Age | Commit message (Collapse) | Author |
|
The main reason for supporting multi-block objects is to allow the
PKCS #11 code to attach more attributes than will fit comfortably in a
single flash block. This may turn out to be unnecessary once we've
fleshed out the attribute storage and retrieval code; if so, we can
simplify the code, but this way the keystore won't impose arbitrary
(and somewhat inscrutable) size limits on PKCS #11 attributes for
large keys.
This snapshot passes light testing (PKCS #11 "make test" runs), but
the tombstone recovery code in ks_init() is a bit involved, and needs
more testing with simulated failures (probably induced under GDB).
|
|
|
|
|
|
Now that key names are UUIDs generated by the HSM, there's no real
need to specify type key type when looking up a key, and removing the
`type` argument allows a few simplifications of both the internal
keystore API and of client code calling the public RPC API.
|
|
Changes to implement a revised keystore API. This code probably won't
even compile properly yet, and almost certainly will not run, but most
of the expected changes are complete at this point. Main points:
* Key names are now UUIDs, and are generated by the HSM, not the client.
* Keystore API no longer assumes that key database is resident in
memory (original API was written on the assumption that the keystore
flash would be mapped into the HSM CPU's address space, but
apparently the board and flash drivers don't really support that).
A few other changes have probably crept in, but the bulk of this
changeset is just following through implications of the above, some of
which percolate all the way back to the public RPC API.
|
|
|
|
|
|
|
|
Find a suitable core, and mark it busy. Don't forget to release it as soon
as you're done. This has a knock-on effect of un-const'ing core arguments
and struct fields in a lot of places, and it moves some core checks around.
|
|
|
|
|
|
|
|
|
|
|
|
Temporary nature of null string as key name is not enforced by the
keystore code, it's just a convention to allow callers to generate a
keypair, obtain the public key, hash that to a Subject Key Identifier
(SKI), and rename the key using the SKI as the new name.
This is a compromise to let us use SKI-based key names in PKCS #11
while keeping the keystore code simple.
|
|
|
|
|
|
threaded server.
|
|
|
|
Added RPC function to get server version number.
Substantially reworked GNUMakefile with conditionals.
Renamed rpc_*() and xdr_*() to hal_*() for consistency.
Moved hal_io_fmc.c from stm32 repo.
|
|
and dispatch.
|
|
|
|
committing now so Paul has a chance to look at the current RPC API.
|
|
|
|
|
|
|
|
the simpler format which PKCS #11 uses, since we have to support the
latter in any case and it's not worth the complexity of supporting both.
|
|
public key extraction functions on hold pending ASN.1 cleanup.
|
|
pool of pre-configured state blocks, suitable for an embedded system.
|
|
|
|
|
|
Compiles, not yet tested.
|
|
|
|
This required a bit of manual cleanup in hal.h, hash.c, and rsa.c. No
intended changes to functionality provided by parent comments, just a
few tweaks to track API changes beyond git's ken.
|
|
|
|
|
|
|
|
|
|
RSA code; use simpler model (pointer to incomplete structure) used in
ECDSA code. Refactor RSA code to use shared ASN.1 routines.
|
|
a few bits that didn't pass self-review.
|
|
ecdsa_verify(). Untested. Point addition and doubling algorithms are
the ones from libtomcrypt, main point of this commit is to save those
before replacing them with faster algorithms from hyperelliptic.org.
|
|
where it's unavoidable.
|
|
restore internal state. Compiles, not yet tested.
|
|
|
|
constraints to allow any key size within our supported range, since
hsmbully seems to want to twist this knob to every possible setting.
|
|
|