/* * hal_internal.h * -------------- * Internal API declarations for libhal. * * Authors: Rob Austein, Paul Selkirk * Copyright (c) 2015, NORDUnet A/S All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the NORDUnet nor the names of its contributors may * be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _HAL_INTERNAL_H_ #define _HAL_INTERNAL_H_ #include "hal.h" #include "verilog_constants.h" /* * Everything in this file is part of the internal API, that is, * subject to change without notice. Nothing outside of libhal itself * should be looking at this file. */ /* * htonl is not available in arm-none-eabi headers or libc. */ #ifndef STM32F4XX #include #else #ifdef __ARMEL__ /* little endian */ inline uint32_t htonl(uint32_t w) { return ((w & 0x000000ff) << 24) + ((w & 0x0000ff00) << 8) + ((w & 0x00ff0000) >> 8) + ((w & 0xff000000) >> 24); } #else /* big endian */ #define htonl(x) (x) #endif #define ntohl htonl #endif /* * Longest hash block and digest we support at the moment. */ #define HAL_MAX_HASH_BLOCK_LENGTH SHA512_BLOCK_LEN #define HAL_MAX_HASH_DIGEST_LENGTH SHA512_DIGEST_LEN /* * Dispatch structures for RPC implementation. * * The breakdown of which functions go into which dispatch vectors is * based entirely on pesky details like making sure that the right * functions get linked in the right cases, and should not be * construed as making any particular sense in any larger context. * * In theory eventually we might want a fully general mechanism to * allow us to dispatch arbitrary groups of functions either locally * or remotely on a per-user basis. In practice, we probably want to * run everything on the HSM except for hashing and digesting, so just * code for that case initially while leaving the design open for a * more general mechanism later if warranted. * * So we have three cases: * * - We're the HSM, so we do everything locally (ie, we run the RPC * server functions. * * - We're the host, so we do everything remotely (ie, we do * everything using the client-side RPC calls. * * - We're the host but are doing hashing locally, so we do a mix. * This is slightly more complicated than it might at first appear, * because we must handle the case of one of the pkey functions * taking a hash context instead of a literal hash value, in which * case we have to extract the hash value from the context and * supply it to the pkey RPC client code as a literal value. * * ...Except that for PKCS #11 we also have to handle the case of * "session keys", ie, keys which are not stored on the HSM. * Apparently people really do use these, mostly for public keys, in * order to conserve expensive memory on the HSM. So this is another * feature of mixed mode: keys with HAL_KEY_FLAG_PROXIMATE set live on * the host, not in the HSM, and the mixed-mode pkey handlers deal * with the routing. In the other two modes we ignore the flag and * send everything where we were going to send it anyway. Restricting * the fancy key handling to mixed mode lets us drop this complexity * out entirely for applications which have no use for it. */ typedef struct { hal_error_t (*set_pin)(const hal_client_handle_t client, const hal_user_t user, const char * const newpin, const size_t newpin_len); hal_error_t (*login)(const hal_client_handle_t client, const hal_user_t user, const char * const newpin, const size_t newpin_len); hal_error_t (*logout)(const hal_client_handle_t client); hal_error_t (*logout_all)(void); hal_error_t (*is_logged_in)(const hal_client_handle_t client, const hal_user_t user); hal_error_t (*get_random)(void *buffer, const size_t length); hal_error_t (*get_version)(uint32_t *version); } hal_rpc_misc_dispatch_t; typedef struct { hal_error_t (*get_digest_length)(const hal_digest_algorithm_t alg, size_t *length); hal_error_t (*get_digest_algorithm_id)(const hal_digest_algorithm_t alg, uint8_t *id, size_t *len, const size_t len_max); hal_error_t (*get_algorithm)(const hal_hash_handle_t hash, hal_digest_algorithm_t *alg); hal_error_t (*initialize)(const hal_client_handle_t client, const hal_session_handle_t session, hal_hash_handle_t *hash, const hal_digest_algorithm_t alg, const uint8_t * const key, const size_t key_length); hal_error_t (*update)(const hal_hash_handle_t hash, const uint8_t * data, const size_t length); hal_error_t (*finalize)(const hal_hash_handle_t hash, uint8_t *digest, const size_t length); } hal_rpc_hash_dispatch_t; typedef struct { hal_error_t (*load)(const hal_client_handle_t client, const hal_session_handle_t session, hal_pkey_handle_t *pkey, const hal_key_type_t type, const hal_curve_name_t curve, const uint8_t * const name, const size_t name_len, const uint8_t * const der, const size_t der_len, const hal_key_flags_t flags); hal_error_t (*find)(const hal_client_handle_t client, const hal_session_handle_t session, hal_pkey_handle_t *pkey, const hal_key_type_t type, const uint8_t * const name, const size_t name_len, const hal_key_flags_t flags); hal_error_t (*generate_rsa)(const hal_client_handle_t client, const hal_session_handle_t session, hal_pkey_handle_t *pkey, const uint8_t * const name, const size_t name_len, const unsigned key_length, const uint8_t * const public_exponent, const size_t public_exponent_len, const hal_key_flags_t flags); hal_error_t (*generate_ec)(const hal_client_handle_t client, const hal_session_handle_t session, hal_pkey_handle_t *pkey, const uint8_t * const name, const size_t name_len, const hal_curve_name_t curve, const hal_key_flags_t flags); hal_error_t (*close)(const hal_pkey_handle_t pkey); hal_error_t (*delete)(const hal_pkey_handle_t pkey); hal_error_t (*rename)(const hal_pkey_handle_t pkey, const uint8_t * const name, const size_t name_len); hal_error_t (*get_key_type)(const hal_pkey_handle_t pkey, hal_key_type_t *key_type); hal_error_t (*get_key_flags)(const hal_pkey_handle_t pkey, hal_key_flags_t *flags); size_t (*get_public_key_len)(const hal_pkey_handle_t pkey); hal_error_t (*get_public_key)(const hal_pkey_handle_t pkey, uint8_t *der, size_t *der_len, const size_t der_max); hal_error_t (*sign)(const hal_session_handle_t session, const hal_pkey_handle_t pkey, const hal_hash_handle_t hash, const uint8_t * const input, const size_t input_len, uint8_t * signature, size_t *signature_len, const size_t signature_max); hal_error_t (*verify)(const hal_session_handle_t session, const hal_pkey_handle_t pkey, const hal_hash_handle_t hash, const uint8_t * const input, const size_t input_len, const uint8_t * const signature, const size_t signature_len); hal_error_t (*list)(hal_pkey_info_t *result, unsigned *result_len, const unsigned result_max, hal_key_flags_t flags); } hal_rpc_pkey_dispatch_t; extern const hal_rpc_misc_dispatch_t hal_rpc_local_misc_dispatch, hal_rpc_remote_misc_dispatch, *hal_rpc_misc_dispatch; extern const hal_rpc_hash_dispatch_t hal_rpc_local_hash_dispatch, hal_rpc_remote_hash_dispatch, *hal_rpc_hash_dispatch; extern const hal_rpc_pkey_dispatch_t hal_rpc_local_pkey_dispatch, hal_rpc_remote_pkey_dispatch, hal_rpc_mixed_pkey_dispatch, *hal_rpc_pkey_dispatch; /* * See code in rpc_pkey.c for how this flag fits into the pkey handle. */ #define HAL_PKEY_HANDLE_PROXIMATE_FLAG (1 << 31) /* * Keystore API. * * The original design for this subsystem used two separate tables, * one for RSA keys, one for EC keys, because the RSA keys are so much * larger than the EC keys. This led to unnecessarily complex and * duplicated code, so for now we treat all keys the same, and waste * the unneded space in the case of EC keys. * * Sizes for ASN.1-encoded keys, this may not be exact due to ASN.1 * INTEGER encoding rules but should be good enough for buffer sizing: * * 2048-bit RSA: 1194 bytes * 4096-bit RSA: 2351 bytes * 8192-bit RSA: 4655 bytes * EC P-256: 121 bytes * EC P-384: 167 bytes * EC P-521: 223 bytes * * Plus we need a bit of AES-keywrap overhead, since we're storing the * wrapped form (see hal_aes_keywrap_cyphertext_length()). * * We also need to store PINs somewhere, so they go into the keystore * data structure even though they're not keys. Like keys, they're * stored in a relatively safe form (PBKDF2), so while we would prefer * to keep them private, they don't require tamper-protected RAM. */ #define HAL_KS_WRAPPED_KEYSIZE ((4655 + 15) & ~7) #ifndef HAL_STATIC_PKEY_STATE_BLOCKS #define HAL_STATIC_PKEY_STATE_BLOCKS 0 #endif typedef struct { hal_key_type_t type; hal_curve_name_t curve; hal_key_flags_t flags; uint8_t name[HAL_RPC_PKEY_NAME_MAX]; size_t name_len; uint8_t der[HAL_KS_WRAPPED_KEYSIZE]; size_t der_len; uint8_t in_use; } hal_ks_key_t; #ifndef HAL_PIN_SALT_LENGTH #define HAL_PIN_SALT_LENGTH 16 #endif typedef struct { uint32_t iterations; uint8_t pin[HAL_MAX_HASH_DIGEST_LENGTH]; uint8_t salt[HAL_PIN_SALT_LENGTH]; } hal_ks_pin_t; typedef struct { #if HAL_STATIC_PKEY_STATE_BLOCKS > 0 hal_ks_key_t keys[HAL_STATIC_PKEY_STATE_BLOCKS]; #endif hal_ks_pin_t wheel_pin; hal_ks_pin_t so_pin; hal_ks_pin_t user_pin; } hal_ks_keydb_t; /* * Internal functions within the keystore implementation. Think of * these as concrete methods for the keystore API subclassed onto * various storage technologies. */ extern const hal_ks_keydb_t *hal_ks_get_keydb(void); extern hal_error_t hal_ks_set_keydb(const hal_ks_key_t * const key, const int loc, const int updating); extern hal_error_t hal_ks_del_keydb(const int loc); extern hal_error_t hal_ks_get_kek(uint8_t *kek, size_t *kek_len, const size_t kek_max); /* * Keystore API for use by the pkey implementation. * * In an attempt to emulate what current theory says will eventually * be the behavior of the underlying Cryptech Verilog "hardware", * these functions automatically apply the AES keywrap transformations. * * Unclear whether these should also call the ASN.1 encode/decode * functions. For the moment, the answer is no, but we may need to * revisit this as the underlying Verilog API evolves. */ extern hal_error_t hal_ks_store(const hal_key_type_t type, const hal_curve_name_t curve, const hal_key_flags_t flags, const uint8_t * const name, const size_t name_len, const uint8_t * const der, const size_t der_len, int *hint); extern hal_error_t hal_ks_exists(const hal_key_type_t type, const uint8_t * const name, const size_t name_len, int *hint); extern hal_error_t hal_ks_fetch(const hal_key_type_t type, const uint8_t * const name, const size_t name_len, hal_curve_name_t *curve, hal_key_flags_t *flags, uint8_t *der, size_t *der_len, const size_t der_max, int *hint); extern hal_error_t hal_ks_delete(const hal_key_type_t type, const uint8_t * const name, const size_t name_len, int *hint); extern hal_error_t hal_ks_rename(const hal_key_type_t type, const uint8_t * const old_name, const size_t old_name_len, const uint8_t * const new_name, const size_t new_name_len, int *hint); extern hal_error_t hal_ks_list(hal_pkey_info_t *result, unsigned *result_len, const unsigned result_max); extern hal_error_t hal_ks_get_pin(const hal_user_t user, const hal_ks_pin_t **pin); extern hal_error_t hal_ks_set_pin(const hal_user_t user, const hal_ks_pin_t * const pin); /* * RPC lowest-level send and receive routines. These are blocking, and * transport-specific (sockets, USB). */ extern hal_error_t hal_rpc_send(const uint8_t * const buf, const size_t len); extern hal_error_t hal_rpc_recv(uint8_t * const buf, size_t * const len); extern hal_error_t hal_rpc_sendto(const uint8_t * const buf, const size_t len, void *opaque); extern hal_error_t hal_rpc_recvfrom(uint8_t * const buf, size_t * const len, void **opaque); extern hal_error_t hal_rpc_client_transport_init(void); extern hal_error_t hal_rpc_client_transport_close(void); extern hal_error_t hal_rpc_server_transport_init(void); extern hal_error_t hal_rpc_server_transport_close(void); /* * RPC function numbers */ typedef enum { RPC_FUNC_GET_VERSION = 0, RPC_FUNC_GET_RANDOM, RPC_FUNC_SET_PIN, RPC_FUNC_LOGIN, RPC_FUNC_LOGOUT, RPC_FUNC_LOGOUT_ALL, RPC_FUNC_IS_LOGGED_IN, RPC_FUNC_HASH_GET_DIGEST_LEN, RPC_FUNC_HASH_GET_DIGEST_ALGORITHM_ID, RPC_FUNC_HASH_GET_ALGORITHM, RPC_FUNC_HASH_INITIALIZE, RPC_FUNC_HASH_UPDATE, RPC_FUNC_HASH_FINALIZE, RPC_FUNC_PKEY_LOAD, RPC_FUNC_PKEY_FIND, RPC_FUNC_PKEY_GENERATE_RSA, RPC_FUNC_PKEY_GENERATE_EC, RPC_FUNC_PKEY_CLOSE, RPC_FUNC_PKEY_DELETE, RPC_FUNC_PKEY_GET_KEY_TYPE, RPC_FUNC_PKEY_GET_KEY_FLAGS, RPC_FUNC_PKEY_GET_PUBLIC_KEY_LEN, RPC_FUNC_PKEY_GET_PUBLIC_KEY, RPC_FUNC_PKEY_REMOTE_SIGN, RPC_FUNC_PKEY_REMOTE_VERIFY, RPC_FUNC_PKEY_LIST, RPC_FUNC_PKEY_RENAME, } rpc_func_num_t; #define RPC_VERSION 0x00010000 /* 0.1.0.0 */ /* * RPC client locality. These have to be defines rather than an enum, * because they're handled by the preprocessor. */ #define RPC_CLIENT_LOCAL 0 #define RPC_CLIENT_REMOTE 1 #define RPC_CLIENT_MIXED 2 #define RPC_CLIENT_NONE 3 #endif /* _HAL_INTERNAL_H_ */ /* * Local variables: * indent-tabs-mode: nil * End: */