Age | Commit message (Collapse) | Author |
|
Incidental minor refactoring of hal_rpc_server_dispatch().
|
|
The debugging code was for tracking down what turned out to be a race
condition in the Alpha's flash driver code (see sw/stm32); much of
this was temporary, and will be removed in a (near) future commit, but
some of the techniques were useful and belong in the repository in
case we need to pull them back for something similar in the future.
hal_ks_index_fsck() attempts to diagnose all the things I found wrong
in the ks_flash index after one long series of errors. As presently
written, it doesn't attempt to fix anything, just diagnose errors: the
intent is that we can call this, before and after every modification
if necessary, to poinpoint exactly which calls introduce errors. Once
things stablize a bit, we may want to crank down the number of calls
to this (it's a bit expensive, since it checks the entire index), and
perhaps add the ability to clean up whatever errors it might find; the
latter might be a good candidate for a CLI command.
|
|
In retrospect it's obvious that this never needed to be an
input/output argument, as its value will always be the same as the
last value in the returned array. Doh. So simplify the RPC and call
sequence slightly by removing the unnecessary output value.
|
|
Passes PKCS #11 "make test" but nothing uses the new attribute code yet.
Refactored some of the flash block update code.
Attribute code is annoyingly verbose, might be possible to refactor
some of that.
|
|
Mostly this is another checkpoint (still passes PKCS #11 "make test").
ks_volatile.c now contains support for per-session object visibility;
this may need more work to support things like a CLI view of all
objects regardless of session. Adding this required minor changes to
the keystore and pkey APIs, mostly because sessions are per-client.
ks_volatile.c also contains an untested first cut at attribute
support. Attribute support in ks_flash.c still under construction.
|
|
RPC calls which pass a pkey handle don't need to pass a session
handle, because the session handle is already in the HSM's pkey slot
object; pkey RPC calls which don't pass a pkey argument do need to
pass a session handle.
This change percolates down to the keystore driver, because only the
keystore driver knows whether that particular keystore cares about
session handles.
|
|
This is mostly to archive a commit where PKCS #11 "make test" still
works after converting the ks_volatile code to use SDRAM allocated at
startup instead of (large) static variables.
The attribute code itself is incomplete at this point.
|
|
The main reason for supporting multi-block objects is to allow the
PKCS #11 code to attach more attributes than will fit comfortably in a
single flash block. This may turn out to be unnecessary once we've
fleshed out the attribute storage and retrieval code; if so, we can
simplify the code, but this way the keystore won't impose arbitrary
(and somewhat inscrutable) size limits on PKCS #11 attributes for
large keys.
This snapshot passes light testing (PKCS #11 "make test" runs), but
the tombstone recovery code in ks_init() is a bit involved, and needs
more testing with simulated failures (probably induced under GDB).
|
|
|
|
|
|
|
|
|
|
Whack masterkey code to meet libhal coding standards, such as they
are.
Started layout of new ks_flash data structures but no changes to
functions or flash usage yet.
MKM initialization from flash placed under compile-time conditional
with warning because it's a dangerous kludge that should go away.
Started getting rid of obsolete keystore code; ks_mmap.c kept for now,
until I get around to merging the useful bits into ks_volatile.
|
|
This is an open source C99 CRC-32 implementation generated by pycrc,
see notes in source on copyright status and pycrc options used.
crc32.c contains two different implementations of the CRC-32 algorithm
with the same API, one optimized for speed, the other optimized for
much smaller code space at the expense of speed. We use the fast
implementation by default, but maybe the small implementation will be
useful, eg, in the bootloader. Remove the extra later if this turns
out to have been a waste of time.
|
|
|
|
|
|
Now that key names are UUIDs generated by the HSM, there's no real
need to specify type key type when looking up a key, and removing the
`type` argument allows a few simplifications of both the internal
keystore API and of client code calling the public RPC API.
|
|
|
|
Includes a few cosmetic fixes to address gcc format string warnings
and git trailing whitespace warnings.
|
|
Fixes for various minor issues found while integrating with sw/stm32.
Moving the in-memory keystore (PKCS #11 session objects, etc) from the
client library to the HSM was on the near term to-do list in any case,
doing it now turned out to be the easiest way to solve one of the
build problems.
|
|
Changes to implement a revised keystore API. This code probably won't
even compile properly yet, and almost certainly will not run, but most
of the expected changes are complete at this point. Main points:
* Key names are now UUIDs, and are generated by the HSM, not the client.
* Keystore API no longer assumes that key database is resident in
memory (original API was written on the assumption that the keystore
flash would be mapped into the HSM CPU's address space, but
apparently the board and flash drivers don't really support that).
A few other changes have probably crept in, but the bulk of this
changeset is just following through implications of the above, some of
which percolate all the way back to the public RPC API.
|
|
PKCS #11 expects a DigestInfo rather than a raw digest when passing a
pre-computed digest for PKCS #1.5 signature or verification, so the
rpc_pkey signature and verification calls do too. This requires
special case handling of RSA when the user passes a digest handle in
mixed mode. Annoying, but PKCS #1.5 is weird enoug that there's no
way to avoid some kind of special case handling, this approach has the
advantage of not requiring us to parse and reconstruct the ASN.1, and
is probably what PKCS #11 has trained software to expect in any case.
|
|
|
|
obscure.
|
|
|
|
|
|
client handle in all responses.
This simplies the daemon a little, and means that the directly-connected
serial client uses the same wire format as the daemon. The expense is some
redundant code in rpc_client and rpc_server to process (and throw away)
this extra stuff.
|
|
Includes preliminary support for the magic Mac-specific ioctl() to see
line speed, but has not yet been tested, that's waiting for some
supporting tweaks to the RPC code from Paul.
Includes some general cleanup which isn't really specific to Mac OS X
per se but which needed doing and which simplifies adding the Mac code.
|
|
control over iterations.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Temporary nature of null string as key name is not enforced by the
keystore code, it's just a convention to allow callers to generate a
keypair, obtain the public key, hash that to a Subject Key Identifier
(SKI), and rename the key using the SKI as the new name.
This is a compromise to let us use SKI-based key names in PKCS #11
while keeping the keystore code simple.
|
|
|
|
Added RPC function to get server version number.
Substantially reworked GNUMakefile with conditionals.
Renamed rpc_*() and xdr_*() to hal_*() for consistency.
Moved hal_io_fmc.c from stm32 repo.
|
|
and dispatch.
|
|
|
|
committing now so Paul has a chance to look at the current RPC API.
|
|
|
|
|
|
public key extraction functions on hold pending ASN.1 cleanup.
|