/* * aes_keywrap.c * ------------- * Implementation of RFC 5649 over Cryptech AES core. * * Authors: Rob Austein * Copyright (c) 2015-2018, NORDUnet A/S * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the NORDUnet nor the names of its contributors may * be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Note that there are two different block sizes involved here: the * key wrap algorithm deals entirely with 64-bit blocks, while AES * itself deals with 128-bit blocks. In practice, this is not as * confusing as it sounds, because we combine two 64-bit blocks to * create one 128-bit block just prior to performing an AES operation, * then split the result back to 64-bit blocks immediately afterwards. */ #include #include #include "hal.h" #include "hal_internal.h" /* * Enable use of the experimental keywrap core, if present. */ static int use_keywrap_core = 1; int hal_aes_use_keywrap_core(int onoff) { use_keywrap_core = (onoff && hal_core_find(KEYWRAP_NAME, NULL) != NULL); return use_keywrap_core; } /* * How long the ciphertext will be for a given plaintext length. * This rounds up the length to a multiple of 8, and adds 8 for the IV. */ size_t hal_aes_keywrap_ciphertext_length(const size_t plaintext_length) { return (plaintext_length + 15) & ~7; } /* * Check the KEK, then load it into the AES core. * Note that our AES core only supports 128 and 256 bit keys. * * This should work without modification for the experimental keywrap core. */ typedef enum { KEK_encrypting, KEK_decrypting } kek_action_t; static unsigned _kek_load = 0, _kek_skip = 0; hal_error_t hal_aes_keywrap_get_stats(unsigned *load, unsigned *skip) { if (load == NULL || skip == NULL) return HAL_ERROR_BAD_ARGUMENTS; *load = _kek_load; *skip = _kek_skip; return HAL_OK; } void hal_aes_keywrap_reset_stats(void) { _kek_load = _kek_skip = 0; } hal_error_t hal_aes_keywrap_zero(hal_core_t *core) { const int free_core = (core == NULL); hal_error_t err; if (core == NULL && (err = hal_core_alloc(KEYWRAP_NAME, &core, NULL)) != HAL_OK) return err; uint8_t buf[4] = { 0, 0, 0, KEYWRAP_CTRL_ZERO }; err = hal_io_write(core, ADDR_CTRL, buf, sizeof(buf)); if (free_core) hal_core_free(core); return err; } hal_error_t hal_aes_keywrap_set_timeout(hal_core_t *core, uint32_t cycles) { const int free_core = (core == NULL); hal_error_t err; if (core == NULL && (err = hal_core_alloc(KEYWRAP_NAME, &core, NULL)) != HAL_OK) return err; union { uint32_t word; uint8_t bytes[4]; } buf; buf.word = htonl(cycles); err = hal_io_write(core, KEYWRAP_ADDR_TIMEOUT, buf.bytes, sizeof(buf)); if (free_core) hal_core_free(core); return err; } static inline int is_kek_loaded(const hal_core_t *core) { uint8_t buf[4]; if (hal_io_read(core, ADDR_STATUS, buf, sizeof(buf)) == HAL_OK) return (buf[3] & KEYWRAP_STATUS_LOADED); return 0; } static hal_error_t load_kek(const hal_core_t *core, const uint8_t *K, const size_t K_len, const kek_action_t action) { static size_t kek_len = 0; uint8_t config[4]; hal_error_t err; if (K != NULL) { kek_len = K_len; if ((err = hal_io_write(core, AES_ADDR_KEY0, K, K_len)) != HAL_OK) return err; } else if (!use_keywrap_core || !is_kek_loaded(core)) { ++_kek_load; uint8_t kek[KEK_LENGTH]; if ((err = hal_mkm_get_kek(kek, &kek_len, sizeof(kek))) == HAL_OK) err = hal_io_write(core, AES_ADDR_KEY0, kek, kek_len); memset(kek, 0, sizeof(kek)); if (err != HAL_OK) return err; } else { ++_kek_skip; } memset(config, 0, sizeof(config)); switch (kek_len) { case bitsToBytes(128): config[3] &= ~AES_CONFIG_KEYLEN; break; case bitsToBytes(256): config[3] |= AES_CONFIG_KEYLEN; break; case bitsToBytes(192): return HAL_ERROR_UNSUPPORTED_KEY; default: return HAL_ERROR_BAD_ARGUMENTS; } switch (action) { case KEK_encrypting: config[3] |= AES_CONFIG_ENCDEC; break; case KEK_decrypting: config[3] &= ~AES_CONFIG_ENCDEC; break; default: return HAL_ERROR_BAD_ARGUMENTS; } /* * Load the KEK and tell the core to expand it. */ if ((err = hal_io_write(core, AES_ADDR_CONFIG, config, sizeof(config))) != HAL_OK || (err = hal_io_init(core)) != HAL_OK) return err; return HAL_OK; } /* * Use the experimental keywrap core to wrap/unwrap n 64-bit blocks of plaintext. * The wrapped/unwrapped key is returned in the same buffer. */ static hal_error_t do_keywrap_core(const hal_core_t *core, uint8_t * const C, const size_t n) { hal_error_t err; hal_assert(core != NULL && C != NULL && n > 0); /* n is the number of 64-bit (8-byte) blocks in the input. * KEYWRAP_LEN_R_DATA is the number of 4-byte data registers in the core. */ if (n == 0 || n > KEYWRAP_LEN_R_DATA * 2) return HAL_ERROR_BAD_ARGUMENTS; /* write the AIV to A */ if ((err = hal_io_write(core, KEYWRAP_ADDR_A0, C, 8)) != HAL_OK) return err; /* write the length to RLEN */ uint32_t nn = htonl(n); if ((err = hal_io_write(core, KEYWRAP_ADDR_RLEN, (const uint8_t *)&nn, 4)) != HAL_OK) return err; /* write the data to R_DATA */ if ((err = hal_io_write(core, KEYWRAP_ADDR_R_DATA, C + 8, 8 * n)) != HAL_OK) return err; /* start the wrap/unwrap operation, and wait for it to complete */ if ((err = hal_io_next(core)) != HAL_OK || (err = hal_io_wait_ready(core)) != HAL_OK) return err; /* read the A registers */ if ((err = hal_io_read(core, KEYWRAP_ADDR_A0, C, 8)) != HAL_OK) return err; /* read the data to R_DATA */ if ((err = hal_io_read(core, KEYWRAP_ADDR_R_DATA, C + 8, 8 * n)) != HAL_OK) return err; return HAL_OK; } /* * Process one block. Since AES Key Wrap always deals with 64-bit * half blocks and since the bus is going to break this up into 32-bit * words no matter what we do, we can eliminate a few gratuitous * memcpy() operations by receiving our arguments as two half blocks. * * Since the length of these half blocks is constant, there's no real * point in passing the length as an argument, we'd just be checking a * constant against a constant and a smart compiler will optimize * the whole check out. * * Just be VERY careful if you change anything here. */ static hal_error_t do_block(const hal_core_t *core, uint8_t *b1, uint8_t *b2) { hal_error_t err; hal_assert(b1 != NULL && b2 != NULL); if ((err = hal_io_write(core, AES_ADDR_BLOCK0, b1, 8)) != HAL_OK || (err = hal_io_write(core, AES_ADDR_BLOCK2, b2, 8)) != HAL_OK || (err = hal_io_next(core)) != HAL_OK || (err = hal_io_wait_ready(core)) != HAL_OK || (err = hal_io_read(core, AES_ADDR_RESULT0, b1, 8)) != HAL_OK || (err = hal_io_read(core, AES_ADDR_RESULT2, b2, 8)) != HAL_OK) return err; return HAL_OK; } /* * Wrap plaintext Q using KEK K, placing result in C. * * Q and C can overlap. For encrypt-in-place, use Q = C + 8 (that is, * leave 8 empty bytes before the plaintext). * * Use hal_aes_keywrap_ciphertext_length() to calculate the correct * buffer size. */ hal_error_t hal_aes_keywrap(hal_core_t *core, const uint8_t *K, const size_t K_len, const uint8_t * const Q, const size_t m, uint8_t *C, size_t *C_len) { const size_t calculated_C_len = hal_aes_keywrap_ciphertext_length(m); const int free_core = (core == NULL); hal_error_t err; size_t n; hal_assert(calculated_C_len % 8 == 0); if (Q == NULL || C == NULL || C_len == NULL || *C_len < calculated_C_len) return HAL_ERROR_BAD_ARGUMENTS; /* If we're passed a core, we should figure out which one it is. * In practice, core is always NULL, so this is UNTESTED CODE. */ if (core) { const hal_core_info_t *info = hal_core_info(core); if (memcmp(info->name, KEYWRAP_NAME, 8) == 0) use_keywrap_core = 1; else if (memcmp(info->name, AES_CORE_NAME, 8) == 0) use_keywrap_core = 0; else /* I have no idea what this is */ return HAL_ERROR_BAD_ARGUMENTS; } else { const char *core_name = (use_keywrap_core ? KEYWRAP_NAME : AES_CORE_NAME); if ((err = hal_core_alloc(core_name, &core, NULL)) != HAL_OK) return err; } if ((err = load_kek(core, K, K_len, KEK_encrypting)) != HAL_OK) goto out; *C_len = calculated_C_len; if (C + 8 != Q) memmove(C + 8, Q, m); if (m % 8 != 0) memset(C + 8 + m, 0, 8 - (m % 8)); C[0] = 0xA6; C[1] = 0x59; C[2] = 0x59; C[3] = 0xA6; C[4] = (m >> 24) & 0xFF; C[5] = (m >> 16) & 0xFF; C[6] = (m >> 8) & 0xFF; C[7] = (m >> 0) & 0xFF; n = calculated_C_len/8 - 1; if (use_keywrap_core) { err = do_keywrap_core(core, C, n); } else { if (n == 1) { if ((err = do_block(core, C, C + 8)) != HAL_OK) goto out; } else { for (size_t j = 0; j <= 5; j++) { for (size_t i = 1; i <= n; i++) { uint32_t t = n * j + i; if ((err = do_block(core, C, C + i * 8)) != HAL_OK) goto out; C[7] ^= t & 0xFF; t >>= 8; C[6] ^= t & 0xFF; t >>= 8; C[5] ^= t & 0xFF; t >>= 8; C[4] ^= t & 0xFF; } } } } out: if (free_core) hal_core_free(core); return err; } /* * Unwrap ciphertext C using KEK K, placing result in Q. * * Q should be the same size as C. Q and C can overlap. */ hal_error_t hal_aes_keyunwrap(hal_core_t *core, const uint8_t *K, const size_t K_len, const uint8_t * const C, const size_t C_len, uint8_t *Q, size_t *Q_len) { const int free_core = core == NULL; hal_error_t err; size_t n; size_t m; if (C == NULL || Q == NULL || C_len % 8 != 0 || C_len < 16 || Q_len == NULL || *Q_len < C_len) return HAL_ERROR_BAD_ARGUMENTS; /* If we're passed a core, we should figure out which one it is. * In practice, core is always NULL, so this is UNTESTED CODE. */ if (core) { const hal_core_info_t *info = hal_core_info(core); if (memcmp(info->name, KEYWRAP_NAME, 8) == 0) use_keywrap_core = 1; else if (memcmp(info->name, AES_CORE_NAME, 8) != 0) /* I have no idea what this is */ return HAL_ERROR_BAD_ARGUMENTS; } else { const char *core_name = (use_keywrap_core ? KEYWRAP_NAME : AES_CORE_NAME); if ((err = hal_core_alloc(core_name, &core, NULL)) != HAL_OK) return err; } if ((err = load_kek(core, K, K_len, KEK_decrypting)) != HAL_OK) goto out; n = (C_len / 8) - 1; if (Q != C) memmove(Q, C, C_len); if (use_keywrap_core) { err = do_keywrap_core(core, Q, n); } else { if (n == 1) { if ((err = do_block(core, Q, Q + 8)) != HAL_OK) goto out; } else { for (long j = 5; j >= 0; j--) { for (size_t i = n; i >= 1; i--) { uint32_t t = n * j + i; Q[7] ^= t & 0xFF; t >>= 8; Q[6] ^= t & 0xFF; t >>= 8; Q[5] ^= t & 0xFF; t >>= 8; Q[4] ^= t & 0xFF; if ((err = do_block(core, Q, Q + i * 8)) != HAL_OK) goto out; } } } } if (Q[0] != 0xA6 || Q[1] != 0x59 || Q[2] != 0x59 || Q[3] != 0xA6) { err = HAL_ERROR_KEYWRAP_BAD_MAGIC; goto out; } m = (((((Q[4] << 8) + Q[5]) << 8) + Q[6]) << 8) + Q[7]; if (m <= 8 * (n - 1) || m > 8 * n) { err = HAL_ERROR_KEYWRAP_BAD_LENGTH; goto out; } if (m % 8 != 0) for (size_t i = m + 8; i < 8 * (n + 1); i++) if (Q[i] != 0x00) { err = HAL_ERROR_KEYWRAP_BAD_PADDING; goto out; } *Q_len = m; memmove(Q, Q + 8, m); out: if (free_core) hal_core_free(core); return err; } /* * "Any programmer who fails to comply with the standard naming, formatting, * or commenting conventions should be shot. If it so happens that it is * inconvenient to shoot him, then he is to be politely requested to recode * his program in adherence to the above standard." * -- Michael Spier, Digital Equipment Corporation * * Local variables: * indent-tabs-mode: nil * End: */