/* * hal_internal.h * -------------- * Internal API declarations for libhal. * * Authors: Rob Austein, Paul Selkirk * Copyright (c) 2015, NORDUnet A/S All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the NORDUnet nor the names of its contributors may * be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _HAL_INTERNAL_H_ #define _HAL_INTERNAL_H_ #include #include "hal.h" #include "verilog_constants.h" /* * Everything in this file is part of the internal API, that is, * subject to change without notice. Nothing outside of libhal itself * should be looking at this file. */ /* * htonl is not available in arm-none-eabi headers or libc. */ #ifndef STM32F4XX #include #else #ifdef __ARMEL__ /* little endian */ inline uint32_t htonl(uint32_t w) { return ((w & 0x000000ff) << 24) + ((w & 0x0000ff00) << 8) + ((w & 0x00ff0000) >> 8) + ((w & 0xff000000) >> 24); } #else /* big endian */ #define htonl(x) (x) #endif #define ntohl htonl #endif /* * Static memory allocation on start-up. Don't use this except where * really necessary. By design, there's no way to free this, we don't * want to have to manage a heap. Intent is just to allow allocation * things like the large-ish ks_index arrays used by ks_flash.c from a * memory source external to the executable image file (eg, from the * secondary SDRAM chip on the Cryptech Alpha board). * * We shouldn't need this except on the HSM, so for now we don't bother * with implementing a version of this based on malloc() or sbrk(). */ extern void *hal_allocate_static_memory(const size_t size); /* * Longest hash block and digest we support at the moment. */ #define HAL_MAX_HASH_BLOCK_LENGTH SHA512_BLOCK_LEN #define HAL_MAX_HASH_DIGEST_LENGTH SHA512_DIGEST_LEN /* * Dispatch structures for RPC implementation. * * The breakdown of which functions go into which dispatch vectors is * based entirely on pesky details like making sure that the right * functions get linked in the right cases, and should not be * construed as making any particular sense in any larger context. * * In theory eventually we might want a fully general mechanism to * allow us to dispatch arbitrary groups of functions either locally * or remotely on a per-user basis. In practice, we probably want to * run everything on the HSM except for hashing and digesting, so just * code for that case initially while leaving the design open for a * more general mechanism later if warranted. * * So we have three cases: * * - We're the HSM, so we do everything locally (ie, we run the RPC * server functions. * * - We're the host, so we do everything remotely (ie, we do * everything using the client-side RPC calls. * * - We're the host but are doing hashing locally, so we do a mix. * This is slightly more complicated than it might at first appear, * because we must handle the case of one of the pkey functions * taking a hash context instead of a literal hash value, in which * case we have to extract the hash value from the context and * supply it to the pkey RPC client code as a literal value. * * ...Except that for PKCS #11 we also have to handle the case of * "session keys", ie, keys which are not stored on the HSM. * Apparently people really do use these, mostly for public keys, in * order to conserve expensive memory on the HSM. So this is another * feature of mixed mode: keys with HAL_KEY_FLAG_PROXIMATE set live on * the host, not in the HSM, and the mixed-mode pkey handlers deal * with the routing. In the other two modes we ignore the flag and * send everything where we were going to send it anyway. Restricting * the fancy key handling to mixed mode lets us drop this complexity * out entirely for applications which have no use for it. */ typedef struct { hal_error_t (*set_pin)(const hal_client_handle_t client, const hal_user_t user, const char * const newpin, const size_t newpin_len); hal_error_t (*login)(const hal_client_handle_t client, const hal_user_t user, const char * const newpin, const size_t newpin_len); hal_error_t (*logout)(const hal_client_handle_t client); hal_error_t (*logout_all)(void); hal_error_t (*is_logged_in)(const hal_client_handle_t client, const hal_user_t user); hal_error_t (*get_random)(void *buffer, const size_t length); hal_error_t (*get_version)(uint32_t *version); } hal_rpc_misc_dispatch_t; typedef struct { hal_error_t (*get_digest_length)(const hal_digest_algorithm_t alg, size_t *length); hal_error_t (*get_digest_algorithm_id)(const hal_digest_algorithm_t alg, uint8_t *id, size_t *len, const size_t len_max); hal_error_t (*get_algorithm)(const hal_hash_handle_t hash, hal_digest_algorithm_t *alg); hal_error_t (*initialize)(const hal_client_handle_t client, const hal_session_handle_t session, hal_hash_handle_t *hash, const hal_digest_algorithm_t alg, const uint8_t * const key, const size_t key_length); hal_error_t (*update)(const hal_hash_handle_t hash, const uint8_t * data, const size_t length); hal_error_t (*finalize)(const hal_hash_handle_t hash, uint8_t *digest, const size_t length); } hal_rpc_hash_dispatch_t; typedef struct { hal_error_t (*load)(const hal_client_handle_t client, const hal_session_handle_t session, hal_pkey_handle_t *pkey, const hal_key_type_t type, const hal_curve_name_t curve, hal_uuid_t *name, const uint8_t * const der, const size_t der_len, const hal_key_flags_t flags); hal_error_t (*find)(const hal_client_handle_t client, const hal_session_handle_t session, hal_pkey_handle_t *pkey, const hal_uuid_t * const name, const hal_key_flags_t flags); hal_error_t (*generate_rsa)(const hal_client_handle_t client, const hal_session_handle_t session, hal_pkey_handle_t *pkey, hal_uuid_t *name, const unsigned key_length, const uint8_t * const public_exponent, const size_t public_exponent_len, const hal_key_flags_t flags); hal_error_t (*generate_ec)(const hal_client_handle_t client, const hal_session_handle_t session, hal_pkey_handle_t *pkey, hal_uuid_t *name, const hal_curve_name_t curve, const hal_key_flags_t flags); hal_error_t (*close)(const hal_pkey_handle_t pkey); hal_error_t (*delete)(const hal_pkey_handle_t pkey); hal_error_t (*get_key_type)(const hal_pkey_handle_t pkey, hal_key_type_t *key_type); hal_error_t (*get_key_flags)(const hal_pkey_handle_t pkey, hal_key_flags_t *flags); size_t (*get_public_key_len)(const hal_pkey_handle_t pkey); hal_error_t (*get_public_key)(const hal_pkey_handle_t pkey, uint8_t *der, size_t *der_len, const size_t der_max); hal_error_t (*sign)(const hal_session_handle_t session, const hal_pkey_handle_t pkey, const hal_hash_handle_t hash, const uint8_t * const input, const size_t input_len, uint8_t * signature, size_t *signature_len, const size_t signature_max); hal_error_t (*verify)(const hal_session_handle_t session, const hal_pkey_handle_t pkey, const hal_hash_handle_t hash, const uint8_t * const input, const size_t input_len, const uint8_t * const signature, const size_t signature_len); hal_error_t (*list)(hal_pkey_info_t *result, unsigned *result_len, const unsigned result_max, hal_key_flags_t flags); hal_error_t (*match)(const hal_key_type_t type, const hal_curve_name_t curve, const hal_key_flags_t flags, hal_rpc_pkey_attribute_t *attributes, const unsigned attributes_len, hal_uuid_t *result, unsigned *result_len, const unsigned result_max, hal_uuid_t *previous_uuid); hal_error_t (*set_attribute)(const hal_pkey_handle_t pkey, const uint32_t type, const uint8_t * const value, const size_t value_len); hal_error_t (*get_attribute)(const hal_pkey_handle_t pkey, const uint32_t type, uint8_t *value, size_t *value_len, const size_t value_max); hal_error_t (*delete_attribute)(const hal_pkey_handle_t pkey, const uint32_t type); } hal_rpc_pkey_dispatch_t; extern const hal_rpc_misc_dispatch_t hal_rpc_local_misc_dispatch, hal_rpc_remote_misc_dispatch, *hal_rpc_misc_dispatch; extern const hal_rpc_hash_dispatch_t hal_rpc_local_hash_dispatch, hal_rpc_remote_hash_dispatch, *hal_rpc_hash_dispatch; extern const hal_rpc_pkey_dispatch_t hal_rpc_local_pkey_dispatch, hal_rpc_remote_pkey_dispatch, hal_rpc_mixed_pkey_dispatch, *hal_rpc_pkey_dispatch; /* * See code in rpc_pkey.c for how this flag fits into the pkey handle. */ #define HAL_PKEY_HANDLE_TOKEN_FLAG (1 << 31) /* * Mostly used by the local_pkey code, but the mixed_pkey code needs * it to pad hashes for RSA PKCS #1.5 signatures. This may indicate * that we need a slightly more general internal API here, but not * worth worrying about as long as we can treat RSA as a special case * and just pass the plain hash for everything else. */ extern hal_error_t hal_rpc_pkcs1_construct_digestinfo(const hal_hash_handle_t handle, uint8_t *digest_info, size_t *digest_info_len, const size_t digest_info_max); /* * UUID stuff. All UUIDs we use (or are likely to use) are type 4 "random" UUIDs * Some of this may need to move to hal.h. */ #define HAL_UUID_TEXT_SIZE (sizeof("00112233-4455-6677-8899-aabbccddeeff")) static inline int hal_uuid_cmp(const hal_uuid_t * const a, const hal_uuid_t * const b) { return memcmp(a, b, sizeof(hal_uuid_t)); } extern hal_error_t hal_uuid_gen(hal_uuid_t *uuid); extern hal_error_t hal_uuid_parse(hal_uuid_t *uuid, const char * const string); extern hal_error_t hal_uuid_format(const hal_uuid_t * const uuid, char *buffer, const size_t buffer_len); /* * CRC-32 stuff (for flash keystore, etc). Dunno if we want a Verilog * implementation of this, or if it would even be faster than doing it * the main CPU taking I/O overhead and so forth into account. * * These prototypes were generated by pycrc.py, see notes in crc32.c. */ typedef uint32_t hal_crc32_t; static inline hal_crc32_t hal_crc32_init(void) { return 0xffffffff; } extern hal_crc32_t hal_crc32_update(hal_crc32_t crc, const void *data, size_t data_len); static inline hal_crc32_t hal_crc32_finalize(hal_crc32_t crc) { return crc ^ 0xffffffff; } /* * Sizes for ASN.1-encoded keys, this may not be exact due to ASN.1 * INTEGER encoding rules but should be good enough for buffer sizing: * * 2048-bit RSA: 1194 bytes * 4096-bit RSA: 2351 bytes * 8192-bit RSA: 4655 bytes * EC P-256: 121 bytes * EC P-384: 167 bytes * EC P-521: 223 bytes * * Plus we need a bit of AES-keywrap overhead, since we're storing the * wrapped form (see hal_aes_keywrap_cyphertext_length()). * * A buffer big enough for a 8192-bit RSA key would overflow one * sub-sector on the flash chip we're using on the Alpha. We could * invent some more complex scheme where key blocks are allowed to * span multiple sub-sectors, but since an 8192-bit RSA key would also * be unusably slow with the current RSA implementation, for the * moment we take the easy way out and cap this at 4096-bit RSA. */ #define HAL_KS_WRAPPED_KEYSIZE ((2351 + 15) & ~7) /* * PINs. * * The functions here might want renaming, eg, to hal_pin_*(). */ #ifndef HAL_PIN_SALT_LENGTH #define HAL_PIN_SALT_LENGTH 16 #endif typedef struct { uint32_t iterations; uint8_t pin[HAL_MAX_HASH_DIGEST_LENGTH]; uint8_t salt[HAL_PIN_SALT_LENGTH]; } hal_ks_pin_t; extern hal_error_t hal_set_pin_default_iterations(const hal_client_handle_t client, const uint32_t iterations); extern hal_error_t hal_get_pin(const hal_user_t user, const hal_ks_pin_t **pin); extern hal_error_t hal_set_pin(const hal_user_t user, const hal_ks_pin_t * const pin); /* * Master key memory (MKM) and key-encryption-key (KEK). * * Providing a mechanism for storing the KEK in flash is a horrible * kludge which defeats the entire purpose of having the MKM. We * support it for now because the Alpha hardware does not yet have * a working battery backup for the MKM, but it should go away RSN. */ #ifndef HAL_MKM_FLASH_BACKUP_KLUDGE #define HAL_MKM_FLASH_BACKUP_KLUDGE 1 #endif #ifndef KEK_LENGTH #define KEK_LENGTH (bitsToBytes(256)) #endif extern hal_error_t hal_mkm_get_kek(uint8_t *kek, size_t *kek_len, const size_t kek_max); extern hal_error_t hal_mkm_volatile_read(uint8_t *buf, const size_t len); extern hal_error_t hal_mkm_volatile_write(const uint8_t * const buf, const size_t len); extern hal_error_t hal_mkm_volatile_erase(const size_t len); #if HAL_MKM_FLASH_BACKUP_KLUDGE /* #warning MKM flash backup kludge enabled. Do NOT use this in production! */ extern hal_error_t hal_mkm_flash_read(uint8_t *buf, const size_t len); extern hal_error_t hal_mkm_flash_write(const uint8_t * const buf, const size_t len); extern hal_error_t hal_mkm_flash_erase(const size_t len); #endif /* * Keystore API for use by the pkey implementation. * * In an attempt to emulate what current theory says will eventually * be the behavior of the underlying Cryptech Verilog "hardware", * these functions automatically apply the AES keywrap transformations. * * Unclear whether these should also call the ASN.1 encode/decode * functions. For the moment, the answer is no, but we may need to * revisit this as the underlying Verilog API evolves. * * hal_pkey_slot_t is defined here too, so that keystore drivers can * piggyback on the pkey database for storage related to keys on which * the user currently has an active pkey handle. Nothing outside the * pkey and keystore code should touch this. */ typedef struct { hal_client_handle_t client_handle; hal_session_handle_t session_handle; hal_pkey_handle_t pkey_handle; hal_key_type_t type; hal_curve_name_t curve; hal_key_flags_t flags; hal_uuid_t name; /* * We used to stash a "hint" value here for the keystore driver to * speed things up when we had multiple operations on the same key. * Removed as premature optimization during keystore rewrite, but we * may want to put something like this back once the new API has * stablized. If so, form would probably be a union containing * keystore-driver-specific data, which everything else (including * the pkey code) should treat as opaque: making it really opaque * would complicate memory allocation and isn't worth it for an * internal API. */ /* * This might be where we'd stash a (hal_core_t *) pointing to a * core which has already been loaded with the key, if we were * trying to be clever about using multiple signing cores. Moot * point (ie, no way we could possibly test such a thing) as long as * the FPGA is too small to hold more than one modexp core and ECDSA * is entirely software, so skip it for now, but the implied * semantics are interesting: a pkey handle starts to resemble an * initialized signing core, and once all the cores are in use, one * can't load another key without closing an existing pkey handle. */ } hal_pkey_slot_t; typedef struct hal_ks_driver hal_ks_driver_t; typedef struct hal_ks hal_ks_t; struct hal_ks_driver { hal_error_t (*init)(const hal_ks_driver_t * const driver); hal_error_t (*shutdown)(const hal_ks_driver_t * const driver); hal_error_t (*open)(const hal_ks_driver_t * const driver, hal_ks_t **ks); hal_error_t (*close)(hal_ks_t *ks); hal_error_t (*store)(hal_ks_t *ks, const hal_pkey_slot_t * const slot, const uint8_t * const der, const size_t der_len); hal_error_t (*fetch)(hal_ks_t *ks, hal_pkey_slot_t *slot, uint8_t *der, size_t *der_len, const size_t der_max); hal_error_t (*delete)(hal_ks_t *ks, const hal_pkey_slot_t * const slot); hal_error_t (*list)(hal_ks_t *ks, hal_pkey_info_t *result, unsigned *result_len, const unsigned result_max); hal_error_t (*match)(hal_ks_t *ks, const hal_key_type_t type, const hal_curve_name_t curve, const hal_key_flags_t flags, hal_rpc_pkey_attribute_t *attributes, const unsigned attributes_len, hal_uuid_t *result, unsigned *result_len, const unsigned result_max, hal_uuid_t *previous_uuid); hal_error_t (*set_attribute)(hal_ks_t *ks, hal_pkey_slot_t *slot, const uint32_t type, const uint8_t * const value, const size_t value_len); hal_error_t (*get_attribute)(hal_ks_t *ks, hal_pkey_slot_t *slot, const uint32_t type, uint8_t *value, size_t *value_len, const size_t value_max); hal_error_t (*delete_attribute)(hal_ks_t *ks, hal_pkey_slot_t *slot, const uint32_t type); }; struct hal_ks { const hal_ks_driver_t *driver; /* * Any other common portions of hal_ks_t go here. */ /* * Driver-specific stuff is handled by a form of subclassing: * driver module embeds this structure at the head of whatever * else it needs, and performs casts as needed. */ }; extern const hal_ks_driver_t hal_ks_volatile_driver[1], hal_ks_token_driver[1]; static inline hal_error_t hal_ks_init(const hal_ks_driver_t * const driver) { if (driver == NULL || driver->init == NULL) return HAL_ERROR_BAD_ARGUMENTS; return driver->init(driver); } static inline hal_error_t hal_ks_shutdown(const hal_ks_driver_t * const driver) { if (driver == NULL || driver->shutdown == NULL) return HAL_ERROR_BAD_ARGUMENTS; return driver->shutdown(driver); } static inline hal_error_t hal_ks_open(const hal_ks_driver_t * const driver, hal_ks_t **ks) { if (driver == NULL || driver->open == NULL || ks == NULL) return HAL_ERROR_BAD_ARGUMENTS; return driver->open(driver, ks); } static inline hal_error_t hal_ks_close(hal_ks_t *ks) { if (ks == NULL || ks->driver == NULL || ks->driver->close == NULL) return HAL_ERROR_BAD_ARGUMENTS; return ks->driver->close(ks); } static inline hal_error_t hal_ks_store(hal_ks_t *ks, hal_pkey_slot_t *slot, const uint8_t * const der, const size_t der_len) { if (ks == NULL || ks->driver == NULL || ks->driver->store == NULL || slot == NULL || der == NULL) return HAL_ERROR_BAD_ARGUMENTS; return ks->driver->store(ks, slot, der, der_len); } static inline hal_error_t hal_ks_fetch(hal_ks_t *ks, hal_pkey_slot_t *slot, uint8_t *der, size_t *der_len, const size_t der_max) { if (ks == NULL || ks->driver == NULL || ks->driver->fetch == NULL || slot == NULL) return HAL_ERROR_BAD_ARGUMENTS; return ks->driver->fetch(ks, slot, der, der_len, der_max); } static inline hal_error_t hal_ks_delete(hal_ks_t *ks, hal_pkey_slot_t *slot) { if (ks == NULL || ks->driver == NULL || ks->driver->delete == NULL || slot == NULL) return HAL_ERROR_BAD_ARGUMENTS; return ks->driver->delete(ks, slot); } static inline hal_error_t hal_ks_list(hal_ks_t *ks, hal_pkey_info_t *result, unsigned *result_len, const unsigned result_max) { if (ks == NULL || ks->driver == NULL || ks->driver->list == NULL) return HAL_ERROR_BAD_ARGUMENTS; return ks->driver->list(ks, result, result_len, result_max); } static inline hal_error_t hal_ks_match(hal_ks_t *ks, const hal_key_type_t type, const hal_curve_name_t curve, const hal_key_flags_t flags, hal_rpc_pkey_attribute_t *attributes, const unsigned attributes_len, hal_uuid_t *result, unsigned *result_len, const unsigned result_max, hal_uuid_t *previous_uuid) { if (ks == NULL || ks->driver == NULL || ks->driver->match == NULL) return HAL_ERROR_BAD_ARGUMENTS; return ks->driver->match(ks, type, curve, flags, attributes, attributes_len, result, result_len, result_max, previous_uuid); } static inline hal_error_t hal_ks_set_attribute(hal_ks_t *ks, hal_pkey_slot_t *slot, const uint32_t type, const uint8_t * const value, const size_t value_len) { if (ks == NULL || ks->driver == NULL || ks->driver->set_attribute == NULL || slot == NULL) return HAL_ERROR_BAD_ARGUMENTS; return ks->driver->set_attribute(ks, slot, type, value, value_len); } static inline hal_error_t hal_ks_get_attribute(hal_ks_t *ks, hal_pkey_slot_t *slot, const uint32_t type, uint8_t *value, size_t *value_len, const size_t value_max) { if (ks == NULL || ks->driver == NULL || ks->driver->get_attribute == NULL || slot == NULL) return HAL_ERROR_BAD_ARGUMENTS; return ks->driver->get_attribute(ks, slot, type, value, value_len, value_max); } static inline hal_error_t hal_ks_delete_attribute(hal_ks_t *ks, hal_pkey_slot_t *slot, const uint32_t type) { if (ks == NULL || ks->driver == NULL || ks->driver->delete_attribute == NULL || slot == NULL) return HAL_ERROR_BAD_ARGUMENTS; return ks->driver->delete_attribute(ks, slot, type); } /* * Keystore index. This is intended to be usable by both memory-based * (in-memory, mmap(), ...) keystores and keystores based on raw flash. * Some of the features aren't really necessary for memory-based keystores, * but should be harmless. * * General approach is multiple arrays, all but one of which are * indexed by "block" numbers, where a block number might be a slot in * yet another static array, the number of a flash sub-sector, or * whatever is the appropriate unit for holding one keystore record. * * The index array contains nothing but flags and block numbers, and * is deliberately a small data structure so that moving data around * within it is relatively cheap. * * The index array is divided into two portions: the index proper, and * the free queue. The index proper is ordered according to the names * (UUIDs) of the corresponding blocks; the free queue is a FIFO, to * support a simplistic form of wear leveling in flash-based keystores. * * Key names are kept in a separate array, indexed by block number. * Key names here are a composite of the key's UUID and a "chunk" * number; the latter allows storage of keys whose total size exceeds * one block (whatever a block is). For the moment we keep the UUID * and the chunk number in a single array, which may provide (very) * slightly better performance due to reference locality in SDRAM, but * this may change if we need to reclaim the space wasted by structure * size rounding. * * The all-zeros UUID, which (by definition) cannot be a valid key * UUID, is reserved for the (non-key) block used to stash PINs and * other small data which aren't really part of the keystore proper * but are kept with it because the keystore is the flash we have. * * Note that this API deliberately says nothing about how the keys * themselves are stored, that's up to the keystore driver. This * portion of the API is only concerned with allocation and naming. */ typedef struct { hal_uuid_t name; /* Key name */ uint8_t chunk; /* Key chunk number */ } hal_ks_name_t; typedef struct { unsigned size; /* Array length */ unsigned used; /* How many blocks are in use */ uint16_t *index; /* Index/freelist array */ hal_ks_name_t *names; /* Keyname array */ } hal_ks_index_t; /* * Finish setting up key index. Caller must populate index, free * list, and name array. * * This function checks a few things then sorts the index proper. * * If driver cares about wear leveling, driver must supply the free * list in the desired order (FIFO); figuring out what that order is a * problem for the keystore driver. */ extern hal_error_t hal_ks_index_setup(hal_ks_index_t *ksi); /* * Find a key block, return its block number. */ extern hal_error_t hal_ks_index_find(hal_ks_index_t *ksi, const hal_uuid_t * const name, const unsigned chunk, unsigned *blockno, int *hint); /* * Find all the blocks in a key, return the block numbers. */ extern hal_error_t hal_ks_index_find_range(hal_ks_index_t *ksi, const hal_uuid_t * const name, const unsigned max_blocks, unsigned *n_blocks, unsigned *blocknos, int *hint); /* * Add a key block, return its block number. */ extern hal_error_t hal_ks_index_add(hal_ks_index_t *ksi, const hal_uuid_t * const name, const unsigned chunk, unsigned *blockno, int *hint); /* * Delete a key block, returns its block number (driver may need it). */ extern hal_error_t hal_ks_index_delete(hal_ks_index_t *ksi, const hal_uuid_t * const name, const unsigned chunk, unsigned *blockno, int *hint); /* * Replace a key block with a new one, return new block number. * Name of block does not change. This is an optimization of * a delete immediately followed by an add for the same name. */ extern hal_error_t hal_ks_index_replace(hal_ks_index_t *ksi, const hal_uuid_t * const name, const unsigned chunk, unsigned *blockno, int *hint); /* * Keystore attribute utilities, for use by keystore drivers. * * Basic model here is probably to replace the "der" block in a key * object with a byte array. We could use padding to get alignment, * but it's probably easier just to do this DNS style, pulling a * 16-bit length and 32-bit attribute type out of the byte array * directly. Well, maybe. I guess if we cast the uint8_t* to a * structure pointer we could use the structure to pull out the header * fields, but that has portability issues, particulary if the * compiler gets tetchy about type punning. * * Unclear whether we should treat the key DER specially. Might just * give it an attribute code of 0xFFFFFFFF and treat it same as * everything else, just always first for convenience. This assumes * that PKCS #11 will never use 0xFFFFFFFF, which is a bit risky, but * maybe the code just treats it a little bit specially and knows to * skip over the key DER when looking for attributes, etc. * * We probably don't want to let attributes span block boundaries. We * probably do want to attempt to fit a new attribute into the first * available space which can hold it. In theory, taken together, this * means we will only have to update multiple blocks when required to * add a new block (in which case the max_blocks count changes). Most * of this only applies to flash, for volatile we can use as much * memory as we like, although even there we might want smaller chunks * to avoid wasting huge tracts of space that don't end up being used. * But maybe that's just a configuration thing for the volatile * keystore(s). * * If we have to rewrite a block at all we might as well compact it, * so fragmentation in that sense is a non-issue. Might need to * collapse blocks when deletion has freed up enough space, but that * might be something we handle directly in ks_flash rather than in * the ks_attribute code. * * We need some way of figuring out how many attributes there are. * Options are a marker (like the IPv4 END-OF-OPTIONS option) or a * count in the header. Count is simpler and lets us pre-allocate * arrays so probably go with that. */ extern hal_error_t hal_ks_attribute_scan(const uint8_t * const bytes, const size_t bytes_len, hal_rpc_pkey_attribute_t *attributes, const unsigned attributes_len, size_t *total_len); extern hal_error_t hal_ks_attribute_delete(uint8_t *bytes, const size_t bytes_len, hal_rpc_pkey_attribute_t *attributes, unsigned *attributes_len, size_t *total_len, const uint32_t type); extern hal_error_t hal_ks_attribute_insert(uint8_t *bytes, const size_t bytes_len, hal_rpc_pkey_attribute_t *attributes, unsigned *attributes_len, size_t *total_len, const uint32_t type, const uint8_t * const value, const size_t value_len); /* * RPC lowest-level send and receive routines. These are blocking, and * transport-specific (sockets, USB). */ extern hal_error_t hal_rpc_send(const uint8_t * const buf, const size_t len); extern hal_error_t hal_rpc_recv(uint8_t * const buf, size_t * const len); extern hal_error_t hal_rpc_sendto(const uint8_t * const buf, const size_t len, void *opaque); extern hal_error_t hal_rpc_recvfrom(uint8_t * const buf, size_t * const len, void **opaque); extern hal_error_t hal_rpc_client_transport_init(void); extern hal_error_t hal_rpc_client_transport_close(void); extern hal_error_t hal_rpc_server_transport_init(void); extern hal_error_t hal_rpc_server_transport_close(void); /* * RPC function numbers */ typedef enum { RPC_FUNC_GET_VERSION = 0, RPC_FUNC_GET_RANDOM, RPC_FUNC_SET_PIN, RPC_FUNC_LOGIN, RPC_FUNC_LOGOUT, RPC_FUNC_LOGOUT_ALL, RPC_FUNC_IS_LOGGED_IN, RPC_FUNC_HASH_GET_DIGEST_LEN, RPC_FUNC_HASH_GET_DIGEST_ALGORITHM_ID, RPC_FUNC_HASH_GET_ALGORITHM, RPC_FUNC_HASH_INITIALIZE, RPC_FUNC_HASH_UPDATE, RPC_FUNC_HASH_FINALIZE, RPC_FUNC_PKEY_LOAD, RPC_FUNC_PKEY_FIND, RPC_FUNC_PKEY_GENERATE_RSA, RPC_FUNC_PKEY_GENERATE_EC, RPC_FUNC_PKEY_CLOSE, RPC_FUNC_PKEY_DELETE, RPC_FUNC_PKEY_GET_KEY_TYPE, RPC_FUNC_PKEY_GET_KEY_FLAGS, RPC_FUNC_PKEY_GET_PUBLIC_KEY_LEN, RPC_FUNC_PKEY_GET_PUBLIC_KEY, RPC_FUNC_PKEY_SIGN, RPC_FUNC_PKEY_VERIFY, RPC_FUNC_PKEY_LIST, RPC_FUNC_PKEY_RENAME, RPC_FUNC_PKEY_MATCH, RPC_FUNC_PKEY_SET_ATTRIBUTE, RPC_FUNC_PKEY_GET_ATTRIBUTE, RPC_FUNC_PKEY_DELETE_ATTRIBUTE, } rpc_func_num_t; #define RPC_VERSION 0x01010000 /* 1.1.0.0 */ /* * RPC client locality. These have to be defines rather than an enum, * because they're handled by the preprocessor. */ #define RPC_CLIENT_LOCAL 0 #define RPC_CLIENT_REMOTE 1 #define RPC_CLIENT_MIXED 2 #define RPC_CLIENT_NONE 3 /* * Maximum size of a HAL RPC packet. */ #ifndef HAL_RPC_MAX_PKT_SIZE #define HAL_RPC_MAX_PKT_SIZE 4096 #endif /* * Location of AF_UNIX socket for RPC client mux daemon. */ #ifndef HAL_CLIENT_DAEMON_DEFAULT_SOCKET_NAME #define HAL_CLIENT_DAEMON_DEFAULT_SOCKET_NAME "/tmp/cryptech_rpcd.socket" #endif /* * Default device name and line speed for HAL RPC serial connection to HSM. */ #ifndef HAL_CLIENT_SERIAL_DEFAULT_DEVICE #define HAL_CLIENT_SERIAL_DEFAULT_DEVICE "/dev/ttyUSB0" #endif #ifndef HAL_CLIENT_SERIAL_DEFAULT_SPEED #define HAL_CLIENT_SERIAL_DEFAULT_SPEED 921600 #endif /* * Names of environment variables for setting the above in RPC clients. */ #define HAL_CLIENT_SERIAL_DEVICE_ENVVAR "CRYPTECH_RPC_CLIENT_SERIAL_DEVICE" #define HAL_CLIENT_SERIAL_SPEED_ENVVAR "CRYPTECH_RPC_CLIENT_SERIAL_SPEED" #endif /* _HAL_INTERNAL_H_ */ /* * Local variables: * indent-tabs-mode: nil * End: */