_t lmots_type; check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &n, vlen)); d += n; vlen -= n; key->lmots = lmots_select_parameter_set(lmots_type); check(hal_asn1_decode_bytestring16(&key->I, d, &n, vlen)); d += n; vlen -= n; check(hal_asn1_decode_size_t(&key->q, d, &n, vlen)); d += n; vlen -= n; if (d != privkey + privkey_len) return HAL_ERROR_ASN1_PARSE_FAILED; return HAL_OK; } #endif /* ---------------------------------------------------------------- */ /* * HSS */ /* For purposes of the external API, the key type is "hal_hashsig_key_t". * Internally, we refer to it as "hss_key_t". */ typedef struct hal_hashsig_key hss_key_t; struct hal_hashsig_key { hal_key_type_t type; hss_key_t *next; hal_uuid_t name; size_t L; lms_parameter_t *lms; lmots_parameter_t *lmots; bytestring16 I; bytestring32 T1; lms_key_t *lms_keys; }; const size_t hal_hashsig_key_t_size = sizeof(hss_key_t); static hss_key_t *hss_keys = NULL; #if 0 /* currently unused */ static inline size_t hss_public_key_len(lms_parameter_t * const lms) { /* L || pub[0] */ return sizeof(uint32_t) + lms_public_key_len(lms); } #endif static inline size_t hss_signature_len(const size_t L, lms_parameter_t * const lms, lmots_parameter_t * const lmots) { /* u32str(Nspk) || sig[0] || pub[1] || ... || sig[Nspk-1] || pub[Nspk] || sig[Nspk] */ return sizeof(uint32_t) + L * lms_signature_len(lms, lmots) + (L - 1) * lms_public_key_len(lms); } size_t hal_hashsig_signature_len(const size_t L, const hal_lms_algorithm_t lms_type, const hal_lmots_algorithm_t lmots_type) { lms_parameter_t * const lms = lms_select_parameter_set(lms_type); if (lms == NULL) return 0; lmots_parameter_t * const lmots = lmots_select_parameter_set(lmots_type); if (lmots == NULL) return 0; return hss_signature_len(L, lms, lmots); } size_t hal_hashsig_lmots_private_key_len(const hal_lmots_algorithm_t lmots_type) { lmots_parameter_t * const lmots = lmots_select_parameter_set(lmots_type); if (lmots == NULL) return 0; return lmots_private_key_len(lmots); } #if RPC_CLIENT == RPC_CLIENT_LOCAL static int restart_in_progress = 0; static inline void *gnaw(uint8_t **mem, size_t *len, const size_t size) { if (mem == NULL || *mem == NULL || len == NULL || size > *len) return NULL; void *ret = *mem; *mem += size; *len -= size; return ret; } static hal_error_t hss_alloc(hal_hashsig_key_t **key_, const size_t L, const hal_lms_algorithm_t lms_type, const hal_lmots_algorithm_t lmots_type) { if (key_ == NULL) return HAL_ERROR_BAD_ARGUMENTS; if (L == 0 || L > 8) return HAL_ERROR_BAD_ARGUMENTS; lms_parameter_t *lms = lms_select_parameter_set(lms_type); if (lms == NULL) return HAL_ERROR_BAD_ARGUMENTS; size_t h2 = (1 << lms->h); lmots_parameter_t *lmots = lmots_select_parameter_set(lmots_type); if (lmots == NULL) return HAL_ERROR_BAD_ARGUMENTS; /* w=1 fails on the Alpha, because the key exceeds the keystore block * size. The XDR encoding of the key is going to differ from the DER * encoding, but it's at least in the ballpark to tell us whether the key * will fit. */ if (lmots_private_key_len(lmots) > HAL_KS_BLOCK_SIZE) return HAL_ERROR_UNSUPPORTED_KEY; if (hss_signature_len(L, lms, lmots) > HAL_RPC_MAX_PKT_SIZE) return HAL_ERROR_UNSUPPORTED_KEY; /* check volatile keystore for space to store the lower-level trees */ size_t available; check(hal_ks_available(hal_ks_volatile, &available)); if (available < (L - 1) * (h2 + 1)) return HAL_ERROR_NO_KEY_INDEX_SLOTS; size_t lms_sig_len = lms_signature_len(lms, lmots); size_t lms_pub_len = lms_public_key_len(lms); /* allocate lms tree nodes and lmots key names, atomically */ size_t len = (sizeof(hss_key_t) + L * sizeof(lms_key_t) + L * lms_sig_len + L * lms_pub_len + L * h2 * sizeof(hal_uuid_t) + L * (2 * h2) * sizeof(bytestring32)); uint8_t *mem = hal_allocate_static_memory(len); if (mem == NULL) return HAL_ERROR_ALLOCATION_FAILURE; memset(mem, 0, len); /* allocate the key that will stay in working memory */ hss_key_t *key = gnaw(&mem, &len, sizeof(hss_key_t)); *key_ = key; key->type = HAL_KEY_TYPE_HASHSIG_PRIVATE; key->L = L; key->lms = lms; key->lmots = lmots; /* add to the list of active keys */ key->next = hss_keys; hss_keys = key; /* allocate the list of lms trees */ key->lms_keys = gnaw(&mem, &len, L * sizeof(lms_key_t)); for (size_t i = 0; i < L; ++i) { /* XXX some of this is redundant to lms_private_key_from_der */ lms_key_t * lms_key = &key->lms_keys[i]; lms_key->type = HAL_KEY_TYPE_HASHSIG_LMS; lms_key->lms = lms; lms_key->lmots = lmots; lms_key->level = i; lms_key->lmots_keys = (hal_uuid_t *)gnaw(&mem, &len, h2 * sizeof(hal_uuid_t)); lms_key->T = gnaw(&mem, &len, (2 * h2) * sizeof(bytestring32)); lms_key->signature = gnaw(&mem, &len, lms_sig_len); lms_key->signature_len = lms_sig_len; lms_key->pubkey = gnaw(&mem, &len, lms_pub_len); lms_key->pubkey_len = lms_pub_len; } return HAL_OK; } /* called from pkey_local_generate_hashsig */ hal_error_t hal_hashsig_key_gen(hal_core_t *core, hal_hashsig_key_t **key_, const size_t L, const hal_lms_algorithm_t lms_type, const hal_lmots_algorithm_t lmots_type) { /* hss_alloc does most of the checks */ if (restart_in_progress) return HAL_ERROR_NOT_READY; /* check flash keystore for space to store the root tree */ lms_parameter_t *lms = lms_select_parameter_set(lms_type); if (lms == NULL) return HAL_ERROR_BAD_ARGUMENTS; size_t available; check(hal_ks_available(hal_ks_token, &available)); if (available < (1U << lms->h) + 2) return HAL_ERROR_NO_KEY_INDEX_SLOTS; check(hss_alloc(key_, L, lms_type, lmots_type)); hss_key_t *key = *key_; /* generate the lms trees */ for (size_t i = 0; i < L; ++i) { lms_key_t * lms_key = &key->lms_keys[i]; check(lms_generate(lms_key)); if (i > 0) /* sign this tree with the previous */ check(lms_sign(&key->lms_keys[i-1], (const uint8_t * const)lms_key->pubkey, lms_public_key_len(key->lms), lms_key->signature, NULL, lms_signature_len(key->lms, key->lmots))); /* store the lms key */ hal_pkey_slot_t slot = { .type = HAL_KEY_TYPE_HASHSIG_LMS, .curve = HAL_CURVE_NONE, .flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE | ((i == 0) ? HAL_KEY_FLAG_TOKEN: 0) }; hal_ks_t *ks = (i == 0) ? hal_ks_token : hal_ks_volatile; uint8_t der[lms_private_key_to_der_len(lms_key)]; size_t der_len; memcpy(&slot.name, &lms_key->I, sizeof(slot.name)); check(lms_private_key_to_der(lms_key, der, &der_len, sizeof(der))); check(hal_ks_store(ks, &slot, der, der_len)); } memcpy(&key->I, &key->lms_keys[0].I, sizeof(key->I)); memcpy(&key->T1, &key->lms_keys[0].T1, sizeof(key->T1)); /* pkey_local_generate_hashsig stores the key */ return HAL_OK; } /* caller will delete the hss key from the keystore */ hal_error_t hal_hashsig_key_delete(const hal_hashsig_key_t * const key) { if (restart_in_progress) return HAL_ERROR_NOT_READY; if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_PRIVATE) return HAL_ERROR_BAD_ARGUMENTS; /* delete the lms trees and their lmots keys */ for (size_t level = 0; level < key->L; ++level) check(lms_delete(&key->lms_keys[level])); /* XXX free memory, if supported */ (void)hal_free_static_memory(key); /* remove from global hss_keys linked list */ /* XXX or mark it unused, for possible re-use */ if (hss_keys == key) { hss_keys = key->next; } else { for (hss_key_t *prev = hss_keys; prev != NULL; prev = prev->next) { if (prev->next == key) { prev->next = key->next; break; } } } return HAL_OK; } hal_error_t hal_hashsig_sign(hal_core_t *core, const hal_hashsig_key_t * const key, const uint8_t * const msg, const size_t msg_len, uint8_t *sig, size_t *sig_len, const size_t sig_max) { if (restart_in_progress) return HAL_ERROR_NOT_READY; if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_PRIVATE || msg == NULL || sig == NULL || sig_len == NULL) return HAL_ERROR_BAD_ARGUMENTS; if (sig_max < hss_signature_len(key->L, key->lms, key->lmots)) return HAL_ERROR_RESULT_TOO_LONG; // To sign a message using the private key prv, the following steps are // performed: // // If prv[L-1] is exhausted, then determine the smallest integer d // such that all of the private keys prv[d], prv[d+1], ... , prv[L-1] // are exhausted. If d is equal to zero, then the HSS key pair is // exhausted, and it MUST NOT generate any more signatures. // Otherwise, the key pairs for levels d through L-1 must be // regenerated during the signature generation process, as follows. // For i from d to L-1, a new LMS public and private key pair with a // new identifier is generated, pub[i] and prv[i] are set to those // values, then the public key pub[i] is signed with prv[i-1], and // sig[i-1] is set to the resulting value. size_t h2 = (1 << key->lms->h); if (key->lms_keys[key->L-1].q >= h2) { size_t d; for (d = key->L-1; d > 0 && key->lms_keys[d-1].q >= h2; --d) { } if (d == 0) return HAL_ERROR_HASHSIG_KEY_EXHAUSTED; for ( ; d < key->L; ++d) { lms_key_t *lms_key = &key->lms_keys[d]; /* Delete then regenerate the LMS key. We don't worry about * power-cycling in the middle, because the lower-level trees are * all stored in the volatile keystore, so we'd have to regenerate * them anyway on restart; and this way we don't have to allocate * any additional memory. */ check(lms_delete(lms_key)); check(lms_generate(lms_key)); check(lms_sign(&key->lms_keys[d-1], (const uint8_t * const)lms_key->pubkey, lms_key->pubkey_len, lms_key->signature, NULL, lms_key->signature_len)); hal_pkey_slot_t slot = { .type = HAL_KEY_TYPE_HASHSIG_LMS, .curve = HAL_CURVE_NONE, .flags = (lms_key->level == 0) ? HAL_KEY_FLAG_TOKEN: 0 }; hal_ks_t *ks = (lms_key->level == 0) ? hal_ks_token : hal_ks_volatile; uint8_t der[lms_private_key_to_der_len(lms_key)]; size_t der_len; memcpy(&slot.name, &lms_key->I, sizeof(slot.name)); check(lms_private_key_to_der(lms_key, der, &der_len, sizeof(der))); check(hal_ks_store(ks, &slot, der, der_len)); } } // The message is signed with prv[L-1], and the value sig[L-1] is set // to that result. // // The value of the HSS signature is set as follows. We let // signed_pub_key denote an array of octet strings, where // signed_pub_key[i] = sig[i] || pub[i+1], for i between 0 and Nspk- // 1, inclusive, where Nspk = L-1 denotes the number of signed public // keys. Then the HSS signature is u32str(Nspk) || // signed_pub_key[0] || ... || signed_pub_key[Nspk-1] || sig[Nspk]. uint8_t *sigptr = sig; const uint8_t * const siglim = sig + sig_max; check(hal_xdr_encode_int(&sigptr, siglim, key->L - 1)); /* copy the lms signed public keys into the signature */ for (size_t i = 1; i < key->L; ++i) { lms_key_t *lms_key = &key->lms_keys[i]; check(hal_xdr_encode_fixed_opaque(&sigptr, siglim, lms_key->signature, lms_key->signature_len)); check(hal_xdr_encode_fixed_opaque(&sigptr, siglim, lms_key->pubkey, lms_key->pubkey_len)); } /* sign the message with the last lms private key */ size_t len; check(lms_sign(&key->lms_keys[key->L-1], msg, msg_len, sigptr, &len, sig_max - (sigptr - sig))); sigptr += len; *sig_len = sigptr - sig; return HAL_OK; } #endif hal_error_t hal_hashsig_verify(hal_core_t *core, const hal_hashsig_key_t * const key, const uint8_t * const msg, const size_t msg_len, const uint8_t * const sig, const size_t sig_len) { if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_PUBLIC || msg == NULL || sig == NULL) return HAL_ERROR_BAD_ARGUMENTS; // To verify a signature sig and message using the public key pub, the // following steps are performed: // // The signature S is parsed into its components as follows: // // Nspk = strTou32(first four bytes of S) // if Nspk+1 is not equal to the number of levels L in pub: // return INVALID const uint8_t *sigptr = sig; const uint8_t * const siglim = sig + sig_len; uint32_t Nspk; check(hal_xdr_decode_int(&sigptr, siglim, &Nspk)); if (Nspk + 1 != key->L) return HAL_ERROR_INVALID_SIGNATURE; // key = pub // for (i = 0; i < Nspk; i = i + 1) { // sig = next LMS signature parsed from S // msg = next LMS public key parsed from S // if (lms_verify(msg, key, sig) != VALID): // return INVALID // key = msg // } lms_key_t pub = { .type = HAL_KEY_TYPE_HASHSIG_LMS, .lms = key->lms, .lmots = key->lmots }; memcpy(&pub.I, &key->I, sizeof(pub.I)); memcpy(&pub.T1, &key->T1, sizeof(pub.T1)); for (size_t i = 0; i < Nspk; ++i) { const uint8_t * const lms_sig = sigptr; /* peek into the signature for the lmots and lms types */ /* XXX The structure of the LMS signature makes this a bigger pain * in the ass than necessary. */ /* skip over q */ sigptr += 4; /* read lmots_type out of the ots_signature */ uint32_t lmots_type; check(hal_xdr_decode_int_peek(&sigptr, siglim, &lmots_type)); lmots_parameter_t *lmots = lmots_select_parameter_set((hal_lmots_algorithm_t)lmots_type); if (lmots == NULL) return HAL_ERROR_INVALID_SIGNATURE; /* skip over ots_signature */ sigptr += lmots_signature_len(lmots); /* read lms_type after ots_signature */ uint32_t lms_type; check(hal_xdr_decode_int(&sigptr, siglim, &lms_type)); lms_parameter_t *lms = lms_select_parameter_set((hal_lms_algorithm_t)lms_type); if (lms == NULL) return HAL_ERROR_INVALID_SIGNATURE; /* skip over the path elements of the lms signature */ sigptr += lms->h * lms->m; /*XXX sigptr = lms_sig + lms_signature_len(lms, lmots); */ /* verify the signature over the bytestring version of the signed public key */ check(lms_verify(&pub, sigptr, lms_public_key_len(lms), lms_sig, sigptr - lms_sig)); /* parse the signed public key */ check(hal_xdr_decode_int(&sigptr, siglim, &lms_type)); pub.lms = lms_select_parameter_set((hal_lms_algorithm_t)lms_type); if (pub.lms == NULL) return HAL_ERROR_INVALID_SIGNATURE; check(hal_xdr_decode_int(&sigptr, siglim, &lmots_type)); pub.lmots = lmots_select_parameter_set((hal_lmots_algorithm_t)lmots_type); if (pub.lmots == NULL) return HAL_ERROR_INVALID_SIGNATURE; check(hal_xdr_decode_bytestring16(&sigptr, siglim, &pub.I)); check(hal_xdr_decode_bytestring32(&sigptr, siglim, &pub.T1)); } /* verify the final signature over the message */ return lms_verify(&pub, msg, msg_len, sigptr, sig_len - (sigptr - sig)); } hal_error_t hal_hashsig_private_key_to_der(const hal_hashsig_key_t * const key, uint8_t *der, size_t *der_len, const size_t der_max) { if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_PRIVATE) return HAL_ERROR_BAD_ARGUMENTS; /* * Calculate data length. */ size_t len, vlen = 0, hlen; check(hal_asn1_encode_size_t(key->L, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_lms_algorithm(key->lms->type, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_bytestring16(&key->I, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_bytestring32(&key->T1, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen, 0)); check(hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len, NULL, 0, NULL, hlen + vlen, NULL, der_len, der_max)); if (der == NULL) return HAL_OK; /* * Encode data. */ check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max)); uint8_t *d = der + hlen; memset(d, 0, vlen); check(hal_asn1_encode_size_t(key->L, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_lms_algorithm(key->lms->type, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_bytestring32(&key->T1, d, &len, vlen)); d += len; vlen -= len; return hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len, NULL, 0, der, d - der, der, der_len, der_max); } size_t hal_hashsig_private_key_to_der_len(const hal_hashsig_key_t * const key) { size_t len = 0; return hal_hashsig_private_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0; } hal_error_t hal_hashsig_private_key_from_der(hal_hashsig_key_t **key_, void *keybuf, const size_t keybuf_len, const uint8_t *der, const size_t der_len) { if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hal_hashsig_key_t) || der == NULL) return HAL_ERROR_BAD_ARGUMENTS; memset(keybuf, 0, keybuf_len); hss_key_t *key = *key_ = keybuf; key->type = HAL_KEY_TYPE_HASHSIG_PRIVATE; size_t hlen, vlen, alg_oid_len, curve_oid_len, privkey_len; const uint8_t *alg_oid, *curve_oid, *privkey; hal_error_t err; if ((err = hal_asn1_decode_pkcs8_privatekeyinfo(&alg_oid, &alg_oid_len, &curve_oid, &curve_oid_len, &privkey, &privkey_len, der, der_len)) != HAL_OK) return err; if (alg_oid_len != hal_asn1_oid_mts_hashsig_len || memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0 || curve_oid_len != 0) return HAL_ERROR_ASN1_PARSE_FAILED; if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, privkey, privkey_len, &hlen, &vlen)) != HAL_OK) return err; const uint8_t *d = privkey + hlen; size_t n; check(hal_asn1_decode_size_t(&key->L, d, &n, vlen)); d += n; vlen -= n; hal_lms_algorithm_t lms_type; check(hal_asn1_decode_lms_algorithm(&lms_type, d, &n, vlen)); d += n; vlen -= n; key->lms = lms_select_parameter_set(lms_type); hal_lmots_algorithm_t lmots_type; check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &n, vlen)); d += n; vlen -= n; key->lmots = lmots_select_parameter_set(lmots_type); check(hal_asn1_decode_bytestring16(&key->I, d, &n, vlen)); d += n; vlen -= n; check(hal_asn1_decode_bytestring32(&key->T1, d, &n, vlen)); d += n; vlen -= n; if (d != privkey + privkey_len) return HAL_ERROR_ASN1_PARSE_FAILED; /* Find this key in the list of active hashsig keys, and return a * pointer to that key structure, rather than the caller-provided key * structure. (The caller will wipe his own key structure when done, * and not molest ours.) */ for (hss_key_t *hss_key = hss_keys; hss_key != NULL; hss_key = hss_key->next) { if (memcmp(&key->I, &hss_key->lms_keys[0].I, sizeof(key->I)) == 0) { *key_ = hss_key; } } return HAL_OK; } hal_error_t hal_hashsig_public_key_to_der(const hal_hashsig_key_t * const key, uint8_t *der, size_t *der_len, const size_t der_max) { if (key == NULL || (key->type != HAL_KEY_TYPE_HASHSIG_PRIVATE && key->type != HAL_KEY_TYPE_HASHSIG_PUBLIC)) return HAL_ERROR_BAD_ARGUMENTS; // L || u32str(lms_type) || u32str(lmots_type) || I || T[1] size_t len, vlen = 0, hlen; check(hal_asn1_encode_size_t(key->L, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_lms_algorithm(key->lms->type, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_bytestring16(&key->I, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_bytestring32(&key->T1, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max)); if (der != NULL) { uint8_t *d = der + hlen; size_t dlen = vlen; memset(d, 0, vlen); check(hal_asn1_encode_size_t(key->L, d, &len, dlen)); d += len; dlen -= len; check(hal_asn1_encode_lms_algorithm(key->lms->type, d, &len, dlen)); d += len; dlen -= len; check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, dlen)); d += len; dlen -= len; check(hal_asn1_encode_bytestring16(&key->I, d, &len, dlen)); d += len; dlen -= len; check(hal_asn1_encode_bytestring32(&key->T1, d, &len, dlen)); d += len; dlen -= len; } return hal_asn1_encode_spki(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len, NULL, 0, der, hlen + vlen, der, der_len, der_max); } size_t hal_hashsig_public_key_to_der_len(const hal_hashsig_key_t * const key) { size_t len = 0; return hal_hashsig_public_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0; } hal_error_t hal_hashsig_public_key_from_der(hal_hashsig_key_t **key_, void *keybuf, const size_t keybuf_len, const uint8_t * const der, const size_t der_len) { if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hss_key_t) || der == NULL) return HAL_ERROR_BAD_ARGUMENTS; hss_key_t *key = keybuf; memset(keybuf, 0, keybuf_len); *key_ = key; key->type = HAL_KEY_TYPE_HASHSIG_PUBLIC; const uint8_t *alg_oid = NULL, *null = NULL, *pubkey = NULL; size_t alg_oid_len, null_len, pubkey_len; check(hal_asn1_decode_spki(&alg_oid, &alg_oid_len, &null, &null_len, &pubkey, &pubkey_len, der, der_len)); if (null != NULL || null_len != 0 || alg_oid == NULL || alg_oid_len != hal_asn1_oid_mts_hashsig_len || memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0) return HAL_ERROR_ASN1_PARSE_FAILED; size_t len, hlen, vlen; check(hal_asn1_decode_header(ASN1_SEQUENCE, pubkey, pubkey_len, &hlen, &vlen)); const uint8_t * const pubkey_end = pubkey + hlen + vlen; const uint8_t *d = pubkey + hlen; // L || u32str(lms_type) || u32str(lmots_type) || I || T[1] hal_lms_algorithm_t lms_type; hal_lmots_algorithm_t lmots_type; check(hal_asn1_decode_size_t(&key->L, d, &len, pubkey_end - d)); d += len; check(hal_asn1_decode_lms_algorithm(&lms_type, d, &len, pubkey_end - d)); d += len; key->lms = lms_select_parameter_set(lms_type); check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &len, pubkey_end - d)); d += len; key->lmots = lmots_select_parameter_set(lmots_type); check(hal_asn1_decode_bytestring16(&key->I, d, &len, pubkey_end - d)); d += len; check(hal_asn1_decode_bytestring32(&key->T1, d, &len, pubkey_end - d)); d += len; if (d != pubkey_end) return HAL_ERROR_ASN1_PARSE_FAILED; return HAL_OK; } hal_error_t hal_hashsig_key_load_public(hal_hashsig_key_t **key_, void *keybuf, const size_t keybuf_len, const size_t L, const hal_lms_algorithm_t lms_type, const hal_lmots_algorithm_t lmots_type, const uint8_t * const I, const size_t I_len, const uint8_t * const T1, const size_t T1_len) { if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hal_hashsig_key_t) || I == NULL || I_len != sizeof(bytestring16) || T1 == NULL || T1_len != sizeof(bytestring32)) return HAL_ERROR_BAD_ARGUMENTS; memset(keybuf, 0, keybuf_len); hal_hashsig_key_t *key = keybuf; key->type = HAL_KEY_TYPE_HASHSIG_PUBLIC; key->L = L; key->lms = lms_select_parameter_set(lms_type); key->lmots = lmots_select_parameter_set(lmots_type); if (key->lms == NULL || key->lmots == NULL) return HAL_ERROR_BAD_ARGUMENTS; memcpy(&key->I, I, I_len); memcpy(&key->T1, T1, T1_len); *key_ = key; return HAL_OK; } hal_error_t hal_hashsig_key_load_public_xdr(hal_hashsig_key_t **key_, void *keybuf, const size_t keybuf_len, const uint8_t * const xdr, const size_t xdr_len) { const uint8_t *xdrptr = xdr; const uint8_t * const xdrlim = xdr + xdr_len; /* L || u32str(lms_type) || u32str(lmots_type) || I || T[1] */ uint32_t L, lms_type, lmots_type; bytestring16 *I; bytestring32 *T1; check(hal_xdr_decode_int(&xdrptr, xdrlim, &L)); check(hal_xdr_decode_int(&xdrptr, xdrlim, &lms_type)); check(hal_xdr_decode_int(&xdrptr, xdrlim, &lmots_type)); check(hal_xdr_decode_bytestring16_ptr(&xdrptr, xdrlim, &I)); check(hal_xdr_decode_bytestring32_ptr(&xdrptr, xdrlim, &T1)); return hal_hashsig_key_load_public(key_, keybuf, keybuf_len, L, lms_type, lmots_type, (const uint8_t * const)I, sizeof(bytestring16), (const uint8_t * const)T1, sizeof(bytestring32)); } hal_error_t hal_hashsig_public_key_der_to_xdr(const uint8_t * const der, const size_t der_len, uint8_t * const xdr, size_t * const xdr_len , const size_t xdr_max) { if (der == NULL || xdr == NULL) return HAL_ERROR_BAD_ARGUMENTS; const uint8_t *alg_oid = NULL, *null = NULL, *pubkey = NULL; size_t alg_oid_len, null_len, pubkey_len; check(hal_asn1_decode_spki(&alg_oid, &alg_oid_len, &null, &null_len, &pubkey, &pubkey_len, der, der_len)); if (null != NULL || null_len != 0 || alg_oid == NULL || alg_oid_len != hal_asn1_oid_mts_hashsig_len || memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0) return HAL_ERROR_ASN1_PARSE_FAILED; size_t len, hlen, vlen; check(hal_asn1_decode_header(ASN1_SEQUENCE, pubkey, pubkey_len, &hlen, &vlen)); const uint8_t * const pubkey_end = pubkey + hlen + vlen; const uint8_t *d = pubkey + hlen; // L || u32str(lms_type) || u32str(lmots_type) || I || T[1] size_t L; hal_lms_algorithm_t lms_type; hal_lmots_algorithm_t lmots_type; bytestring16 I; bytestring32 T1; check(hal_asn1_decode_size_t(&L, d, &len, pubkey_end - d)); d += len; check(hal_asn1_decode_lms_algorithm(&lms_type, d, &len, pubkey_end - d)); d += len; check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &len, pubkey_end - d)); d += len; check(hal_asn1_decode_bytestring16(&I, d, &len, pubkey_end - d)); d += len; check(hal_asn1_decode_bytestring32(&T1, d, &len, pubkey_end - d)); d += len; if (d != pubkey_end) return HAL_ERROR_ASN1_PARSE_FAILED; uint8_t * xdrptr = xdr; const uint8_t * const xdrlim = xdr + xdr_max; check(hal_xdr_encode_int(&xdrptr, xdrlim, L)); check(hal_xdr_encode_int(&xdrptr, xdrlim, lms_type)); check(hal_xdr_encode_int(&xdrptr, xdrlim, lmots_type)); check(hal_xdr_encode_bytestring16(&xdrptr, xdrlim, &I)); check(hal_xdr_encode_bytestring32(&xdrptr, xdrlim, &T1)); if (xdr_len != NULL) *xdr_len = xdrptr - xdr; return HAL_OK; } #if RPC_CLIENT == RPC_CLIENT_LOCAL /* Reinitialize the hashsig key structures after a device restart */ hal_error_t hal_hashsig_ks_init(void) { const hal_client_handle_t client = { -1 }; const hal_session_handle_t session = { HAL_HANDLE_NONE }; hal_uuid_t prev_name = {{0}}; unsigned len; hal_pkey_slot_t slot = {{0}}; uint8_t der[HAL_KS_WRAPPED_KEYSIZE]; size_t der_len; restart_in_progress = 1; /* Find all hss private keys */ while ((hal_ks_match(hal_ks_token, client, session, HAL_KEY_TYPE_HASHSIG_PRIVATE, HAL_CURVE_NONE, 0, 0, NULL, 0, &slot.name, &len, 1, &prev_name) == HAL_OK) && (len > 0)) { hal_hashsig_key_t keybuf, *key; if (hal_ks_fetch(hal_ks_token, &slot, der, &der_len, sizeof(der)) != HAL_OK || hal_hashsig_private_key_from_der(&key, (void *)&keybuf, sizeof(keybuf), der, der_len) != HAL_OK) { (void)hal_ks_delete(hal_ks_token, &slot); continue; } /* Make sure we have the lms key */ hal_pkey_slot_t lms_slot = {{0}}; lms_key_t lms_key; memcpy(&lms_slot.name, &key->I, sizeof(lms_slot.name)); if (hal_ks_fetch(hal_ks_token, &lms_slot, der, &der_len, sizeof(der)) != HAL_OK || lms_private_key_from_der(&lms_key, der, der_len) != HAL_OK || /* check keys for consistency */ lms_key.lms != key->lms || lms_key.lmots != key->lmots || memcmp(&lms_key.I, &key->I, sizeof(lms_key.I)) != 0 || /* optimistically allocate the full hss key structure */ hss_alloc(&key, key->L, key->lms->type, key->lmots->type) != HAL_OK) { (void)hal_ks_delete(hal_ks_token, &slot); (void)hal_ks_delete(hal_ks_token, &lms_slot); continue; } /* hss_alloc redefines key, so copy fields from the old version of the key */ memcpy(&key->I, &keybuf.I, sizeof(key->I)); memcpy(&key->T1, &keybuf.T1, sizeof(key->T1)); key->name = slot.name; /* initialize top-level lms key (beyond what hss_alloc did) */ memcpy(&key->lms_keys[0].I, &lms_key.I, sizeof(lms_key.I)); key->lms_keys[0].q = lms_key.q; prev_name = slot.name; } /* Delete orphaned lms keys */ memset(&prev_name, 0, sizeof(prev_name)); while ((hal_ks_match(hal_ks_token, client, session, HAL_KEY_TYPE_HASHSIG_LMS, HAL_CURVE_NONE, 0, 0, NULL, 0, &slot.name, &len, 1, &prev_name) == HAL_OK) && (len > 0)) { hss_key_t *hss_key; for (hss_key = hss_keys; hss_key != NULL; hss_key = hss_key->next) { if (memcmp(&slot.name, &hss_key->I, sizeof(slot.name)) == 0) break; } if (hss_key == NULL) { (void)hal_ks_delete(hal_ks_token, &slot); continue; } prev_name = slot.name; } /* Find all lmots keys */ memset(&prev_name, 0, sizeof(prev_name)); while ((hal_ks_match(hal_ks_token, client, session, HAL_KEY_TYPE_HASHSIG_LMOTS, HAL_CURVE_NONE, 0, 0, NULL, 0, &slot.name, &len, 1, &prev_name) == HAL_OK) && (len > 0)) { if (hss_keys == NULL) { /* if no hss keys were recovered, all lmots keys are orphaned */ (void)hal_ks_delete(hal_ks_token, &slot); continue; } lmots_key_t lmots_key = {0}; if (hal_ks_fetch(hal_ks_token, &slot, der, &der_len, sizeof(der)) != HAL_OK || lmots_private_key_from_der(&lmots_key, der, der_len) != HAL_OK) { (void)hal_ks_delete(hal_ks_token, &slot); continue; } hss_key_t *hss_key; for (hss_key = hss_keys; hss_key != NULL; hss_key = hss_key->next) { if (memcmp(&hss_key->I, &lmots_key.I, sizeof(lmots_key.I)) == 0) break; } if (hss_key == NULL) { /* delete orphaned key */ (void)hal_ks_delete(hal_ks_token, &slot); continue; } /* record this lmots key in the top-level lms key */ memcpy(&hss_key->lms_keys[0].lmots_keys[lmots_key.q], &slot.name, sizeof(slot.name)); /* compute T[r] = H(I || u32str(r) || u16str(D_LEAF) || K) */ size_t r = (1U << hss_key->lms->h) + lmots_key.q; uint8_t statebuf[512]; hal_hash_state_t *state = NULL; hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)); hal_hash_update(state, (const uint8_t *)&hss_key->I, sizeof(hss_key->I)); uint32_t l = u32str(r); hal_hash_update(state, (const uint8_t *)&l, sizeof(l)); uint16_t s = u16str(D_LEAF); hal_hash_update(state, (const uint8_t *)&s, sizeof(s)); hal_hash_update(state, (const uint8_t *)&lmots_key.K, sizeof(lmots_key.K)); hal_hash_finalize(state, (uint8_t *)&hss_key->lms_keys[0].T[r], sizeof(hss_key->lms_keys[0].T[r])); prev_name = slot.name; } /* After all keys have been read, scan for completeness. */ hal_uuid_t uuid_0 = {{0}}; hss_key_t *hss_key, *hss_next = NULL; for (hss_key = hss_keys; hss_key != NULL; hss_key = hss_next) { hss_next = hss_key->next; int fail = 0; for (size_t i = 0; i < (1U << hss_key->lms->h); ++i) { if (hal_uuid_cmp(&hss_key->lms_keys[0].lmots_keys[i], &uuid_0) == 0) { fail = 1; break; } } if (fail) { fail: /* lms key is incomplete, give up on it */ /* delete lmots keys */ for (size_t i = 0; i < (1U << hss_key->lms->h); ++i) { if (hal_uuid_cmp(&hss_key->lms_keys[0].lmots_keys[i], &uuid_0) != 0) { memcpy(&slot.name, &hss_key->lms_keys[0].lmots_keys[i], sizeof(slot.name)); (void)hal_ks_delete(hal_ks_token, &slot); } } /* delete lms key */ memcpy(&slot.name, &hss_key->I, sizeof(slot.name)); (void)hal_ks_delete(hal_ks_token, &slot); /* delete hss key */ slot.name = hss_key->name; (void)hal_ks_delete(hal_ks_token, &slot); /* remove the hss key from the key list */ if (hss_keys == hss_key) { hss_keys = hss_key->next; } else { for (hss_key_t *prev = hss_keys; prev != NULL; prev = prev->next) { if (prev->next == hss_key) { prev->next = hss_key->next; break; } } } (void)hal_free_static_memory(hss_key); continue; } /* generate the rest of T[] */ for (size_t r = (1U << hss_key->lms->h) - 1; r > 0; --r) { uint8_t statebuf[512]; hal_hash_state_t *state = NULL; hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)); hal_hash_update(state, (const uint8_t *)&hss_key->I, sizeof(hss_key->I)); uint32_t l = u32str(r); hal_hash_update(state, (const uint8_t *)&l, sizeof(l)); uint16_t s = u16str(D_INTR); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); hal_hash_update(state, (const uint8_t *)&hss_key->lms_keys[0].T[2*r], sizeof(hss_key->lms_keys[0].T[r])); hal_hash_update(state, (const uint8_t *)&hss_key->lms_keys[0].T[2*r+1], sizeof(hss_key->lms_keys[0].T[r])); hal_hash_finalize(state, (uint8_t *)&hss_key->lms_keys[0].T[r], sizeof(hss_key->lms_keys[0].T[r])); } if (memcmp(&hss_key->lms_keys[0].T[1], &hss_key->T1, sizeof(hss_key->lms_keys[0].T[1])) != 0) goto fail; /* generate the lower-level lms keys */ for (size_t i = 1; i < hss_key->L; ++i) { lms_key_t * lms_key = &hss_key->lms_keys[i]; if (lms_generate(lms_key) != HAL_OK) goto fail; /* store the lms key */ slot.type = HAL_KEY_TYPE_HASHSIG_LMS; slot.flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE; memcpy(&slot.name, &lms_key->I, sizeof(slot.name)); if (lms_private_key_to_der(lms_key, der, &der_len, sizeof(der)) != HAL_OK || hal_ks_store(hal_ks_volatile, &slot, der, der_len) != HAL_OK || /* sign this lms key with the previous */ lms_sign(&hss_key->lms_keys[i-1], (const uint8_t * const)lms_key->pubkey, lms_key->pubkey_len, lms_key->signature, NULL, lms_key->signature_len) != HAL_OK) goto fail; } } restart_in_progress = 0; return HAL_OK; } #endif