/* * asn1.c * ------ * Minimal ASN.1 implementation in support of Cryptech libhal. * * The functions in this module are not intended to be part of the * public API. Rather, these are utility functions used by more than * one module within the library, which would otherwise have to be * duplicated. The main reason for keeping these private is to avoid * having the public API depend on any details of the underlying * bignum implementation (currently libtfm, but that might change). * * As of this writing, the ASN.1 support we need is quite minimal, so, * rather than attempting to clean all the unecessary cruft out of a * general purpose ASN.1 implementation, we hand code the very small * number of data types we need. At some point this will probably * become impractical, at which point we might want to look into using * something like the asn1c compiler. * * Authors: Rob Austein * Copyright (c) 2015, NORDUnet A/S * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the NORDUnet nor the names of its contributors may * be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include "hal.h" #include "hal_internal.h" #include "asn1_internal.h" #define INIT_FP_INT {{{0}}} /* * Algorithm OIDs used in SPKI and PKCS #8. */ /* * From RFC 5480 New ASN.1 Modules for the Public Key Infrastructure Using X.509 (PKIX) * * rsaEncryption OBJECT IDENTIFIER ::= { * iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) * pkcs-1(1) 1 } */ const uint8_t hal_asn1_oid_rsaEncryption[] = { 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01 }; const size_t hal_asn1_oid_rsaEncryption_len = sizeof(hal_asn1_oid_rsaEncryption); /* * From RFC 5480 Elliptic Curve Cryptography Subject Public Key Information * * id-ecPublicKey OBJECT IDENTIFIER ::= { * iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 } */ const uint8_t hal_asn1_oid_ecPublicKey[] = { 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x02, 0x01 }; const size_t hal_asn1_oid_ecPublicKey_len = sizeof(hal_asn1_oid_ecPublicKey); /* * From RFC 5649 Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm * * aes OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) * us(840) organization(1) gov(101) csor(3) * nistAlgorithm(4) 1 } * * id-aes128-wrap-pad OBJECT IDENTIFIER ::= { aes 8 } * * id-aes256-wrap-pad OBJECT IDENTIFIER ::= { aes 48 } */ #if KEK_LENGTH == (bitsToBytes(128)) const uint8_t hal_asn1_oid_aesKeyWrap[] = { 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x08 }; const size_t hal_asn1_oid_aesKeyWrap_len = sizeof(hal_asn1_oid_aesKeyWrap); #endif #if KEK_LENGTH == (bitsToBytes(256)) const uint8_t hal_asn1_oid_aesKeyWrap[] = { 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x30 }; const size_t hal_asn1_oid_aesKeyWrap_len = sizeof(hal_asn1_oid_aesKeyWrap); #endif /* * From draft-housley-cms-mts-hash-sig Use of the Hash-based Merkle Tree Signature (MTS) Algorithm in the Cryptographic Message Syntax (CMS) * * id-alg-mts-hashsig OBJECT IDENTIFIER ::= { iso(1) member-body(2) * us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) alg(3) 17 } */ const uint8_t hal_asn1_oid_mts_hashsig[] = { 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x09, 0x10, 0x03, 0x11 }; const size_t hal_asn1_oid_mts_hashsig_len = sizeof(hal_asn1_oid_mts_hashsig); /* * Encode tag and length fields of an ASN.1 object. * * Sets *der_len to the size of of the ASN.1 header (tag and length * fields); caller supplied length of value field, so presumably * already knows it. * * If der is NULL, just return the size of the header that would be * encoded and returns HAL_OK. * * If der isn't NULL, returns HAL_ERROR_RESULT_TOO_LONG unless full * header plus value will fit; this is a bit weird, but is useful when * using this to construct encoders for complte ASN.1 objects. */ hal_error_t hal_asn1_encode_header(const uint8_t tag, const size_t value_len, uint8_t *der, size_t *der_len, const size_t der_max) { size_t header_len = 2; /* Shortest encoding is one octet each for tag and length */ if (value_len >= 128) /* Add octets for longer length encoding as needed */ for (size_t n = value_len; n > 0; n >>= 8) ++header_len; if (der_len != NULL) *der_len = header_len; if (der == NULL) /* If caller just wanted the length, we're done */ return HAL_OK; /* * Make sure there's enough room for header + value, then encode. */ if (value_len + header_len > der_max) return HAL_ERROR_RESULT_TOO_LONG; *der++ = tag; if (value_len < 128) { *der = (uint8_t) value_len; } else { *der = 0x80 | (uint8_t) (header_len -= 2); for (size_t n = value_len; n > 0 && header_len > 0; n >>= 8) der[header_len--] = (uint8_t) (n & 0xFF); } return HAL_OK; } /* * Encode an unsigned ASN.1 INTEGER from a libtfm bignum. If der is * NULL, just return the length of what we would have encoded. */ hal_error_t hal_asn1_encode_integer(const fp_int * const bn, uint8_t *der, size_t *der_len, const size_t der_max) { if (bn == NULL) return HAL_ERROR_BAD_ARGUMENTS; /* * We only handle unsigned INTEGERs, so we need to pad data with a * leading zero if the most significant bit is set, to avoid * flipping the ASN.1 sign bit. Conveniently, this also handles the * difference between libtfm's and ASN.1's encoding of zero. */ if (fp_cmp_d(unconst_fp_int(bn), 0) == FP_LT) return HAL_ERROR_BAD_ARGUMENTS; const int leading_zero = fp_iszero(bn) || (fp_count_bits(unconst_fp_int(bn)) & 7) == 0; const size_t vlen = fp_unsigned_bin_size(unconst_fp_int(bn)) + leading_zero; hal_error_t err; size_t hlen; err = hal_asn1_encode_header(ASN1_INTEGER, vlen, der, &hlen, der_max); if (der_len != NULL) *der_len = hlen + vlen; if (der == NULL || err != HAL_OK) return err; hal_assert(hlen + vlen <= der_max); der += hlen; if (leading_zero) *der++ = 0x00; fp_to_unsigned_bin(unconst_fp_int(bn), der); return HAL_OK; } /* * Encode an unsigned ASN.1 INTEGER from a uint32_t. If der is * NULL, just return the length of what we would have encoded. */ hal_error_t hal_asn1_encode_uint32(const uint32_t n, uint8_t *der, size_t *der_len, const size_t der_max) { /* * We only handle unsigned INTEGERs, so we need to pad data with a * leading zero if the most significant bit is set, to avoid * flipping the ASN.1 sign bit. */ size_t vlen; hal_error_t err; size_t hlen; /* DER says to use the minimum number of octets */ if (n < 0x80) vlen = 1; else if (n < 0x8000) vlen = 2; else if (n < 0x800000) vlen = 3; else if (n < 0x80000000) vlen = 4; else vlen = 5; err = hal_asn1_encode_header(ASN1_INTEGER, vlen, der, &hlen, der_max); if (der_len != NULL) *der_len = hlen + vlen; if (der == NULL || err != HAL_OK) return err; hal_assert(hlen + vlen <= der_max); der += hlen; uint32_t m = n; for (size_t i = vlen; i > 0; --i) { der[i - 1] = m & 0xff; m >>= 8; } return HAL_OK; } /* * Encode an ASN.1 OCTET STRING. If der is NULL, just return the length * of what we would have encoded. */ hal_error_t hal_asn1_encode_octet_string(const uint8_t * const data, const size_t data_len, uint8_t *der, size_t *der_len, const size_t der_max) { if (data_len == 0 || (der != NULL && data == NULL)) return HAL_ERROR_BAD_ARGUMENTS; size_t hlen; hal_error_t err; if ((err = hal_asn1_encode_header(ASN1_OCTET_STRING, data_len, NULL, &hlen, 0)) != HAL_OK) return err; if (der_len != NULL) *der_len = hlen + data_len; if (der == NULL) return HAL_OK; hal_assert(hlen + data_len <= der_max); /* * Handle data early, in case it was staged into our output buffer. */ memmove(der + hlen, data, data_len); if ((err = hal_asn1_encode_header(ASN1_OCTET_STRING, data_len, der, &hlen, der_max)) != HAL_OK) return err; return HAL_OK; } /* * Encode a public key into a X.509 SubjectPublicKeyInfo (RFC 5280). */ hal_error_t hal_asn1_encode_spki(const uint8_t * const alg_oid, const size_t alg_oid_len, const uint8_t * const curve_oid, const size_t curve_oid_len, const uint8_t * const pubkey, const size_t pubkey_len, uint8_t *der, size_t *der_len, const size_t der_max) { if (alg_oid == NULL || alg_oid_len == 0 || pubkey_len == 0 || (der != NULL && pubkey == NULL) || (curve_oid == NULL && curve_oid_len != 0)) return HAL_ERROR_BAD_ARGUMENTS; const uint8_t curve_oid_tag = curve_oid == NULL ? ASN1_NULL : ASN1_OBJECT_IDENTIFIER; hal_error_t err; size_t hlen, hlen_spki, hlen_algid, hlen_alg, hlen_curve, hlen_bit; if ((err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, alg_oid_len, NULL, &hlen_alg, 0)) != HAL_OK || (err = hal_asn1_encode_header(curve_oid_tag, curve_oid_len, NULL, &hlen_curve, 0)) != HAL_OK || (err = hal_asn1_encode_header(ASN1_BIT_STRING, 1 + pubkey_len, NULL, &hlen_bit, 0)) != HAL_OK) return err; const size_t algid_len = hlen_alg + alg_oid_len + hlen_curve + curve_oid_len; if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, algid_len, NULL, &hlen_algid, 0)) != HAL_OK) return err; const size_t vlen = hlen_algid + hlen_alg + alg_oid_len + hlen_curve + curve_oid_len + hlen_bit + 1 + pubkey_len; if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen_spki, 0)) != HAL_OK) return err; /* * Handle pubkey early, in case it was staged into our output buffer. */ if (der != NULL && hlen_spki + vlen <= der_max) memmove(der + hlen_spki + vlen - pubkey_len, pubkey, pubkey_len); err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max); if (der_len != NULL) *der_len = hlen + vlen; if (der == NULL || err != HAL_OK) return err; uint8_t *d = der + hlen; memset(d, 0, vlen - pubkey_len); if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, algid_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; if ((err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, alg_oid_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; memcpy(d, alg_oid, alg_oid_len); d += alg_oid_len; if ((err = hal_asn1_encode_header(curve_oid_tag, curve_oid_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; if (curve_oid != NULL) memcpy(d, curve_oid, curve_oid_len); d += curve_oid_len; if ((err = hal_asn1_encode_header(ASN1_BIT_STRING, 1 + pubkey_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; *d++ = 0x00; d += pubkey_len; /* pubkey handled early, above. */ hal_assert(d == der + hlen_spki + vlen); hal_assert(d <= der + der_max); return HAL_OK; } /* * Encode a PKCS #8 PrivateKeyInfo (RFC 5208). */ hal_error_t hal_asn1_encode_pkcs8_privatekeyinfo(const uint8_t * const alg_oid, const size_t alg_oid_len, const uint8_t * const curve_oid, const size_t curve_oid_len, const uint8_t * const privkey, const size_t privkey_len, uint8_t *der, size_t *der_len, const size_t der_max) { if (alg_oid == NULL || alg_oid_len == 0 || privkey_len == 0 || (der != NULL && privkey == NULL) || (curve_oid == NULL && curve_oid_len != 0)) return HAL_ERROR_BAD_ARGUMENTS; const uint8_t curve_oid_tag = curve_oid == NULL ? ASN1_NULL : ASN1_OBJECT_IDENTIFIER; fp_int version[1] = INIT_FP_INT; hal_error_t err; size_t version_len, hlen, hlen_algid, hlen_alg, hlen_curve, hlen_oct; if ((err = hal_asn1_encode_integer(version, NULL, &version_len, 0)) != HAL_OK || (err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, alg_oid_len, NULL, &hlen_alg, 0)) != HAL_OK || (err = hal_asn1_encode_header(curve_oid_tag, curve_oid_len, NULL, &hlen_curve, 0)) != HAL_OK || (err = hal_asn1_encode_header(ASN1_OCTET_STRING, privkey_len, NULL, &hlen_oct, 0)) != HAL_OK) return err; const size_t algid_len = hlen_alg + alg_oid_len + hlen_curve + curve_oid_len; if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, algid_len, NULL, &hlen_algid, 0)) != HAL_OK) return err; const size_t vlen = version_len + hlen_algid + hlen_alg + alg_oid_len + hlen_curve + curve_oid_len + hlen_oct + privkey_len; if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen, 0)) != HAL_OK) return err; if (der_len != NULL) *der_len = hlen + vlen; if (der == NULL) return HAL_OK; uint8_t * const der_end = der + hlen + vlen; /* * Handle privkey early, in case it was staged into our output buffer. */ if (der_end <= der + der_max) memmove(der_end - privkey_len, privkey, privkey_len); uint8_t *d = der; memset(d, 0, hlen + vlen - privkey_len); if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; if ((err = hal_asn1_encode_integer(version, d, NULL, der + der_max - d)) != HAL_OK) return err; d += version_len; if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, algid_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; if ((err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, alg_oid_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; memcpy(d, alg_oid, alg_oid_len); d += alg_oid_len; if ((err = hal_asn1_encode_header(curve_oid_tag, curve_oid_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; if (curve_oid != NULL) memcpy(d, curve_oid, curve_oid_len); d += curve_oid_len; if ((err = hal_asn1_encode_header(ASN1_OCTET_STRING, privkey_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; d += privkey_len; /* privkey handled early, above. */ hal_assert(d == der_end); hal_assert(d <= der + der_max); return HAL_OK; } /* * Encode a PKCS #8 EncryptedPrivateKeyInfo (RFC 5208). */ hal_error_t hal_asn1_encode_pkcs8_encryptedprivatekeyinfo(const uint8_t * const alg_oid, const size_t alg_oid_len, const uint8_t * const data, const size_t data_len, uint8_t *der, size_t *der_len, const size_t der_max) { if (alg_oid == NULL || alg_oid_len == 0 || data_len == 0 || (der != NULL && data == NULL)) return HAL_ERROR_BAD_ARGUMENTS; hal_error_t err; size_t hlen, hlen_pkcs8, hlen_algid, hlen_alg, hlen_oct; if ((err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, alg_oid_len, NULL, &hlen_alg, 0)) != HAL_OK || (err = hal_asn1_encode_header(ASN1_OCTET_STRING, data_len, NULL, &hlen_oct, 0)) != HAL_OK) return err; const size_t algid_len = hlen_alg + alg_oid_len; if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, algid_len, NULL, &hlen_algid, 0)) != HAL_OK) return err; const size_t vlen = hlen_algid + hlen_alg + alg_oid_len + hlen_oct + data_len; if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen_pkcs8, 0)) != HAL_OK) return err; /* * Handle data early, in case it was staged into our output buffer. */ if (der != NULL && hlen_pkcs8 + vlen <= der_max) memmove(der + hlen_pkcs8 + vlen - data_len, data, data_len); err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max); if (der_len != NULL) *der_len = hlen + vlen; if (der == NULL || err != HAL_OK) return err; uint8_t *d = der + hlen; memset(d, 0, vlen - data_len); if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, algid_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; if ((err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, alg_oid_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; memcpy(d, alg_oid, alg_oid_len); d += alg_oid_len; if ((err = hal_asn1_encode_header(ASN1_OCTET_STRING, data_len, d, &hlen, der + der_max - d)) != HAL_OK) return err; d += hlen; d += data_len; /* data handled early, above. */ hal_assert(d == der + hlen_pkcs8 + vlen); hal_assert(d <= der + der_max); return HAL_OK; } /* * Parse tag and length of an ASN.1 object. Tag must match value * specified by the caller. On success, sets hlen and vlen to lengths * of header and value, respectively. */ hal_error_t hal_asn1_decode_header(const uint8_t tag, const uint8_t * const der, size_t der_max, size_t *hlen, size_t *vlen) { hal_assert(der != NULL && hlen != NULL && vlen != NULL); if (der_max < 2 || der[0] != tag) return HAL_ERROR_ASN1_PARSE_FAILED; if ((der[1] & 0x80) == 0) { *hlen = 2; *vlen = der[1]; } else { *hlen = 2 + (der[1] & 0x7F); *vlen = 0; if (*hlen > der_max) return HAL_ERROR_ASN1_PARSE_FAILED; for (size_t i = 2; i < *hlen; i++) *vlen = (*vlen << 8) + der[i]; } if (*hlen + *vlen > der_max) return HAL_ERROR_ASN1_PARSE_FAILED; return HAL_OK; } /* * Decode an ASN.1 INTEGER into a libtfm bignum. Since we only * support (or need to support, or expect to see) unsigned integers, * we return failure if the sign bit is set in the ASN.1 INTEGER. */ hal_error_t hal_asn1_decode_integer(fp_int *bn, const uint8_t * const der, size_t *der_len, const size_t der_max) { if (bn == NULL || der == NULL) return HAL_ERROR_BAD_ARGUMENTS; hal_error_t err; size_t hlen, vlen; if ((err = hal_asn1_decode_header(ASN1_INTEGER, der, der_max, &hlen, &vlen)) != HAL_OK) return err; if (der_len != NULL) *der_len = hlen + vlen; if (vlen < 1 || (der[hlen] & 0x80) != 0x00) return HAL_ERROR_ASN1_PARSE_FAILED; fp_init(bn); fp_read_unsigned_bin(bn, (uint8_t *) der + hlen, vlen); return HAL_OK; } /* * Decode an ASN.1 INTEGER into a uint32_t. Since we only * support (or need to support, or expect to see) unsigned integers, * we return failure if the sign bit is set in the ASN.1 INTEGER. */ hal_error_t hal_asn1_decode_uint32(uint32_t *np, const uint8_t * const der, size_t *der_len, const size_t der_max) { if (np == NULL || der == NULL) return HAL_ERROR_BAD_ARGUMENTS; hal_error_t err; size_t hlen, vlen; if ((err = hal_asn1_decode_header(ASN1_INTEGER, der, der_max, &hlen, &vlen)) != HAL_OK) return err; if (der_len != NULL) *der_len = hlen + vlen; if (vlen < 1 || vlen > 5 || (der[hlen] & 0x80) != 0x00 || (vlen == 5 && der[hlen] != 0)) return HAL_ERROR_ASN1_PARSE_FAILED; uint32_t n = 0; for (size_t i = 0; i < vlen; ++i) { n <<= 8; // slightly inefficient for the first octet n += der[hlen + i]; } *np = n; return HAL_OK; } /* * Decode an ASN.1 OCTET STRING. */ hal_error_t hal_asn1_decode_octet_string(uint8_t *data, const size_t data_len, const uint8_t * const der, size_t *der_len, const size_t der_max) { if (der == NULL) return HAL_ERROR_BAD_ARGUMENTS; size_t hlen, vlen; hal_error_t err; if ((err = hal_asn1_decode_header(ASN1_OCTET_STRING, der, der_max, &hlen, &vlen)) != HAL_OK) return err; if (der_len != NULL) *der_len = hlen + vlen; if (data != NULL) { if (data_len != vlen) return HAL_ERROR_ASN1_PARSE_FAILED; memmove(data, der + hlen, vlen); } return HAL_OK; } /* * Decode a public key from a X.509 SubjectPublicKeyInfo (RFC 5280). */ hal_error_t hal_asn1_decode_spki(const uint8_t **alg_oid, size_t *alg_oid_len, const uint8_t **curve_oid, size_t *curve_oid_len, const uint8_t **pubkey, size_t *pubkey_len, const uint8_t *const der, const size_t der_len) { if (der == NULL) return HAL_ERROR_BAD_ARGUMENTS; const uint8_t * const der_end = der + der_len; const uint8_t *d = der; size_t hlen, vlen; hal_error_t err; if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, d, der_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (hlen + vlen != der_len) return HAL_ERROR_ASN1_PARSE_FAILED; if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, d, der_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; const uint8_t * const algid_end = d + vlen; if ((err = hal_asn1_decode_header(ASN1_OBJECT_IDENTIFIER, d, algid_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen > (size_t)(algid_end - d)) return HAL_ERROR_ASN1_PARSE_FAILED; if (alg_oid != NULL) *alg_oid = d; if (alg_oid_len != NULL) *alg_oid_len = vlen; d += vlen; if (curve_oid != NULL) *curve_oid = NULL; if (curve_oid_len != NULL) *curve_oid_len = 0; if (d < algid_end) { switch (*d) { case ASN1_OBJECT_IDENTIFIER: if ((err = hal_asn1_decode_header(ASN1_OBJECT_IDENTIFIER, d, algid_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen > (size_t)(algid_end - d)) return HAL_ERROR_ASN1_PARSE_FAILED; if (curve_oid != NULL) *curve_oid = d; if (curve_oid_len != NULL) *curve_oid_len = vlen; d += vlen; break; case ASN1_NULL: if ((err = hal_asn1_decode_header(ASN1_NULL, d, algid_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen == 0) break; /* fall through */ default: return HAL_ERROR_ASN1_PARSE_FAILED; } } if (d != algid_end) return HAL_ERROR_ASN1_PARSE_FAILED; if ((err = hal_asn1_decode_header(ASN1_BIT_STRING, d, der_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen >= (size_t)(algid_end - d) || vlen == 0 || *d != 0x00) return HAL_ERROR_ASN1_PARSE_FAILED; ++d; --vlen; if (pubkey != NULL) *pubkey = d; if (pubkey_len != NULL) *pubkey_len = vlen; d += vlen; if (d != der_end) return HAL_ERROR_ASN1_PARSE_FAILED; return HAL_OK; } /* * Decode a private key from a PKCS #8 PrivateKeyInfo (RFC 5208). */ hal_error_t hal_asn1_decode_pkcs8_privatekeyinfo(const uint8_t **alg_oid, size_t *alg_oid_len, const uint8_t **curve_oid, size_t *curve_oid_len, const uint8_t **privkey, size_t *privkey_len, const uint8_t *const der, const size_t der_len) { if (der == NULL) return HAL_ERROR_BAD_ARGUMENTS; const uint8_t * const der_end = der + der_len; const uint8_t *d = der; fp_int version[1] = INIT_FP_INT; size_t hlen, vlen; hal_error_t err; if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, d, der_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (hlen + vlen != der_len) return HAL_ERROR_ASN1_PARSE_FAILED; if ((err = hal_asn1_decode_integer(version, d, &hlen, der_end - d)) != HAL_OK) return err; if (!fp_iszero(version)) return HAL_ERROR_ASN1_PARSE_FAILED; d += hlen; if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, d, der_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; const uint8_t * const algid_end = d + vlen; if ((err = hal_asn1_decode_header(ASN1_OBJECT_IDENTIFIER, d, algid_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen > (size_t)(algid_end - d)) return HAL_ERROR_ASN1_PARSE_FAILED; if (alg_oid != NULL) *alg_oid = d; if (alg_oid_len != NULL) *alg_oid_len = vlen; d += vlen; if (curve_oid != NULL) *curve_oid = NULL; if (curve_oid_len != NULL) *curve_oid_len = 0; if (d < algid_end) { switch (*d) { case ASN1_OBJECT_IDENTIFIER: if ((err = hal_asn1_decode_header(ASN1_OBJECT_IDENTIFIER, d, algid_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen > (size_t)(algid_end - d)) return HAL_ERROR_ASN1_PARSE_FAILED; if (curve_oid != NULL) *curve_oid = d; if (curve_oid_len != NULL) *curve_oid_len = vlen; d += vlen; break; case ASN1_NULL: if ((err = hal_asn1_decode_header(ASN1_NULL, d, algid_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen == 0) break; /* fall through */ default: return HAL_ERROR_ASN1_PARSE_FAILED; } } if (d != algid_end) return HAL_ERROR_ASN1_PARSE_FAILED; if ((err = hal_asn1_decode_header(ASN1_OCTET_STRING, d, der_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen >= (size_t)(algid_end - d)) return HAL_ERROR_ASN1_PARSE_FAILED; if (privkey != NULL) *privkey = d; if (privkey_len != NULL) *privkey_len = vlen; d += vlen; if (d != der_end) return HAL_ERROR_ASN1_PARSE_FAILED; return HAL_OK; } /* * Decode a private key from a PKCS #8 EncryptedPrivateKeyInfo (RFC 5208). */ hal_error_t hal_asn1_decode_pkcs8_encryptedprivatekeyinfo(const uint8_t **alg_oid, size_t *alg_oid_len, const uint8_t **data, size_t *data_len, const uint8_t *const der, const size_t der_len) { if (alg_oid == NULL || alg_oid_len == NULL || data == NULL || data_len == NULL || der == NULL) return HAL_ERROR_BAD_ARGUMENTS; const uint8_t * const der_end = der + der_len; const uint8_t *d = der; size_t hlen, vlen; hal_error_t err; if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, d, der_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (hlen + vlen != der_len) return HAL_ERROR_ASN1_PARSE_FAILED; if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, d, der_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; const uint8_t * const algid_end = d + vlen; if ((err = hal_asn1_decode_header(ASN1_OBJECT_IDENTIFIER, d, algid_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen > (size_t)(algid_end - d)) return HAL_ERROR_ASN1_PARSE_FAILED; if (alg_oid != NULL) *alg_oid = d; if (alg_oid_len != NULL) *alg_oid_len = vlen; d += vlen; if (d < algid_end) { if ((err = hal_asn1_decode_header(ASN1_NULL, d, algid_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen != 0) return HAL_ERROR_ASN1_PARSE_FAILED; } if (d != algid_end) return HAL_ERROR_ASN1_PARSE_FAILED; if ((err = hal_asn1_decode_header(ASN1_OCTET_STRING, d, der_end - d, &hlen, &vlen)) != HAL_OK) return err; d += hlen; if (vlen >= (size_t)(algid_end - d)) return HAL_ERROR_ASN1_PARSE_FAILED; if (data != NULL) *data = d; if (data_len != NULL) *data_len = vlen; d += vlen; if (d != der_end) return HAL_ERROR_ASN1_PARSE_FAILED; return HAL_OK; } /* * Attempt to guess what kind of key we're looking at. */ hal_error_t hal_asn1_guess_key_type(hal_key_type_t *type, hal_curve_name_t *curve, const uint8_t *const der, const size_t der_len) { if (type == NULL || curve == NULL || der == NULL) return HAL_ERROR_BAD_ARGUMENTS; const uint8_t *alg_oid, *curve_oid; size_t alg_oid_len, curve_oid_len; hal_error_t err; int public = 0; err = hal_asn1_decode_pkcs8_privatekeyinfo(&alg_oid, &alg_oid_len, &curve_oid, &curve_oid_len, NULL, 0, der, der_len); if (err == HAL_ERROR_ASN1_PARSE_FAILED && (err = hal_asn1_decode_spki(&alg_oid, &alg_oid_len, &curve_oid, &curve_oid_len, NULL, 0, der, der_len)) == HAL_OK) public = 1; if (err != HAL_OK) return err; if (alg_oid_len == hal_asn1_oid_rsaEncryption_len && memcmp(alg_oid, hal_asn1_oid_rsaEncryption, alg_oid_len) == 0) { *type = public ? HAL_KEY_TYPE_RSA_PUBLIC : HAL_KEY_TYPE_RSA_PRIVATE; *curve = HAL_CURVE_NONE; return HAL_OK; } if (alg_oid_len == hal_asn1_oid_ecPublicKey_len && memcmp(alg_oid, hal_asn1_oid_ecPublicKey, alg_oid_len) == 0) { *type = public ? HAL_KEY_TYPE_EC_PUBLIC : HAL_KEY_TYPE_EC_PRIVATE; if ((err = hal_ecdsa_oid_to_curve(curve, curve_oid, curve_oid_len)) != HAL_OK) *curve = HAL_CURVE_NONE; return err; } if (alg_oid_len == hal_asn1_oid_mts_hashsig_len && memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) == 0) { *type = public ? HAL_KEY_TYPE_HASHSIG_PUBLIC : HAL_KEY_TYPE_HASHSIG_PRIVATE; *curve = HAL_CURVE_NONE; return HAL_OK; } *type = HAL_KEY_TYPE_NONE; *curve = HAL_CURVE_NONE; return HAL_ERROR_UNSUPPORTED_KEY; } /* * Local variables: * indent-tabs-mode: nil * End: */