/* * ecdsa.c * ------- * Elliptic Curve Digital Signature Algorithm for NIST prime curves. * * At some point we may want to refactor this code to separate * functionality that applies to all elliptic curve cryptography into * a separate module from functions specific to ECDSA over the NIST * prime curves, but it's simplest to keep this all in one place * initially. * * Much of the code in this module is based, at least loosely, on Tom * St Denis's libtomcrypt code. Algorithms for point addition and * point doubling courtesy of the hyperelliptic.org formula database. * * Authors: Rob Austein * Copyright (c) 2015, NORDUnet A/S * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the NORDUnet nor the names of its contributors may * be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * We use "Tom's Fast Math" library for our bignum implementation. * This particular implementation has a couple of nice features: * * - The code is relatively readable, thus reviewable. * * - The bignum representation doesn't use dynamic memory, which * simplifies things for us. * * The price tag for not using dynamic memory is that libtfm has to be * configured to know about the largest bignum one wants it to be able * to support at compile time. This should not be a serious problem. * * We use a lot of one-element arrays (fp_int[1] instead of plain * fp_int) to avoid having to prefix every use of an fp_int with "&". * Perhaps we should encapsulate this idiom in a typedef. * * Unfortunately, libtfm is bad about const-ification, but we want to * hide that from our users, so our public API uses const as * appropriate and we use inline functions to remove const constraints * in a relatively type-safe manner before calling libtom. */ #include #include #include "hal.h" #include "hal_internal.h" #include #include "asn1_internal.h" /* * Whether we're using static test vectors instead of the random * number generator. Do NOT enable this in production (doh). */ #ifndef HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM #define HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM 0 #endif #if defined(RPC_CLIENT) && RPC_CLIENT != RPC_CLIENT_LOCAL #define hal_get_random(core, buffer, length) hal_rpc_get_random(buffer, length) #endif /* * Whether to use the Verilog point multipliers. */ #ifndef HAL_ECDSA_VERILOG_ECDSA256_MULTIPLIER #define HAL_ECDSA_VERILOG_ECDSA256_MULTIPLIER 1 #endif #ifndef HAL_ECDSA_VERILOG_ECDSA384_MULTIPLIER #define HAL_ECDSA_VERILOG_ECDSA384_MULTIPLIER 1 #endif /* * Whether we want debug output. */ static int debug = 0; void hal_ecdsa_set_debug(const int onoff) { debug = onoff; } /* * ECDSA curve descriptor. We only deal with named curves; at the * moment, we only deal with NIST prime curves where the elliptic * curve's "a" parameter is always -3 and its "h" value (order of * elliptic curve group divided by order of base point) is always 1. * * Since the Montgomery parameters we need for the point arithmetic * depend only on the underlying field prime, we precompute them when * we load the curve and store them in the field descriptor, even * though they aren't really curve parameters per se. * * For similar reasons, we also include the ASN.1 OBJECT IDENTIFIERs * used to name these curves. */ typedef struct { fp_int q[1]; /* Modulus of underlying prime field */ fp_int b[1]; /* Curve's "b" parameter */ fp_int Gx[1]; /* x component of base point G */ fp_int Gy[1]; /* y component of base point G */ fp_int n[1]; /* Order of base point G */ fp_int mu[1]; /* Montgomery normalization factor */ fp_digit rho; /* Montgomery reduction value */ const uint8_t *oid; /* OBJECT IDENTIFIER */ size_t oid_len; /* Length of OBJECT IDENTIFIER */ hal_curve_name_t curve; /* Curve name */ } ecdsa_curve_t; /* * ECDSA key implementation. This structure type is private to this * module, anything else that needs to touch one of these just gets a * typed opaque pointer. We do, however, export the size, so that we * can make memory allocation the caller's problem. * * EC points are stored in Jacobian format such that (x, y, z) => * (x/z**2, y/z**3, 1) when interpretted as affine coordinates. * * There are really three different representations in use here: * * 1) Plain affine representation (z == 1); * 2) Montgomery form affine representation (z == curve->mu); and * 3) Montgomery form Jacobian representation (whatever). * * Only form (1) is ever visible outside this module. We perform * explicit conversions from form (1) to form (2) and from forms (2,3) * to form (1). Form (3) only occurs as the result of compuation. * * In theory, we could shave some microscopic amount of time off of * signature verification by supporting an explicit conversion from * form (3) to form (2), but it's not worth the additional complexity. */ typedef struct { fp_int x[1], y[1], z[1]; } ec_point_t; struct hal_ecdsa_key { hal_key_type_t type; /* Public or private */ hal_curve_name_t curve; /* Curve descriptor */ ec_point_t Q[1]; /* Public key */ fp_int d[1]; /* Private key */ }; const size_t hal_ecdsa_key_t_size = sizeof(struct hal_ecdsa_key); /* * Initializers. We want to be able to initialize automatic fp_int * and ec_point_t variables to a sane value (less error prone), but * picky compilers whine about the number of curly braces required. * So we define macros which isolate that madness in one place, and * use those macros everywhere. */ #define INIT_FP_INT {{{0}}} #define INIT_EC_POINT_T {{INIT_FP_INT}} /* * Error handling. */ #define lose(_code_) do { err = _code_; goto fail; } while (0) /* * We can't (usefully) initialize fp_int variables to non-zero values * at compile time, so instead we load all the curve parameters the * first time anything asks for any of them. */ static const ecdsa_curve_t * const get_curve(const hal_curve_name_t curve) { static ecdsa_curve_t curve_p256, curve_p384, curve_p521; static int initialized = 0; if (!initialized) { #include "ecdsa_curves.h" fp_read_unsigned_bin(curve_p256.q, unconst_uint8_t(p256_q), sizeof(p256_q)); fp_read_unsigned_bin(curve_p256.b, unconst_uint8_t(p256_b), sizeof(p256_b)); fp_read_unsigned_bin(curve_p256.Gx, unconst_uint8_t(p256_Gx), sizeof(p256_Gx)); fp_read_unsigned_bin(curve_p256.Gy, unconst_uint8_t(p256_Gy), sizeof(p256_Gy)); fp_read_unsigned_bin(curve_p256.n, unconst_uint8_t(p256_n), sizeof(p256_n)); if (fp_montgomery_setup(curve_p256.q, &curve_p256.rho) != FP_OKAY) return NULL; fp_zero(curve_p256.mu); fp_montgomery_calc_normalization(curve_p256.mu, curve_p256.q); curve_p256.oid = p256_oid; curve_p256.oid_len = sizeof(p256_oid); curve_p256.curve = HAL_CURVE_P256; fp_read_unsigned_bin(curve_p384.q, unconst_uint8_t(p384_q), sizeof(p384_q)); fp_read_unsigned_bin(curve_p384.b, unconst_uint8_t(p384_b), sizeof(p384_b)); fp_read_unsigned_bin(curve_p384.Gx, unconst_uint8_t(p384_Gx), sizeof(p384_Gx)); fp_read_unsigned_bin(curve_p384.Gy, unconst_uint8_t(p384_Gy), sizeof(p384_Gy)); fp_read_unsigned_bin(curve_p384.n, unconst_uint8_t(p384_n), sizeof(p384_n)); if (fp_montgomery_setup(curve_p384.q, &curve_p384.rho) != FP_OKAY) return NULL; fp_zero(curve_p384.mu); fp_montgomery_calc_normalization(curve_p384.mu, curve_p384.q); curve_p384.oid = p384_oid; curve_p384.oid_len = sizeof(p384_oid); curve_p384.curve = HAL_CURVE_P384; fp_read_unsigned_bin(curve_p521.q, unconst_uint8_t(p521_q), sizeof(p521_q)); fp_read_unsigned_bin(curve_p521.b, unconst_uint8_t(p521_b), sizeof(p521_b)); fp_read_unsigned_bin(curve_p521.Gx, unconst_uint8_t(p521_Gx), sizeof(p521_Gx)); fp_read_unsigned_bin(curve_p521.Gy, unconst_uint8_t(p521_Gy), sizeof(p521_Gy)); fp_read_unsigned_bin(curve_p521.n, unconst_uint8_t(p521_n), sizeof(p521_n)); if (fp_montgomery_setup(curve_p521.q, &curve_p521.rho) != FP_OKAY) return NULL; fp_zero(curve_p521.mu); fp_montgomery_calc_normalization(curve_p521.mu, curve_p521.q); curve_p521.oid = p521_oid; curve_p521.oid_len = sizeof(p521_oid); curve_p521.curve = HAL_CURVE_P521; initialized = 1; } switch (curve) { case HAL_CURVE_P256: return &curve_p256; case HAL_CURVE_P384: return &curve_p384; case HAL_CURVE_P521: return &curve_p521; default: return NULL; } } static inline const ecdsa_curve_t * oid_to_curve(hal_curve_name_t *curve_name, const uint8_t * const oid, const size_t oid_len) { assert(curve_name != NULL && oid != NULL); const ecdsa_curve_t *curve = NULL; *curve_name = HAL_CURVE_NONE; while ((curve = get_curve(++*curve_name)) != NULL) if (oid_len == curve->oid_len && memcmp(oid, curve->oid, oid_len) == 0) return curve; return NULL; } /* * Finite field operations (hence "ff_"). These are basically just * the usual bignum operations, constrained by the field modulus. * * All of these are operations in the field underlying the specified * curve, and assume that operands are already in Montgomery form. * * The ff_add() and ff_sub() are written a bit oddly, in an attempt to * make them run in constant time. An optimizing compiler may be * clever enough to defeat this. In the long run, we probably want to * perform these field operations in Verilog anyway. * * We might be able to squeeze a bit more speed out of the point * arithmetic by making using fp_mul_2d() when multiplying by a power * of two. Skipping for now as a premature optimization, but if we do * need this, it'd probably be simplest to add a ff_dbl() function * which handles overflow in the same way that ff_add() does. */ static inline void ff_add(const ecdsa_curve_t * const curve, const fp_int * const a, const fp_int * const b, fp_int *c) { fp_int t[2][1] = {INIT_FP_INT}; fp_add(unconst_fp_int(a), unconst_fp_int(b), t[0]); fp_sub(t[0], unconst_fp_int(curve->q), t[1]); fp_copy(t[fp_cmp_d(t[1], 0) != FP_LT], c); memset(t, 0, sizeof(t)); } static inline void ff_sub(const ecdsa_curve_t * const curve, const fp_int * const a, const fp_int * const b, fp_int *c) { fp_int t[2][1] = {INIT_FP_INT}; fp_sub(unconst_fp_int(a), unconst_fp_int(b), t[0]); fp_add(t[0], unconst_fp_int(curve->q), t[1]); fp_copy(t[fp_cmp_d(t[0], 0) == FP_LT], c); memset(t, 0, sizeof(t)); } static inline void ff_mul(const ecdsa_curve_t * const curve, const fp_int * const a, const fp_int * const b, fp_int *c) { fp_mul(unconst_fp_int(a), unconst_fp_int(b), c); fp_montgomery_reduce(c, unconst_fp_int(curve->q), curve->rho); } static inline void ff_sqr(const ecdsa_curve_t * const curve, const fp_int * const a, fp_int *b) { fp_sqr(unconst_fp_int(a), b); fp_montgomery_reduce(b, unconst_fp_int(curve->q), curve->rho); } /* * Test whether a point is the point at infinity. * * In Jacobian projective coordinate, any point of the form * * (j ** 2, j **3, 0) for j in [1..q-1] * * is on the line at infinity, but for practical purposes simply * checking the z coordinate is probably sufficient. */ static inline int point_is_infinite(const ec_point_t * const P) { assert(P != NULL); return fp_iszero(P->z); } /* * Set a point to be the point at infinity. For Jacobian projective * coordinates, it's customary to use (1 : 1 : 0) as the * representitive value. * * If a curve is supplied, we want the Montgomery form of the point at * infinity for that curve. */ static inline void point_set_infinite(ec_point_t *P, const ecdsa_curve_t * const curve) { assert(P != NULL); if (curve != NULL) { fp_copy(unconst_fp_int(curve->mu), P->x); fp_copy(unconst_fp_int(curve->mu), P->y); fp_zero(P->z); } else { fp_set(P->x, 1); fp_set(P->y, 1); fp_zero(P->z); } } /* * Copy a point. */ static inline void point_copy(const ec_point_t * const P, ec_point_t *R) { if (P != NULL && R != NULL && P != R) *R = *P; } /** * Convert a point into Montgomery form. * @param P [in/out] The point to map * @param curve The curve parameters structure */ static inline hal_error_t point_to_montgomery(ec_point_t *P, const ecdsa_curve_t * const curve) { assert(P != NULL && curve != NULL); if (fp_cmp_d(unconst_fp_int(P->z), 1) != FP_EQ) return HAL_ERROR_BAD_ARGUMENTS; if (fp_mulmod(P->x, unconst_fp_int(curve->mu), unconst_fp_int(curve->q), P->x) != FP_OKAY || fp_mulmod(P->y, unconst_fp_int(curve->mu), unconst_fp_int(curve->q), P->y) != FP_OKAY) return HAL_ERROR_IMPOSSIBLE; fp_copy(unconst_fp_int(curve->mu), P->z); return HAL_OK; } /** * Map a point in projective Jacbobian coordinates back to affine * space. This also converts back from Montgomery to plain form. * @param P [in/out] The point to map * @param curve The curve parameters structure * * It's not possible to represent the point at infinity in plain * affine coordinates, and the calling function will have to handle * the point at infinity specially in any case, so we declare this to * be the calling function's problem. */ static inline hal_error_t point_to_affine(ec_point_t *P, const ecdsa_curve_t * const curve) { assert(P != NULL && curve != NULL); if (point_is_infinite(P)) return HAL_ERROR_IMPOSSIBLE; hal_error_t err = HAL_ERROR_IMPOSSIBLE; fp_int t1[1] = INIT_FP_INT; fp_int t2[1] = INIT_FP_INT; fp_int * const q = unconst_fp_int(curve->q); fp_montgomery_reduce(P->z, q, curve->rho); if (fp_invmod (P->z, q, t1) != FP_OKAY || /* t1 = 1 / z */ fp_sqrmod (t1, q, t2) != FP_OKAY || /* t2 = 1 / z**2 */ fp_mulmod (t1, t2, q, t1) != FP_OKAY) /* t1 = 1 / z**3 */ goto fail; fp_mul (P->x, t2, P->x); /* x = x / z**2 */ fp_mul (P->y, t1, P->y); /* y = y / z**3 */ fp_set (P->z, 1); /* z = 1 */ fp_montgomery_reduce(P->x, q, curve->rho); fp_montgomery_reduce(P->y, q, curve->rho); err = HAL_OK; fail: fp_zero(t1); fp_zero(t2); return err; } /** * Double an EC point. * @param P The point to double * @param R [out] The destination of the double * @param curve The curve parameters structure * * Algorithm is dbl-2001-b from * http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html */ static inline void point_double(const ec_point_t * const P, ec_point_t *R, const ecdsa_curve_t * const curve) { assert(P != NULL && R != NULL && curve != NULL); const int was_infinite = point_is_infinite(P); fp_int alpha[1] = INIT_FP_INT; fp_int beta[1] = INIT_FP_INT; fp_int gamma[1] = INIT_FP_INT; fp_int delta[1] = INIT_FP_INT; fp_int t1[1] = INIT_FP_INT; fp_int t2[1] = INIT_FP_INT; ff_sqr (curve, P->z, delta); /* delta = Pz ** 2 */ ff_sqr (curve, P->y, gamma); /* gamma = Py ** 2 */ ff_mul (curve, P->x, gamma, beta); /* beta = Px * gamma */ ff_sub (curve, P->x, delta, t1); /* alpha = 3 * (Px - delta) * (Px + delta) */ ff_add (curve, P->x, delta, t2); ff_mul (curve, t1, t2, t1); ff_add (curve, t1, t1, t2); ff_add (curve, t1, t2, alpha); ff_sqr (curve, alpha, t1); /* Rx = (alpha ** 2) - (8 * beta) */ ff_add (curve, beta, beta, t2); ff_add (curve, t2, t2, t2); ff_add (curve, t2, t2, t2); ff_sub (curve, t1, t2, R->x); ff_add (curve, P->y, P->z, t1); /* Rz = ((Py + Pz) ** 2) - gamma - delta */ ff_sqr (curve, t1, t1); ff_sub (curve, t1, gamma, t1); ff_sub (curve, t1, delta, R->z); ff_add (curve, beta, beta, t1); /* Ry = (((4 * beta) - Rx) * alpha) - (8 * (gamma ** 2)) */ ff_add (curve, t1, t1, t1); ff_sub (curve, t1, R->x, t1); ff_mul (curve, t1, alpha, t1); ff_sqr (curve, gamma, t2); ff_add (curve, t2, t2, t2); ff_add (curve, t2, t2, t2); ff_add (curve, t2, t2, t2); ff_sub (curve, t1, t2, R->y); assert(was_infinite == point_is_infinite(P)); fp_zero(alpha); fp_zero(beta); fp_zero(gamma); fp_zero(delta); fp_zero(t1); fp_zero(t2); } /** * Add two EC points * @param P The point to add * @param Q The point to add * @param R [out] The destination of the double * @param curve The curve parameters structure * * Algorithm is madd-2007-bl from * http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html * * The special cases are unfortunate, but are probably unavoidable for * this type of curve. We do what we can to make this constant-time * in spite of the special cases. The one we really can't do much * about is P == Q, because in that case we have to switch to the * point doubling algorithm. */ static inline void point_add(const ec_point_t * const P, const ec_point_t * const Q, ec_point_t *R, const ecdsa_curve_t * const curve) { assert(P != NULL && Q != NULL && R != NULL && curve != NULL); /* * Q must be affine in Montgomery form. */ assert(fp_cmp(unconst_fp_int(Q->z), unconst_fp_int(curve->mu)) == FP_EQ); #warning What happens here if P and Q are not equal but map to the same point in affine space? const int same_xz = (fp_cmp(unconst_fp_int(P->z), unconst_fp_int(Q->z)) == FP_EQ && fp_cmp(unconst_fp_int(P->x), unconst_fp_int(Q->x)) == FP_EQ); /* * If P == Q, we must use point doubling instead of point addition, * and there's nothing we can do to mask the timing differences. * So just do it, right away. */ if (same_xz && fp_cmp(unconst_fp_int(P->y), unconst_fp_int(Q->y)) == FP_EQ) return point_double(P, R, curve); /* * Check now for the other special cases, but defer handling them * until the end, to mask timing differences. */ const int P_was_infinite = point_is_infinite(P); fp_int Qy_neg[1] = INIT_FP_INT; fp_sub(unconst_fp_int(curve->q), unconst_fp_int(Q->y), Qy_neg); const int result_is_infinite = fp_cmp(unconst_fp_int(P->y), Qy_neg) == FP_EQ && same_xz; fp_zero(Qy_neg); /* * Main point addition algorithm. */ fp_int Z1Z1[1] = INIT_FP_INT; fp_int H[1] = INIT_FP_INT; fp_int HH[1] = INIT_FP_INT; fp_int I[1] = INIT_FP_INT; fp_int J[1] = INIT_FP_INT; fp_int r[1] = INIT_FP_INT; fp_int V[1] = INIT_FP_INT; fp_int t[1] = INIT_FP_INT; ff_sqr (curve, P->z, Z1Z1); /* Z1Z1 = Pz ** 2 */ ff_mul (curve, Q->x, Z1Z1, H); /* H = (Qx * Z1Z1) - Px */ ff_sub (curve, H, P->x, H); ff_sqr (curve, H, HH); /* HH = H ** 2 */ ff_add (curve, HH, HH, I); /* I = 4 * HH */ ff_add (curve, I, I, I); ff_mul (curve, H, I, J); /* J = H * I */ ff_mul (curve, P->z, Z1Z1, r); /* r = 2 * ((Qy * Pz * Z1Z1) - Py) */ ff_mul (curve, Q->y, r, r); ff_sub (curve, r, P->y, r); ff_add (curve, r, r, r); ff_mul (curve, P->x, I, V); /* V = Px * I */ ff_sqr (curve, r, R->x); /* Rx = (r ** 2) - J - (2 * V) */ ff_sub (curve, R->x, J, R->x); ff_sub (curve, R->x, V, R->x); ff_sub (curve, R->x, V, R->x); ff_mul (curve, P->y, J, t); /* Ry = (r * (V - Rx)) - (2 * Py * J) */ ff_sub (curve, V, R->x, R->y); ff_mul (curve, r, R->y, R->y); ff_sub (curve, R->y, t, R->y); ff_sub (curve, R->y, t, R->y); ff_add (curve, P->z, H, R->z); /* Rz = ((Pz + H) ** 2) - Z1Z1 - HH */ ff_sqr (curve, R->z, R->z); ff_sub (curve, R->z, Z1Z1, R->z); ff_sub (curve, R->z, HH, R->z); fp_zero(Z1Z1), fp_zero(H), fp_zero(HH), fp_zero(I), fp_zero(J), fp_zero(r), fp_zero(V), fp_zero(t); /* * Handle deferred special cases, then we're done. */ if (P_was_infinite) point_copy(Q, R); else if (result_is_infinite) point_set_infinite(R, curve); } /** * Perform a point multiplication. * @param k The scalar to multiply by * @param P The base point * @param R [out] Destination for kP * @param curve Curve parameters * @return HAL_OK on success * * P must be in affine form. */ static hal_error_t point_scalar_multiply(const fp_int * const k, const ec_point_t * const P_, ec_point_t *R, const ecdsa_curve_t * const curve) { assert(k != NULL && P_ != NULL && R != NULL && curve != NULL); if (fp_iszero(k) || fp_cmp_d(unconst_fp_int(P_->z), 1) != FP_EQ) return HAL_ERROR_BAD_ARGUMENTS; hal_error_t err; /* * Convert P to Montgomery form. */ ec_point_t P[1]; point_copy(P_, P); if ((err = point_to_montgomery(P, curve)) != HAL_OK) { memset(P, 0, sizeof(P)); return err; } /* * Initialize table. * M[0] is a dummy for constant timing. * M[1] is where we accumulate the result. */ ec_point_t M[2][1] = {INIT_EC_POINT_T}; point_set_infinite(M[0], curve); point_set_infinite(M[1], curve); /* * Walk down bits of the scalar, performing dummy operations to mask * timing. * * Note that, in order for the timing protection to work, the * number of iterations in the loop has to depend on the order of * the base point rather than on the scalar. */ for (int bit_index = fp_count_bits(unconst_fp_int(curve->n)) - 1; bit_index >= 0; bit_index--) { const int digit_index = bit_index / DIGIT_BIT; const fp_digit digit = digit_index < k->used ? k->dp[digit_index] : 0; const fp_digit mask = ((fp_digit) 1) << (bit_index % DIGIT_BIT); const int bit = (digit & mask) != 0; point_double (M[1], M[1], curve); point_add (M[bit], P, M[bit], curve); } /* * Copy result, map back to affine, then done. */ point_copy(M[1], R); err = point_to_affine(R, curve); memset(P, 0, sizeof(P)); memset(M, 0, sizeof(M)); return err; } /* * Testing only: ECDSA key generation and signature both have a * critical dependency on random numbers, but we can't use the random * number generator when testing against static test vectors. So add a * wrapper around the random number generator calls, with a hook to * let us override the generator for test purposes. Do NOT use this * in production, kids. */ #if HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM #warning hal_ecdsa random number generator overridden for test purposes #warning DO NOT USE THIS IN PRODUCTION typedef hal_error_t (*rng_override_test_function_t)(void *, const size_t); static rng_override_test_function_t rng_test_override_function = 0; rng_override_test_function_t hal_ecdsa_set_rng_override_test_function(rng_override_test_function_t new_func) { rng_override_test_function_t old_func = rng_test_override_function; rng_test_override_function = new_func; return old_func; } static inline hal_error_t get_random(void *buffer, const size_t length) { if (rng_test_override_function) return rng_test_override_function(buffer, length); else return hal_get_random(NULL, buffer, length); } #else /* HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM */ static inline hal_error_t get_random(void *buffer, const size_t length) { return hal_get_random(NULL, buffer, length); } #endif /* HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM */ /* * Use experimental Verilog base point multiplier cores to calculate * public key given a private key. point_pick_random() has already * selected a suitable private key for us, we just need to calculate * the corresponding public key. */ #if HAL_ECDSA_VERILOG_ECDSA256_MULTIPLIER || HAL_ECDSA_VERILOG_ECDSA384_MULTIPLIER typedef struct { size_t bytes; const char *name; hal_addr_t k_addr; hal_addr_t x_addr; hal_addr_t y_addr; } verilog_ecdsa_driver_t; static hal_error_t verilog_point_pick_random(const verilog_ecdsa_driver_t * const driver, fp_int *k, ec_point_t *P) { assert(k != NULL && P != NULL); const size_t len = fp_unsigned_bin_size(k); uint8_t b[driver->bytes]; const uint8_t zero[4] = {0, 0, 0, 0}; hal_core_t *core = NULL; hal_error_t err; if (len > sizeof(b)) return HAL_ERROR_RESULT_TOO_LONG; if ((err = hal_core_alloc(driver->name, &core)) != HAL_OK) goto fail; #define check(_x_) do { if ((err = (_x_)) != HAL_OK) goto fail; } while (0) memset(b, 0, sizeof(b)); fp_to_unsigned_bin(k, b + sizeof(b) - len); for (int i = 0; i < sizeof(b); i += 4) check(hal_io_write(core, driver->k_addr + i/4, &b[sizeof(b) - 4 - i], 4)); check(hal_io_write(core, ADDR_CTRL, zero, sizeof(zero))); check(hal_io_next(core)); check(hal_io_wait_valid(core)); for (int i = 0; i < sizeof(b); i += 4) check(hal_io_read(core, driver->x_addr + i/4, &b[sizeof(b) - 4 - i], 4)); fp_read_unsigned_bin(P->x, b, sizeof(b)); for (int i = 0; i < sizeof(b); i += 4) check(hal_io_read(core, driver->y_addr + i/4, &b[sizeof(b) - 4 - i], 4)); fp_read_unsigned_bin(P->y, b, sizeof(b)); fp_set(P->z, 1); #undef check err = HAL_OK; fail: hal_core_free(core); memset(b, 0, sizeof(b)); return err; } #endif static inline hal_error_t verilog_p256_point_pick_random(fp_int *k, ec_point_t *P) { #if HAL_ECDSA_VERILOG_ECDSA256_MULTIPLIER static const verilog_ecdsa_driver_t p256_driver = { .name = ECDSA256_NAME, .bytes = ECDSA256_OPERAND_BITS / 8, .k_addr = ECDSA256_ADDR_K, .x_addr = ECDSA256_ADDR_X, .y_addr = ECDSA256_ADDR_Y }; return verilog_point_pick_random(&p256_driver, k, P); #endif return HAL_ERROR_CORE_NOT_FOUND; } static inline hal_error_t verilog_p384_point_pick_random(fp_int *k, ec_point_t *P) { #if HAL_ECDSA_VERILOG_ECDSA384_MULTIPLIER static const verilog_ecdsa_driver_t p384_driver = { .name = ECDSA384_NAME, .bytes = ECDSA384_OPERAND_BITS / 8, .k_addr = ECDSA384_ADDR_K, .x_addr = ECDSA384_ADDR_X, .y_addr = ECDSA384_ADDR_Y }; return verilog_point_pick_random(&p384_driver, k, P); #endif return HAL_ERROR_CORE_NOT_FOUND; } /* * Pick a random point on the curve, return random scalar and * resulting point. */ static hal_error_t point_pick_random(const ecdsa_curve_t * const curve, fp_int *k, ec_point_t *P) { hal_error_t err; assert(curve != NULL && k != NULL && P != NULL); /* * Pick a random scalar corresponding to a point on the curve. Per * the NSA (gulp) Suite B guidelines, we ask the CSPRNG for 64 more * bits than we need, which should be enough to mask any bias * induced by the modular reduction. * * We're picking a point out of the subgroup generated by the base * point on the elliptic curve, so the modulus for this calculation * is the order of the base point. * * Zero is an excluded value, but the chance of a non-broken CSPRNG * returning zero is so low that it would almost certainly indicate * an undiagnosed bug in the CSPRNG. */ uint8_t k_buf[fp_unsigned_bin_size(unconst_fp_int(curve->n)) + 8]; do { if ((err = get_random(k_buf, sizeof(k_buf))) != HAL_OK) return err; fp_read_unsigned_bin(k, k_buf, sizeof(k_buf)); if (fp_iszero(k) || fp_mod(k, unconst_fp_int(curve->n), k) != FP_OKAY) return HAL_ERROR_IMPOSSIBLE; } while (fp_iszero(k)); memset(k_buf, 0, sizeof(k_buf)); #if HAL_ECDSA_VERILOG_ECDSA256_MULTIPLIER || HAL_ECDSA_VERILOG_ECDSA384_MULTIPLIER switch (curve->curve) { case HAL_CURVE_P256: if ((err = verilog_p256_point_pick_random(k, P)) != HAL_ERROR_CORE_NOT_FOUND) return err; break; case HAL_CURVE_P384: if ((err = verilog_p384_point_pick_random(k, P)) != HAL_ERROR_CORE_NOT_FOUND) return err; break; default: break; } #endif /* * Calculate P = kG and return. */ fp_copy(curve->Gx, P->x); fp_copy(curve->Gy, P->y); fp_set(P->z, 1); return point_scalar_multiply(k, P, P, curve); } /* * Test whether a point really is on a particular curve. This is * called "validation" when applied to a public key, and is required * before verifying a signature. */ static int point_is_on_curve(const ec_point_t * const P, const ecdsa_curve_t * const curve) { assert(P != NULL && curve != NULL); fp_int t1[1] = INIT_FP_INT; fp_int t2[1] = INIT_FP_INT; /* * Compute y**2 - x**3 + 3*x. */ fp_sqr(unconst_fp_int(P->y), t1); /* t1 = y**2 */ fp_sqr(unconst_fp_int(P->x), t2); /* t2 = x**2 */ if (fp_mod(t2, unconst_fp_int(curve->q), t2) != FP_OKAY) return 0; fp_mul(unconst_fp_int(P->x), t2, t2); /* t2 = x**3 */ fp_sub(t1, t2, t1); /* t1 = y**2 - x**3 */ fp_add(t1, unconst_fp_int(P->x), t1); /* t1 = y**2 - x**3 + 1*x */ fp_add(t1, unconst_fp_int(P->x), t1); /* t1 = y**2 - x**3 + 2*x */ fp_add(t1, unconst_fp_int(P->x), t1); /* t1 = y**2 - x**3 + 3*x */ /* * Normalize and test whether computed value matches b. */ if (fp_mod(t1, unconst_fp_int(curve->q), t1) != FP_OKAY) return 0; while (fp_cmp_d(t1, 0) == FP_LT) fp_add(t1, unconst_fp_int(curve->q), t1); while (fp_cmp(t1, unconst_fp_int(curve->q)) != FP_LT) fp_sub(t1, unconst_fp_int(curve->q), t1); return fp_cmp(t1, unconst_fp_int(curve->b)) == FP_EQ; } /* * Generate a new ECDSA key. */ hal_error_t hal_ecdsa_key_gen(const hal_core_t *core, hal_ecdsa_key_t **key_, void *keybuf, const size_t keybuf_len, const hal_curve_name_t curve_) { const ecdsa_curve_t * const curve = get_curve(curve_); hal_ecdsa_key_t *key = keybuf; hal_error_t err; if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key) || curve == NULL) return HAL_ERROR_BAD_ARGUMENTS; memset(keybuf, 0, keybuf_len); key->type = HAL_KEY_TYPE_EC_PRIVATE; key->curve = curve_; if ((err = point_pick_random(curve, key->d, key->Q)) != HAL_OK) return err; if (!point_is_on_curve(key->Q, curve)) return HAL_ERROR_KEY_NOT_ON_CURVE; *key_ = key; return HAL_OK; } /* * Extract key type (public or private). */ hal_error_t hal_ecdsa_key_get_type(const hal_ecdsa_key_t * const key, hal_key_type_t *key_type) { if (key == NULL || key_type == NULL) return HAL_ERROR_BAD_ARGUMENTS; *key_type = key->type; return HAL_OK; } /* * Extract name of curve underlying a key. */ hal_error_t hal_ecdsa_key_get_curve(const hal_ecdsa_key_t * const key, hal_curve_name_t *curve) { if (key == NULL || curve == NULL) return HAL_ERROR_BAD_ARGUMENTS; *curve = key->curve; return HAL_OK; } /* * Extract public key components. */ hal_error_t hal_ecdsa_key_get_public(const hal_ecdsa_key_t * const key, uint8_t *x, size_t *x_len, const size_t x_max, uint8_t *y, size_t *y_len, const size_t y_max) { if (key == NULL || (x_len == NULL && x != NULL) || (y_len == NULL && y != NULL)) return HAL_ERROR_BAD_ARGUMENTS; if (x_len != NULL) *x_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->x)); if (y_len != NULL) *y_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->y)); if ((x != NULL && *x_len > x_max) || (y != NULL && *y_len > y_max)) return HAL_ERROR_RESULT_TOO_LONG; if (x != NULL) fp_to_unsigned_bin(unconst_fp_int(key->Q->x), x); if (y != NULL) fp_to_unsigned_bin(unconst_fp_int(key->Q->y), y); return HAL_OK; } /* * Clear a key. */ void hal_ecdsa_key_clear(hal_ecdsa_key_t *key) { if (key != NULL) memset(key, 0, sizeof(*key)); } /* * Load a public key from components, and validate that the public key * really is on the named curve. */ hal_error_t hal_ecdsa_key_load_public(hal_ecdsa_key_t **key_, void *keybuf, const size_t keybuf_len, const hal_curve_name_t curve_, const uint8_t * const x, const size_t x_len, const uint8_t * const y, const size_t y_len) { const ecdsa_curve_t * const curve = get_curve(curve_); hal_ecdsa_key_t *key = keybuf; if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key) || curve == NULL || x == NULL || y == NULL) return HAL_ERROR_BAD_ARGUMENTS; memset(keybuf, 0, keybuf_len); key->type = HAL_KEY_TYPE_EC_PUBLIC; key->curve = curve_; fp_read_unsigned_bin(key->Q->x, unconst_uint8_t(x), x_len); fp_read_unsigned_bin(key->Q->y, unconst_uint8_t(y), y_len); fp_set(key->Q->z, 1); if (!point_is_on_curve(key->Q, curve)) return HAL_ERROR_KEY_NOT_ON_CURVE; *key_ = key; return HAL_OK; } /* * Load a private key from components: does the same things as * hal_ecdsa_key_load_public(), but also checks the private key, and * generates the public key from the private key if necessary. */ hal_error_t hal_ecdsa_key_load_private(hal_ecdsa_key_t **key_, void *keybuf, const size_t keybuf_len, const hal_curve_name_t curve_, const uint8_t * const x, const size_t x_len, const uint8_t * const y, const size_t y_len, const uint8_t * const d, const size_t d_len) { const ecdsa_curve_t * const curve = get_curve(curve_); hal_ecdsa_key_t *key = keybuf; hal_error_t err; if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key) || curve == NULL || d == NULL || d_len == 0 || (x == NULL && x_len != 0) || (y == NULL && y_len != 0)) return HAL_ERROR_BAD_ARGUMENTS; memset(keybuf, 0, keybuf_len); key->type = HAL_KEY_TYPE_EC_PRIVATE; key->curve = curve_; fp_read_unsigned_bin(key->d, unconst_uint8_t(d), d_len); if (fp_iszero(key->d) || fp_cmp(key->d, unconst_fp_int(curve->n)) != FP_LT) lose(HAL_ERROR_BAD_ARGUMENTS); fp_set(key->Q->z, 1); if (x_len != 0 || y_len != 0) { fp_read_unsigned_bin(key->Q->x, unconst_uint8_t(x), x_len); fp_read_unsigned_bin(key->Q->y, unconst_uint8_t(y), y_len); } else { fp_copy(curve->Gx, key->Q->x); fp_copy(curve->Gy, key->Q->y); if ((err = point_scalar_multiply(key->d, key->Q, key->Q, curve)) != HAL_OK) goto fail; } if (!point_is_on_curve(key->Q, curve)) lose(HAL_ERROR_KEY_NOT_ON_CURVE); *key_ = key; return HAL_OK; fail: memset(keybuf, 0, keybuf_len); return err; } /* * Write public key in X9.62 ECPoint format (ASN.1 OCTET STRING, first octet is compression flag). */ hal_error_t hal_ecdsa_key_to_ecpoint(const hal_ecdsa_key_t * const key, uint8_t *der, size_t *der_len, const size_t der_max) { if (key == NULL) return HAL_ERROR_BAD_ARGUMENTS; const ecdsa_curve_t * const curve = get_curve(key->curve); if (curve == NULL) return HAL_ERROR_IMPOSSIBLE; const size_t q_len = fp_unsigned_bin_size(unconst_fp_int(curve->q)); const size_t Qx_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->x)); const size_t Qy_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->y)); assert(q_len >= Qx_len && q_len >= Qy_len); const size_t vlen = q_len * 2 + 1; size_t hlen; hal_error_t err = hal_asn1_encode_header(ASN1_OCTET_STRING, vlen, der, &hlen, der_max); if (der_len != NULL) *der_len = hlen + vlen; if (der == NULL || err != HAL_OK) return err; assert(hlen + vlen <= der_max); uint8_t *d = der + hlen; memset(d, 0, vlen); *d++ = 0x04; /* uncompressed */ fp_to_unsigned_bin(unconst_fp_int(key->Q->x), d + q_len - Qx_len); d += q_len; fp_to_unsigned_bin(unconst_fp_int(key->Q->y), d + q_len - Qy_len); d += q_len; assert(d <= der + der_max); return HAL_OK; } /* * Convenience wrapper to return how many bytes a key would take if * encoded as an ECPoint. */ size_t hal_ecdsa_key_to_ecpoint_len(const hal_ecdsa_key_t * const key) { size_t len; return hal_ecdsa_key_to_ecpoint(key, NULL, &len, 0) == HAL_OK ? len : 0; } /* * Read public key in X9.62 ECPoint format (ASN.1 OCTET STRING, first octet is compression flag). * ECPoint format doesn't include a curve identifier, so caller has to supply one. */ hal_error_t hal_ecdsa_key_from_ecpoint(hal_ecdsa_key_t **key_, void *keybuf, const size_t keybuf_len, const uint8_t * const der, const size_t der_len, const hal_curve_name_t curve) { hal_ecdsa_key_t *key = keybuf; if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key) || get_curve(curve) == NULL) return HAL_ERROR_BAD_ARGUMENTS; memset(keybuf, 0, keybuf_len); key->type = HAL_KEY_TYPE_EC_PUBLIC; key->curve = curve; size_t hlen, vlen; hal_error_t err; if ((err = hal_asn1_decode_header(ASN1_OCTET_STRING, der, der_len, &hlen, &vlen)) != HAL_OK) return err; const uint8_t * const der_end = der + hlen + vlen; const uint8_t *d = der + hlen; if (vlen < 3 || (vlen & 1) == 0 || *d++ != 0x04) lose(HAL_ERROR_ASN1_PARSE_FAILED); vlen /= 2; fp_read_unsigned_bin(key->Q->x, unconst_uint8_t(d), vlen); d += vlen; fp_read_unsigned_bin(key->Q->y, unconst_uint8_t(d), vlen); d += vlen; fp_set(key->Q->z, 1); if (d != der_end) lose(HAL_ERROR_ASN1_PARSE_FAILED); *key_ = key; return HAL_OK; fail: memset(keybuf, 0, keybuf_len); return err; } /* * Write private key in RFC 5915 ASN.1 DER format. * * This is hand-coded, and is approaching the limit where one should * probably be using an ASN.1 compiler like asn1c instead. */ hal_error_t hal_ecdsa_private_key_to_der(const hal_ecdsa_key_t * const key, uint8_t *der, size_t *der_len, const size_t der_max) { if (key == NULL || key->type != HAL_KEY_TYPE_EC_PRIVATE) return HAL_ERROR_BAD_ARGUMENTS; const ecdsa_curve_t * const curve = get_curve(key->curve); if (curve == NULL) return HAL_ERROR_IMPOSSIBLE; const size_t q_len = fp_unsigned_bin_size(unconst_fp_int(curve->q)); const size_t d_len = fp_unsigned_bin_size(unconst_fp_int(key->d)); const size_t Qx_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->x)); const size_t Qy_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->y)); assert(q_len >= d_len && q_len >= Qx_len && q_len >= Qy_len); fp_int version[1] = INIT_FP_INT; fp_set(version, 1); hal_error_t err; size_t version_len, hlen, hlen_oct, hlen_oid, hlen_exp0, hlen_bit, hlen_exp1; if ((err = hal_asn1_encode_integer(version, NULL, &version_len, 0)) != HAL_OK || (err = hal_asn1_encode_header(ASN1_OCTET_STRING, q_len, NULL, &hlen_oct, 0)) != HAL_OK || (err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, curve->oid_len, NULL, &hlen_oid, 0)) != HAL_OK || (err = hal_asn1_encode_header(ASN1_EXPLICIT_0, hlen_oid + curve->oid_len, NULL, &hlen_exp0, 0)) != HAL_OK || (err = hal_asn1_encode_header(ASN1_BIT_STRING, (q_len + 1) * 2, NULL, &hlen_bit, 0)) != HAL_OK || (err = hal_asn1_encode_header(ASN1_EXPLICIT_1, hlen_bit + (q_len + 1) * 2, NULL, &hlen_exp1, 0)) != HAL_OK) return err; const size_t vlen = (version_len + hlen_oct + q_len + hlen_oid + hlen_exp0 + curve->oid_len + hlen_bit + hlen_exp1 + (q_len + 1) * 2); err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max); if (der_len != NULL) *der_len = hlen + vlen; if (der == NULL || err != HAL_OK) return err; uint8_t *d = der + hlen; memset(d, 0, vlen); if ((err = hal_asn1_encode_integer(version, d, NULL, der + der_max - d)) != HAL_OK) return err; d += version_len; if ((err = hal_asn1_encode_header(ASN1_OCTET_STRING, q_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; fp_to_unsigned_bin(unconst_fp_int(key->d), d + q_len - d_len); d += q_len; if ((err = hal_asn1_encode_header(ASN1_EXPLICIT_0, hlen_oid + curve->oid_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; if ((err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, curve->oid_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; memcpy(d, curve->oid, curve->oid_len); d += curve->oid_len; if ((err = hal_asn1_encode_header(ASN1_EXPLICIT_1, hlen_bit + (q_len + 1) * 2, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; if ((err = hal_asn1_encode_header(ASN1_BIT_STRING, (q_len + 1) * 2, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; *d++ = 0x00; *d++ = 0x04; fp_to_unsigned_bin(unconst_fp_int(key->Q->x), d + q_len - Qx_len); d += q_len; fp_to_unsigned_bin(unconst_fp_int(key->Q->y), d + q_len - Qy_len); d += q_len; assert(d <= der + der_max); return HAL_OK; } /* * Convenience wrapper to return how many bytes a private key would * take if encoded as DER. */ size_t hal_ecdsa_private_key_to_der_len(const hal_ecdsa_key_t * const key) { size_t len; return hal_ecdsa_private_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0; } /* * Read private key in RFC 5915 ASN.1 DER format. * * This is hand-coded, and is approaching the limit where one should * probably be using an ASN.1 compiler like asn1c instead. */ hal_error_t hal_ecdsa_private_key_from_der(hal_ecdsa_key_t **key_, void *keybuf, const size_t keybuf_len, const uint8_t * const der, const size_t der_len) { hal_ecdsa_key_t *key = keybuf; if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key)) return HAL_ERROR_BAD_ARGUMENTS; memset(keybuf, 0, keybuf_len); key->type = HAL_KEY_TYPE_EC_PRIVATE; size_t hlen, vlen; hal_error_t err; if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, der, der_len, &hlen, &vlen)) != HAL_OK) return err; const uint8_t * const der_end = der + hlen + vlen; const uint8_t *d = der + hlen; const ecdsa_curve_t *curve = NULL; fp_int version[1] = INIT_FP_INT; if ((err = hal_asn1_decode_integer(version, d, &hlen, vlen)) != HAL_OK) goto fail; if (fp_cmp_d(version, 1) != FP_EQ) lose(HAL_ERROR_ASN1_PARSE_FAILED); d += hlen; if ((err = hal_asn1_decode_header(ASN1_OCTET_STRING, d, der_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; fp_read_unsigned_bin(key->d, unconst_uint8_t(d), vlen); d += vlen; if ((err = hal_asn1_decode_header(ASN1_EXPLICIT_0, d, der_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen > der_end - d) lose(HAL_ERROR_ASN1_PARSE_FAILED); if ((err = hal_asn1_decode_header(ASN1_OBJECT_IDENTIFIER, d, vlen, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if ((curve = oid_to_curve(&key->curve, d, vlen)) == NULL) lose(HAL_ERROR_ASN1_PARSE_FAILED); d += vlen; if ((err = hal_asn1_decode_header(ASN1_EXPLICIT_1, d, der_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen > der_end - d) lose(HAL_ERROR_ASN1_PARSE_FAILED); if ((err = hal_asn1_decode_header(ASN1_BIT_STRING, d, vlen, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen < 4 || (vlen & 1) != 0 || *d++ != 0x00 || *d++ != 0x04) lose(HAL_ERROR_ASN1_PARSE_FAILED); vlen = vlen/2 - 1; fp_read_unsigned_bin(key->Q->x, unconst_uint8_t(d), vlen); d += vlen; fp_read_unsigned_bin(key->Q->y, unconst_uint8_t(d), vlen); d += vlen; fp_set(key->Q->z, 1); if (d != der_end) lose(HAL_ERROR_ASN1_PARSE_FAILED); *key_ = key; return HAL_OK; fail: memset(keybuf, 0, keybuf_len); return err; } /* * Write public key in SubjectPublicKeyInfo format, see RFCS 5280 and 5480. */ static const uint8_t oid_ecPublicKey[] = { 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x02, 0x01 }; hal_error_t hal_ecdsa_public_key_to_der(const hal_ecdsa_key_t * const key, uint8_t *der, size_t *der_len, const size_t der_max) { if (key == NULL || (key->type != HAL_KEY_TYPE_EC_PRIVATE && key->type != HAL_KEY_TYPE_EC_PUBLIC)) return HAL_ERROR_BAD_ARGUMENTS; const ecdsa_curve_t * const curve = get_curve(key->curve); if (curve == NULL) return HAL_ERROR_IMPOSSIBLE; const size_t q_len = fp_unsigned_bin_size(unconst_fp_int(curve->q)); const size_t Qx_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->x)); const size_t Qy_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->y)); const size_t ecpoint_len = q_len * 2 + 1; assert(q_len >= Qx_len && q_len >= Qy_len); if (der != NULL && ecpoint_len < der_max) { memset(der, 0, ecpoint_len); uint8_t *d = der; *d++ = 0x04; /* Uncompressed */ fp_to_unsigned_bin(unconst_fp_int(key->Q->x), d + q_len - Qx_len); d += q_len; fp_to_unsigned_bin(unconst_fp_int(key->Q->y), d + q_len - Qy_len); d += q_len; assert(d < der + der_max); } return hal_asn1_encode_spki(oid_ecPublicKey, sizeof(oid_ecPublicKey), curve->oid, curve->oid_len, der, ecpoint_len, der, der_len, der_max); } /* * Convenience wrapper to return how many bytes a public key would * take if encoded as DER. */ size_t hal_ecdsa_public_key_to_der_len(const hal_ecdsa_key_t * const key) { size_t len; return hal_ecdsa_public_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0; } /* * Read public key in SubjectPublicKeyInfo format, see RFCS 5280 and 5480. */ hal_error_t hal_ecdsa_public_key_from_der(hal_ecdsa_key_t **key_, void *keybuf, const size_t keybuf_len, const uint8_t * const der, const size_t der_len) { hal_ecdsa_key_t *key = keybuf; if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key)) return HAL_ERROR_BAD_ARGUMENTS; memset(keybuf, 0, keybuf_len); key->type = HAL_KEY_TYPE_EC_PUBLIC; const uint8_t *alg_oid = NULL, *curve_oid = NULL, *pubkey = NULL; size_t alg_oid_len, curve_oid_len, pubkey_len; const ecdsa_curve_t *curve; hal_error_t err; if ((err = hal_asn1_decode_spki(&alg_oid, &alg_oid_len, &curve_oid, &curve_oid_len, &pubkey, &pubkey_len, der, der_len)) != HAL_OK) return err; if (alg_oid == NULL || curve_oid == NULL || pubkey == NULL || alg_oid_len != sizeof(oid_ecPublicKey) || memcmp(alg_oid, oid_ecPublicKey, alg_oid_len) != 0 || (curve = oid_to_curve(&key->curve, curve_oid, curve_oid_len)) == NULL || pubkey_len < 3 || (pubkey_len & 1) == 0 || pubkey[0] != 0x04 || pubkey_len / 2 != fp_unsigned_bin_size(unconst_fp_int(curve->q))) return HAL_ERROR_ASN1_PARSE_FAILED; const uint8_t * const Qx = pubkey + 1; const uint8_t * const Qy = Qx + pubkey_len / 2; fp_read_unsigned_bin(key->Q->x, unconst_uint8_t(Qx), pubkey_len / 2); fp_read_unsigned_bin(key->Q->y, unconst_uint8_t(Qy), pubkey_len / 2); fp_set(key->Q->z, 1); *key_ = key; return HAL_OK; } /* * Encode a signature in PKCS #11 format: an octet string consisting * of concatenated values for r and s, each padded (if necessary) out * to the byte length of the order of the base point. */ static hal_error_t encode_signature_pkcs11(const ecdsa_curve_t * const curve, const fp_int * const r, const fp_int * const s, uint8_t *signature, size_t *signature_len, const size_t signature_max) { assert(curve != NULL && r != NULL && s != NULL); const size_t n_len = fp_unsigned_bin_size(unconst_fp_int(curve->n)); const size_t r_len = fp_unsigned_bin_size(unconst_fp_int(r)); const size_t s_len = fp_unsigned_bin_size(unconst_fp_int(s)); if (n_len < r_len || n_len < s_len) return HAL_ERROR_IMPOSSIBLE; if (signature_len != NULL) *signature_len = n_len * 2; if (signature == NULL) return HAL_OK; if (signature_max < n_len * 2) return HAL_ERROR_RESULT_TOO_LONG; memset(signature, 0, n_len * 2); fp_to_unsigned_bin(unconst_fp_int(r), signature + 1 * n_len - r_len); fp_to_unsigned_bin(unconst_fp_int(s), signature + 2 * n_len - s_len); return HAL_OK; } /* * Decode a signature from PKCS #11 format: an octet string consisting * of concatenated values for r and s, each of which occupies half of * the octet string (which must therefore be of even length). */ static hal_error_t decode_signature_pkcs11(const ecdsa_curve_t * const curve, fp_int *r, fp_int *s, const uint8_t * const signature, const size_t signature_len) { assert(curve != NULL && r != NULL && s != NULL); if (signature == NULL || (signature_len & 1) != 0) return HAL_ERROR_BAD_ARGUMENTS; const size_t n_len = signature_len / 2; if (n_len > fp_unsigned_bin_size(unconst_fp_int(curve->n))) return HAL_ERROR_BAD_ARGUMENTS; fp_read_unsigned_bin(r, unconst_uint8_t(signature) + 0 * n_len, n_len); fp_read_unsigned_bin(s, unconst_uint8_t(signature) + 1 * n_len, n_len); return HAL_OK; } /* * Sign a caller-supplied hash. */ hal_error_t hal_ecdsa_sign(const hal_core_t *core, const hal_ecdsa_key_t * const key, const uint8_t * const hash, const size_t hash_len, uint8_t *signature, size_t *signature_len, const size_t signature_max) { if (key == NULL || hash == NULL || signature == NULL || signature_len == NULL || key->type != HAL_KEY_TYPE_EC_PRIVATE) return HAL_ERROR_BAD_ARGUMENTS; const ecdsa_curve_t * const curve = get_curve(key->curve); if (curve == NULL) return HAL_ERROR_IMPOSSIBLE; fp_int k[1] = INIT_FP_INT; fp_int r[1] = INIT_FP_INT; fp_int s[1] = INIT_FP_INT; fp_int e[1] = INIT_FP_INT; fp_int * const n = unconst_fp_int(curve->n); fp_int * const d = unconst_fp_int(key->d); ec_point_t R[1] = INIT_EC_POINT_T; hal_error_t err; fp_read_unsigned_bin(e, unconst_uint8_t(hash), hash_len); do { /* * Pick random curve point R, then calculate r = Rx % n. * If r == 0, we can't use this point, so go try again. */ if ((err = point_pick_random(curve, k, R)) != HAL_OK) goto fail; if (!point_is_on_curve(R, curve)) lose(HAL_ERROR_IMPOSSIBLE); if (fp_mod(R->x, n, r) != FP_OKAY) lose(HAL_ERROR_IMPOSSIBLE); if (fp_iszero(r)) continue; /* * Calculate s = ((e + dr)/k) % n. * If s == 0, we can't use this point, so go try again. */ if (fp_mulmod (d, r, n, s) != FP_OKAY) lose(HAL_ERROR_IMPOSSIBLE); fp_add (e, s, s); if (fp_mod (s, n, s) != FP_OKAY || fp_invmod (k, n, k) != FP_OKAY || fp_mulmod (s, k, n, s) != FP_OKAY) lose(HAL_ERROR_IMPOSSIBLE); } while (fp_iszero(s)); /* * Encode the signature, then we're done. */ if ((err = encode_signature_pkcs11(curve, r, s, signature, signature_len, signature_max)) != HAL_OK) goto fail; err = HAL_OK; fail: fp_zero(k); fp_zero(r); fp_zero(s); fp_zero(e); memset(R, 0, sizeof(R)); return err; } /* * Verify a signature using a caller-supplied hash. */ hal_error_t hal_ecdsa_verify(const hal_core_t *core, const hal_ecdsa_key_t * const key, const uint8_t * const hash, const size_t hash_len, const uint8_t * const signature, const size_t signature_len) { assert(key != NULL && hash != NULL && signature != NULL); const ecdsa_curve_t * const curve = get_curve(key->curve); if (curve == NULL) return HAL_ERROR_IMPOSSIBLE; if (!point_is_on_curve(key->Q, curve)) return HAL_ERROR_KEY_NOT_ON_CURVE; fp_int * const n = unconst_fp_int(curve->n); hal_error_t err; fp_int r[1] = INIT_FP_INT; fp_int s[1] = INIT_FP_INT; fp_int e[1] = INIT_FP_INT; fp_int w[1] = INIT_FP_INT; fp_int u1[1] = INIT_FP_INT; fp_int u2[1] = INIT_FP_INT; fp_int v[1] = INIT_FP_INT; ec_point_t u1G[1] = INIT_EC_POINT_T; ec_point_t u2Q[1] = INIT_EC_POINT_T; ec_point_t R[1] = INIT_EC_POINT_T; /* * Start by decoding the signature. */ if ((err = decode_signature_pkcs11(curve, r, s, signature, signature_len)) != HAL_OK) return err; /* * Check that r and s are in the allowed range, read the hash, then * compute: * * w = 1 / s * u1 = e * w * u2 = r * w * R = u1 * G + u2 * Q. */ if (fp_cmp_d(r, 1) == FP_LT || fp_cmp(r, n) != FP_LT || fp_cmp_d(s, 1) == FP_LT || fp_cmp(s, n) != FP_LT) return HAL_ERROR_INVALID_SIGNATURE; fp_read_unsigned_bin(e, unconst_uint8_t(hash), hash_len); if (fp_invmod(s, n, w) != FP_OKAY || fp_mulmod(e, w, n, u1) != FP_OKAY || fp_mulmod(r, w, n, u2) != FP_OKAY) return HAL_ERROR_IMPOSSIBLE; fp_copy(unconst_fp_int(curve->Gx), u1G->x); fp_copy(unconst_fp_int(curve->Gy), u1G->y); fp_set(u1G->z, 1); if ((err = point_scalar_multiply(u1, u1G, u1G, curve)) != HAL_OK || (err = point_scalar_multiply(u2, key->Q, u2Q, curve)) != HAL_OK) return err; if (point_is_infinite(u1G)) point_copy(u2Q, R); else if (point_is_infinite(u2Q)) point_copy(u1G, R); else if ((err = point_to_montgomery(u1G, curve)) != HAL_OK || (err = point_to_montgomery(u2Q, curve)) != HAL_OK) return err; else point_add(u1G, u2Q, R, curve); /* * Signature is OK if * R is not the point at infinity, and * Rx is congruent to r mod n. */ if (point_is_infinite(R)) return HAL_ERROR_INVALID_SIGNATURE; if ((err = point_to_affine(R, curve)) != HAL_OK) return err; if (fp_mod(R->x, n, v) != FP_OKAY) return HAL_ERROR_IMPOSSIBLE; return fp_cmp(v, r) == FP_EQ ? HAL_OK : HAL_ERROR_INVALID_SIGNATURE; } /* * Local variables: * indent-tabs-mode: nil * End: */ href='#n952'>952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824